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SPHERICAL CONES: CLASSIFICATION AND A VOLUME

MINIMIZATION PRINCIPLE

TRAN-TRUNG NGHIEM

Abstract. Using a variational approach, we establish the equivalence between
a weighted volume minimization principle and the existence of a conical Calabi-
Yau structure on horospherical cones with mild singularities. This allows us to do
explicit computations on the examples arising from rank-two symmetric spaces,
showing the existence of many irregular horospherical cones.

1. Introduction

1.1. Background, motivation and main results. Since the resolution of the
Calabi conjecture by Yau and Aubin, the problem of finding canonical metrics has
been essential in Kähler geometry. It has been formulated and shown by vari-
ous authors in the last three decades that the existence of Kähler-Einstein metrics
on Fano manifolds is equivalent to a purely algebro-geometric condition called K-
stability [Tia97,Don02,CDS15a,CDS15b,CDS15c]. Even if the corresponding picture
of non-compact varieties is still largely unexplored, partial results have been made
in the case of normal affine varieties.

A normal Q-Gorenstein affine variety with klt singularities and a good action
of a complex torus T is often called a Fano cone (or a Fano cone singularity as
in [LWX21]). Here, by a good action, we mean that the action of the torus is effective
with a unique fixed point that is contained in the closure of any T -orbit.

Consider a Fano cone X with a unique singularity at the fixed point {0X}. Let ξ
be a vector in the Lie algebra of the maximal compact torus Tc ⊂ T such that −Jξ
is a homothetic-scaling vector field on X. The element ξ is said to be a Reeb vector.
A conical Calabi-Yau metric on (X, ξ) is a Kähler metric ω on X\ {0X} which is
Ricci-flat and two-homogeneous under −Jξ, i.e.

L−Jξω = 2ω

When X is toric, a result of Martelli-Sparks-Yau relates the existence of a conical
Calabi-Yau metric to a volume minimizing condition [MSY08]. This was generalized
to any Fano cone with an isolated singularity by Collins and Székelyhidi [CS19],
broadening the volume minimization principle (as ξ varies) to a suitable notion of
K-stability for the pair (X, ξ). The Fano toric case with non-isolated singularities
was settled recently by Berman [Ber20], recovering and extending the main result
of [MSY08]. Finally, a generalized notion of volume minimization was obtained by
Li for any Fano cone and shown to be in fact equivalent to K-semistability [Li17].
Interestingly, a conical Calabi-Yau structure on a Fano cone can be translated to a
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particular g-soliton structure on quasi-regular quotient orbifolds [LH21]. In algebro-
geometric words, the K-stability of the cone is equivalent to the g-weighted K-
stability of any quotient orbifold. Both conditions can be verified over special test
configurations only [Li21, Theorem 2.9].

Even then, the K-stability condition still remains hard to be checked in practice,
since there is generally an infinite number of special test configurations to consider.
However, on varieties with low-complexity group actions (e.g. toric varieties), the
condition becomes more or less simplified. For instance, the central fiber of any
test configuration of a toric Fano variety is always isomorphic to the variety itself,
hence the vanishing of the Futaki invariant (which is equivalent to the barycenter of
a polytope being zero) is necessary and sufficient for K-stability. The main objective
of this article is to conduct a case study of conical Calabi-Yau metrics on a class
of spherical cones, called horospherical cones, and find an equivalent combinatorial
K-stability notion for these cones.

To do this, we first provide a classification of conical embeddings using ingredients
from the Luna-Vust theory. Before stating the classification theorem, let us give some
preliminaries. Let G be a complex connected linear reductive group.

Definition 1.1. A spherical space is a homogeneous space G/H containing a Zariski-
open orbit of a Borel subgroup B. A G/H-spherical embedding is a pair (X,x) where
X is a normal G-variety such that G.x is an open G-orbit in X and H is the stabilizer
of x.

Such variety is called spherical. A spherical cone is a spherical affine variety with a
fixed point under the action by automorphisms of a non-trivial torus that commutes
with G. If a spherical embedding G/H ⊂ X is moreover a spherical cone, then X is
said to be a conical embedding of G/H. Spherical cones form a large class of affine
cones which contains notably the toric cones. The description of the latter is very
simple: a toric cone can be completely characterized by a polyhedral convex cone of
maximal dimension.

Analogously, the spherical embeddings of G/H are classified by combinatorial
objects in a vector space, called colored fans. A colored fan is a collection of strongly
convex and polyhedral colored cones satisfying certain compatibility conditions (see
Defn. 2.12, Defn. 2.15 for the precise definitions). A color in G/H is an irreducible
B-stable divisors in G/H.

Theorem 1.2. Let Y be a conical embedding of a spherical space G/H. Let V(G/H)
be the valuation cone of G/H, i.e. the set of G-invariant valuations on the rational
functions of G/H. Then the following assertions are equivalent:

(i) Y is a spherical cone.
(ii) Y has a unique fixed point under the action of G.
(iii) The valuation cone V(G/H) contains a line, and the colored cone of Y is

(CY ,D) where CY is a strictly convex polyhedral cone of maximal dimension,
and D is the set of all colors of G/H.

A horospherical variety is a spherical variety whose open G-orbit is an equivariant
torus bundle over a flag variety. The class of horospherical cones, which has a rather
simple description, contains strictly the class of toric cones. Moreover, horospherical
cones can be shown to satisfy a Yau-Tian-Donaldson correspondence.

Theorem 1.3. Let Y be a Q-Gorenstein G-horospherical cone and TH the connected
component of the group of automorphisms commuting with G. Then the following
are equivalent:



SPHERICAL CONES: CLASSIFICATION AND A VOLUME MINIMIZATION PRINCIPLE 3

(i) Y admits a ξ-conical Calabi-Yau metrics.
(ii) (Y, TH , ξ) is K-stable.
(iii) ξ minimizes the normalized Duistermaat-Heckman volume of Y .

Our proof of the theorem, which is based on [Ber20], uses the variational approach
by Berman-Berndtsson [BB13] to solve a weighted real Monge-Ampère equation with
exponential right-hand side and a relatively gentle condition on weight. The combi-
natorial condition is then equivalent to the existence of a locally bounded solution on
the open dense orbit G/H. This solution is actually smooth if the weight is smooth
(see Thm. 3.21), and extends to a locally bounded conical Calabi-Yau potential
over all Y (thanks to a C0-estimate). We then use a regularity result, shown in a
companion paper [Ngh22], to conclude.

The volume minimization principle implies that there is a unique choice of a
Reeb vector giving rise to a conical Calabi-Yau structure on the horospherical cone.
This allows us to verify K-stability by explicit computations, thus producing many
new examples of irregular Calabi-Yau cones. In the context of string theory, an
infinite family of irregular toric cones (with an isolated singularity) was constructed
by Gauntlett-Martelli-Sparks-Waldram [GMSW04]. These are the first examples of
irregular Sasaki-Einstein manifolds, contradicting a conjecture of Cheeger and Tian
that such manifolds do not exist. In our article, we construct a possibly infinite family
of irregular Q-Gorenstein horospherical cones, arising more or less unexpectedly from
symmetric spaces.

Theorem 1.4. There exist irregular Calabi-Yau horospherical cones arising from
irreducible rank-two symmetric spaces of type BC2.

In fact, another motivation of our result comes from the problem of finding asymp-
totic cones for Ricci-flat symmetric spaces. It turns out that we can build horospher-
ical cones from combinatorial data associated to rank-two symmetric spaces. Such
conical embeddings, endowed with their conical Calabi-Yau metrics, are expected to
be asymptotic cones of suitable Ricci-flat metrics on the symmetric spaces considered
in this article. This will be studied in a future paper.

1.2. Organization.

• We start in Section 2 with generalities on the theory of equivariant em-
beddings of spherical spaces, as well as a brief description of the canonical
divisor and Q-Gorenstein singularities. We then give a combinatorial nec-
essary and sufficient condition for a spherical embedding to be a cone, and
show that a Q-Gorenstein spherical cone is a Fano cone. Several examples
of homogeneous spaces (not) admitting conical embeddings are gathered at
the end of the section.

• Section 3 aims to study conical Calabi-Yau metrics on Q-Gorenstein horo-
spherical cones. We derive an explicit expression of the canonical volume
form. The conical Calabi-Yau problem is then translated into a weighted
real Monge-Ampère equation with exponential right-hand side, which can
be solved using the variational approach of [BB13].

• In Section 4, we provide examples of regular and irregular cones arising from
irreducible symmetric spaces of rank 2.

1.3. Notations.

• In this text, G is a complex simply connected linear reductive group, while
B, T , U denote respectively the Borel subgroup, maximal torus of G and
maximal unipotent subgroup of B. Under an embedding of G into GLn,
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B,T,U can be identified with subgroups of upper-triangular, diagonal, and
upper-triangular matrices with ones on the diagonal, respectively. Likewise,
the opposite Borel subgroup B− (resp. opposite maximal unipotent sub-
group U−) can be identified with subgroups of lower-triangular matrices
(resp. lower-triangular matrices with ones on the diagonal).

• G0 denotes the connected component of a group G.
• A (G,B, T )-root system is a root system (G,T ) whose positive roots are the

roots of (B,T ).
• Letters in fraktur are used to denote the corresponding Lie algebras. The

reductivity of G is equivalent to the existence of a real maximal compact
subgroup K such that g = k⊕ ik.

• Throughout the article, by a variety we mean an irreductible complex al-
gebraic variety (or an integral separated scheme of finite type over C). A
smooth point on the variety is understood to be smooth in the algebraic
sense (hence smooth in the analytic sense).

• Recall that a variety is complete (in the algebraic sense) if and only if it
is compact for the Euclidean topology. To avoid confusion with the metric
notion of completeness, a complete algebraic variety will be called a compact
variety in this paper.

• Given a set E in a real vector space, the cone generated by E, denoted by
R≥0E, is the set of all finite nonnegative linear combinations of elements in
E.

• Given a lattice M and its dual lattice N = Hom(M,Z), we denote by 〈., .〉
the natural pairing between them.

Acknowledgements. This paper is part of a thesis prepared under the supervi-
sion of Thibaut Delcroix and Marc Herzlich, partially supported by ANR-21-CE40-
0011 JCJC project MARGE. I would like to thank Thibaut Delcroix for many illu-
minating discussions and remarks.

2. Spherical varieties

Our main references in this section are [Bri97], [Kno91]. Recall that a spheri-
cal space is a homogeneous space G/H containing a Zariski-open orbit of a Borel
subgroup B ⊂ G. The only new results in this section are Thm. 2.35 and Prop.
2.37.

2.1. Classification of embeddings.

2.1.1. Combinatorial data of a spherical space. Let G/H be a spherical space. By a
theorem of Chevalley, we may view G/H as a smooth quasiprojective variety. Let

C(G/H)(B) be the set of rational functions on G/H which are eigenvectors of B. An

element of C(G/H)(B) is called a B-semi-invariant function. The set of B-invariant
rational functions C(G/H)B is actually C by Rosenlicht’s theorem.

Definition 2.1. To a spherical space are associated two lattices.

• The weights M of C(G/H)(B), called the weight lattice.
• The dual lattice N := Hom(M,Z), called the coweight lattice.

We will use MR and NR to denote the real vector spaces M⊗ R and N ⊗ R. The
dimension of MR is called the rank of G/H.

Remark that there exists a natural bijection between M and C(G/H)(B)/C∗,
which sends a weight to its eigenvector. Indeed, let f, g be two functions of the same
weight, then f1/f2 is a B-invariant rational function, hence constant.
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The open B-orbit in G/H, which is isomorphic (as an affine variety) to (C∗)k×Cm

[Ros63, Theorem 5], is an open affinet subset of G/H, hence its complement in G/H
is a collection of B-stable irreducible divisors. They are the only B-stable irreducible
divisors of G/H.

Definition 2.2. The set D of irreductible B-stable divisors of G/H is called the set
of colors of G/H.

After perhaps conjugating H, we can identify the open B-orbit with BH/H.
Recall that a valuation of a normal variety X is a map ν : C(X) → Q satisfying:

• ν(f1 + f2) ≥ ν(f1) + ν(f2), for all f1, f2 ∈ C(X)\ {0} such that f1 + f2 6= 0.
• ν(f1f2) = ν(f1) + ν(f2) for all f1, f2 ∈ C(X)\ {0}.
• ν(f) = 0 if and only if f is constant.

If X is a G-variety, the valuation is said to be G-invariant if ν(g.f) = ν(f) for all
g ∈ G and f ∈ C(X), where (g.f)(.) := f(g−1.).

Proposition 2.3. [Kno91] Denote by V the set of G-invariant rational valuations
of G/H.

• The natural mapping

ρ : V → Hom(M,Q) = NQ

ν → (χ→ ν(fχ))

is a well-defined injection. In particular, we can identify V with a cone in
NR, called the valuation cone of G/H.

• The valuation cone V is a strictly convex and polyhedral cone in NR.

Definition 2.4. Each element in D induces a valuation of C(G/H), hence a natural
map D → NQ as above, still denoted by ρ. We call ρ(D) the images of the colors of
G/H.

Remark. Note however that in general, ρ is not injective on D. Indeed, for a flag
variety, D is generally of cardinality > 1 by Bruhat’s decomposition, but the image
of D by ρ is identically zero since the set of B-semi-invariant functions on a flag
variety is trivially C.

Definition 2.5. Let G/H be a spherical space. We call (M,V,D) the combinatorial
data associated to G/H.

Example 2.6. Let G = SL2 act on C2 on the left. The stabilizer H of (1, 0) is then
U . Let B ⊂ SL2 be the Borel subgroup and α the unique positive root corresponding
to B with coroot α∨. Let B− be the opposite Borel subgroup of B. The open G-orbit
is isomorphic to SL2/U ≃ C2\ {0}, with open dense B−-orbit isomorphic to B−/U .
The fundamental weight of B− is

ω(bij) = b11

The H-right-invariant eigenvector of B− with weight ω is then f(A ∈ SL2) = a22.
It follows that M = Zω. The coweight lattice N is Z(α∨|M), and NR coincides with
the valuation cone V. The unique color of G/H is D = {f = 0}. Since ρ(D)(f) =
νD(f) = 1, we have that ρ(D) = α∨|M.

Example 2.7. Now let G = SL3 and H = U−. The space G/H is a fibration over
the flag G/B− with fiber the torus B−/U− ≃ (C∗)2. The open B-orbit of SL3/U

−

is isomorphic to B/U−. Let {α1, α2} be the positive simple roots corresponding to
(G,B, T ). The fundamental weights ω1, ω2 of B are

ω1(bij) = b11, ω2(bij) = b11b22



6 TRAN-TRUNG NGHIEM

Let f1, f2 ∈ C(G/H)(B) be two eigenvectors of B with weights ω1,2, defined by
H-invariant functions on G:

f1(A ∈ SL3) = a22a33 − a23a32, f2(A) = a33

The B-stable sets Di = {fi = 0} are the colors of SL3/U
−. The lattice M is then

identified with Zω1 ⊕ Zω2 and its dual N is the lattice Zα∨
1 ⊕ Zα∨

2 generated by
coroots. In particular, rank(SL3/U

−) = 2. Moreover, ρ(Di)(fj) = νDi
(fj) = δij . It

follows that ρ(Di) = α∨
i |M.

2.1.2. The Luna-Vust theory of spherical embeddings. Recall that a spherical em-
bedding is a G-equivariant embedding of a spherical space G/H. It is clear that a
spherical embedding is a spherical variety. Conversely, let X be a spherical variety
with an open orbit G.x. Then we can always choose a stabilizer H of x such that
BH/H is open in G/H, hence (X,x) is a G/H-spherical embedding. When there is
no confusion, we remove x and simply say that G/H ⊂ X is a spherical embedding.

Definition 2.8. Let G/H ⊂ (X,x) be a spherical embedding.

• The divisors of D whose closure in X contains a closed orbit are called the
colors of X. The set of colors of X is denoted by DX .

• We set VX to be the G-stable divisors of X, which are the irreducible com-
ponents of X\Gx. If D is a G-invariant divisor, then by normality of X,
we can associate to it a unique primitive G-invariant valuation νD, hence
under the map ρ, VX injects to a finite subset of V.

Remark. We distinguish between the colors of G/H and the colors of G/H as a
trivial embedding of itself. The latter is always empty.

Definition 2.9. A spherical variety is said to be simple if it contains a unique closed
G-orbit.

Proposition 2.10. [BLV86]

• Let X be a simple spherical variety with the unique closed G-orbit Y . There
exists a unique B-stable affine subset XY,B ⊂ X, which meets Y along a
Zariski-open B-orbit in Y . Moreover, X = GXY,B .

• X\XY,B = D\DX is a union of B-stable Cartier divisors, generated by global
sections, and do not intersect Y .

• Every G-spherical variety admits a finite cover by simple spherical varieties.

Example 2.11. Consider Ex. 2.6. The natural embedding X = C2 ⊃ G/H is an
affine simple embedding with the unique closed G-orbit Y = {0}. The unique open
affine B−-stable subset XY,B− containing {0} is X itself.

If we identify the elements in D with their closure in X, then the elements of
D\DX correspond to B-stable divisors of X not containing any G-orbit.

Definition 2.12. Let G/H be a spherical space. A colored cone is a couple (C,F)
where C ⊂ NR and F ⊂ D that verifies:

• 0 /∈ ρ(F) and C is a strictly convex polyhedral cone generated by ρ(F) (which
might be empty) and a finite number of elements of V.

• The relative interior of C meets V.

A face of the colored cone (C,F) is a couple (C′,F ′) such that C′ is a face of the cone
C, the relative interior of C′ meets V , and F ′ = F ∩ ρ−1(C′).

The following theorem classifies all the simple embeddings in terms of colored
cones.
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Theorem 2.13. [Kno91] Let G/H be a spherical space and G/H ⊂ X a spherical
embedding with VX ,DX as in Defn. 2.8. Let CX be the cone generated by VX , ρ(DX).

The map X → (CX ,DX) is a one-to-one correspondence between isomorphism
classes of G-equivariant simple embeddings of G/H and colored cones.

Example 2.14. Consider the action of SL2 in Ex. 2.6. Apart from the trivial
embedding, all possible colored cones are

• {R≥0ρ(D),∅}, which is X = Bl0(C
2).

• {R≤0ρ(D),∅}. The corresponding embedding is X ≃ P2\[1 : 0 : 0].
• {R≥0ρ(D), ρ(D)}, with X = C2 as the embedding.

Remark that C2 has no SL2-stable divisor and Bl0(C
2) has no color.

Definition 2.15. A colored fan is a finite collection F of colored cones such that:

• Every face of a colored cone in F belongs to F.
• For all v ∈ V, there exists at most one (C,F) ∈ F such that v ∈ RelInt(C).

The support of F is defined as:

Supp(F) = V ∩ ∪(C,F)∈FSupp(C)
Theorem 2.16. [Kno91] Given a spherical space G/H, there exists a one-to-one
correspondence between the isomorphism classes of G-equivariant embeddings X ⊃
G/H and the set of colored fans.

Moreover, X is compact if and only if the support of the fan F(X) coincides with
the valuation cone V.

Example 2.17. Let us come back to Ex. 2.6. The colored fans of non-simple
embeddings of SL2/U2 are

• {{0,∅} , {R≥0ρ(D), ρ(D)} , {R≤0ρ(D),∅}}
• {{0,∅} , {R≥0ρ(D),∅} , {R≤0ρ(D),∅}}

The associated embeddings are P2 and Bl0P
2.

Let X be a spherical variety. Any G-orbit Y is contained in a unique simple
spherical variety XY , which is a union of the orbits whose closure contains Y . By the
classification of simple embeddings, XY corresponds to a colored cone (CXY

,DXY
).

Proposition 2.18. [Kno91] Let Y be any G-orbit in a spherical variety X. There
exists a bijection between the G-orbits in X whose closure contains the G-orbit Y
and the faces of the colored cone (CXY

,DXY
), given by Z → (CXZ

,DXZ
).

Let D ∈ D be a color of G/H. Its stabilizer PD ⊃ B is a parabolic subgroup of G.
For all subset F ⊂ D, let PF := ∩D∈FcPD. In particular, PD = G. The following is
a quite simple dimension formula for a closed orbit of a spherical embedding.

Proposition 2.19. [Kno91, Theorem 7.6] Let X be a simple spherical embedding
with a unique closed G-orbit Z. Let (CX ,DX) be the colored cone of X. Then

dimZ = rank(X)− dim CX + dimG/PDX

If X is non-simple then we have the same equality for every colored cone in the
colored fan of X.

2.1.3. Some classes of spherical varieties.

Definition 2.20. Let X be a spherical variety. If DX = ∅, we say that X is a
toroidal variety.
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Proposition 2.21. [Bri91, 3.3] Every G-spherical variety X with colored fan FX
is dominated by a G-toroidal variety X̃ with colored fan F̃ = ∪CX∈FX

(CX ,∅), i.e.

there exists a proper birational G-equivariant map π : X̃ → X. The datum (X̃, π)
is called the decoloration of X.

Example 2.22. In Ex. 2.14, the toroidal embedding Bl0(C
2) is the decoloration of

C2.

Definition 2.23. A spherical space G/H is called horospherical if H contains a
maximal unipotent subgroup of G.

Proposition 2.24. [BP87] [Pas08] Let (G,B, T ) be a root system. Let M(B) =
M(T ) be the weight lattice of B.

• A horospherical space G/H is uniquely determined by a couple (MI , PI)
where PI is a parabolic subgroup of G associated to a subset I of simple
roots of G, and MI is the sublattice of M(B) vanishing on coroots of I.

• A spherical space G/H is horospherical if and only if the valuation cone V
is the whole vector space NR.

• Moreover, let Q be the left-stabilizer of the open Borel orbit and P its oppo-
site parabolic subgroup. Then P = PI = NG(H) and G/H is a equivariant
torus bundle over the flag variety G/P with fiber the torus P/H.

Remark. Let U be a maximal unipotent subgroup of B. If H ⊃ U , then the
horospherical space G/H has an open dense orbit under B−, isomorphic to B−/B−∩
H.

Example 2.25. The spaces SL2/U and SL3/U
− in Examples 2.6, 2.7 are all horo-

spherical.

2.1.4. Affine embeddings.

Proposition 2.26. [Kno91, Theorem 7.7]

(i) A spherical space G/H is quasiaffine if and only if ρ(D) does not contain 0
and generate a strongly convex cone.

(ii) Let X be a spherical embedding of G/H. Then X is affine if and only if X
is simple and that there exists χ ∈ M satisfying

χ|V ≤ 0, χ|CX = 0, χ|ρ(Dc
X
) > 0

In particular, G/H is affine if and only V and ρ(D) are separated by a
hyperplane.

Example 2.27. Following Ex. 2.14, the only affine embeddings of the spherical
space are the trivial embedding C2\ {0} and C2, as one can readily check from the
previous criterion.

2.2. Automorphisms group and canonical divisor.

2.2.1. Automorphisms group. Let G/H be a spherical homogeneous space. We de-
note by NG(H) the normalizer of H in G, which acts on H on the right by p.gH =
gp−1H. The quotient NG(H)/H is then identified with a subgroup of G-equivariant
automorphisms of G/H as follows.

Let σ ∈ AutG(G/H) and G/H ⊂ (X,x) be a spherical embedding, then H is
also the stabilizer of σ(x). However, σ is only a bijection between the colors of
(G/H, x) and the colors of (G/H, σ(x)) (see [Los09]), but if σ ∈ Aut0G(G/H), then
it is exactly the identity mapping between these sets of colors, therefore (X,x) and
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(X,σ(x)) are determined by the same colored fan. It follows that σ extends to
a G-equivariant automorphism of X by the classification theorem 2.16. Moreover,
by [Tim11, Proposition 1.8], we have AutG(G/H) ≃ NG(H)/H. In particular,

Proposition 2.28. Let X be a spherical embedding of G/H. Then

Aut0G(X) ≃ Aut0G(G/H) ≃ (NG(H)/H)0

Proposition 2.29. [BP87, 5.2] Let linV be the linear part of the valuation cone V.
The group NG(H)/H is diagonalizable, of dimension equal to dim linV.

2.2.2. Canonical divisor.

Definition 2.30. A normal variety X is said to be Gorenstein (resp. Q-Gorenstein)
if the canonical divisor KX is Cartier (resp. Q-Cartier, i.e. mKX is Cartier for some
integer m > 0).

Now let G/H ⊂ X be a spherical embedding. Recall that VX and D denote the set
of G-stable divisors of X and colors of G/H, respectively. The following description
of the canonical divisor in terms of those data is due to Brion.

Proposition 2.31. [Bri89] The canonical divisor of X can be represented by

KX = −
∑

Dν∈VX

Dν −
∑

D∈D

aDD

where D denotes the closure of the color in X and aD depends only on the spherical
space G/H.

The property of being Cartier for KX can be determined by a linear function.

Proposition 2.32. [Bri89] Let G/H ⊂ X be a simple embedding with colored cone
(CX ,DX). Then X is Gorenstein (resp. Q-Gorenstein) if and only if there exists
β ∈ M (resp. ∈ MQ) such that for every Dν ∈ VX and every D ∈ DX ,

〈β, ρ(Dν)〉 = 1, 〈β, ρ(D)〉 = aD

If X is a non-simple embedding with colored fan F(X), then X is (Q-)Gorenstein iff
the property above holds for every colored cone in the fan F(X).

2.3. Classification of spherical cones. If G/H admits a conical embedding, then
it is necessarily quasi-affine. In what follows, we shall consider only quasi-affine
spherical spaces, unless mentioned otherwise.

2.3.1. Classification and properties.

Definition 2.33. A spherical cone is an affine spherical G-variety Y that contains
a (necessarily unique) fixed point under the right-action of a (non-trivial) torus in
Aut0G(Y ) ≃ (NG(H)/H)0.

The fixed point, denoted by {0Y }, is called the vertex of Y . If Y is the embedding
of a spherical space G/H, then Y is said to be a conical embedding of G/H.

Proposition 2.34. [Sum74] [KKLV89] For any spherical cone Y , there exists a
G-equivariant embedding of Y in an affine space CN such that {0Y } is sent to {0},
K corresponds to a subgroup of SUN with its standard action on CN , and the torus
corresponds to the standard right-action of a diagonal group.

Notation In what follows, we will denote the neutral component of NG(H)/H
by TH .
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Theorem 2.35. Let Y be a spherical embedding of G/H with colored cone (CY ,DY ).
Then the following conditions are equivalent:

i) Y is a spherical cone.
ii) The valuation cone V contains a line, the cone CY is of maximal dimension

and DY = D.

Remark. Since dim linV ≥ 1, the rank of a conical embedding is always positive.

Proof. i) ⇒ ii).
a) The valuation cone contains a line.
If Y is a cone, then it admits a unique fixed point {x} under the action of

NG(H)/H, so by 2.29 , dimNG(H)/H = dim linV(G/H) ≥ 1. It follows that V
contains a line.

b) CY is of maximal dimension.
The unique fixed point {x} is also a fixed point of G. Indeed, for all t ∈ NG(H)/H

and g ∈ G,
t.g.x = g.t.x = g.x,

hence g.x = x by uniqueness of the fixed point. The closed orbit {x} of G is of
dimension 0, hence by 2.19,

0 = rank(Y )− dimCY + dimG/PDY

This combined with the dimensional equality dim CY + dim C⊥
Y = rank(Y ) implies

that dimC⊥
Y = dimG/PDY

= 0, hence dimCY = rank(Y ).
c) The colors of Y are DY = D
Since Y is affine, by 2.26, there exists χ ∈ C⊥

Y = {0} such that χ|V(G/H) ≥ 0 and
χ|ρ(DY )c < 0. These last conditions are simultaneously possible only if ρ(Dc

Y ) = ∅,
or equivalently D = DY .
ii) ⇒ i).
By assumption, we have C⊥

Y = {0} and D = DY , hence the affineness criterion
2.26 is automatically satisfied for Y . It follows that Y is a simple embedding, hence
contains a unique closed orbit Z. Since PDY

= PD = G, by the dimension formula:

dimZ = rank(Y )− dimCY + dimG/PDY

= rank(Y )− dimCY = 0

It follows that Z = {x} is the unique fixed point of Y under the action of G. Again
by assumption, the linear part of V is non-empty, hence NG(H)/H contains a torus
which commutes with G, so fixes {x}. �

Proposition 2.36. Let G/H ⊂ Y be a conical embedding and C[Y ] the ring of reg-
ular functions, viewed as a rational G-module. We have the following decomposition:

C[Y ] =
⊕

λ∈C∨

Y
∩M

C[Y ]λ

where the C[Y ]λ are pairwise distinct simple G-modules with dominant weights λ,
and C∨

Y is a strictly convex, polyhedral cone of maximal dimension in MR.

Let us first give some preliminaries. Recall that a dominant B-weight is a lattice
point in the positive Weyl chamber of a root system (G,B, T ). The simple G-modules
are classified by dominant B-weights (see e.g. [Hum75, 31.3]). More precisely, a G-

module V is simple if and only if the set of B-eigenvectors V (B) is a B-stable line

V
(B)
λ with dominant B-weight λ. Conversely, a dominant weight λ determines a

simple G-module Vλ up to G-isomorphisms.
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A G-module V is said to be multiplicity-free if V is a direct sum of pairwise distinct

simple G-modules Vλ (or equivalently dimV
(B)
λ ≤ 1 for all Vλ). A G-affine variety Y

is spherical if and only if C[Y ] is multiplicity-free [VK78, Theorem 2]. In particular,
C[Y ] decomposes into pairwise distinct simple G-modules.

Proof. Denote by C[Y ](B) the set of all B-eigenvectors of C[Y ]. We have the following
decompositions:

C[Y ] =
⊕

λ∈B

C[Y ]λ, C[Y ](B) =
⊕

λ∈B

C[Y ]
(B)
λ

where B is a subset of M. Let f ∈ C(G/H)(B) with weight λf , then f ∈ C[Y ] if
and only if 〈λf , ν〉 ≥ 0 for all ν ∈ VY ∪ ρ(DY ) (recall that D = DY for a cone), i.e.
λf ∈ C∨

Y , hence B = C∨
Y ∩M.

Finally, since CY is strictly convex, polyhedral of maximal dimension, its dual cone
C∨
Y also has these properties. This completes our proof. �

Remark. The monoid ΓY := C∨
Y ∩ M is of finite type as follows from Gordan’s

lemma. It is moreover saturated (i.e. ΓY coincides with the lattice points of R≥0ΓY )
since Y is normal (cf. [Vus76, 1.2, Thm 1] and [KKMSD73, Ch. 1, §1, Lemma 1]).

2.4. Proof of Theorem 1.2. In the demonstration of our classification theorem
2.35, we have shown that a spherical cone has a unique fixed point under the action
of G. In fact, the converse is also true.

Proposition 2.37. Let Y be an affine spherical G-variety. Then Y is a cone if and
only if Y 6= {0Y } and contains a fixed point under the action of G.

Before giving the proof, we will need some preliminaries. Let X be a normal
G-variety and ν a valuation on C(X)∗. The center of ν is a closed subvariety Z
of X such that OX,Z ⊂ Oν = {ν ≥ 0} and mX,Z ⊂ mν = {ν > 0}. Here OX,Z =
{f/g, f, g ∈ C[X], g|Z 6= 0} is a local ring and mX,Z is the unique maximal ideal of
OX,Z .

Definition 2.38. Let B be a Borel subgroup of G. A G-invariant discrete Q-
valuation of C(X) is said to be central if it vanishes on C(X)B\ {0}. A proper
source of X is a G-stable proper subvariety of X which is the center of a central
valuation.

Given a normal G-variety X, every closed G-stable subvariety Z is the center of

some G-invariant valuation of C(X). Indeed let (X̃, π) be the blow-up of X along Z,

then X̃ is still a normal variety. Now let Z̃ be an irreducible component of π−1(Z).

By normality of X̃, there exists a natural valuation ν
Z̃

of C(X̃) = C(X) associated

to Z̃. The center of νZ̃ in X is then Z.

Proposition 2.39. [Kno93, Theorem 8.2], [Kno94, Corollary 7.9] Let X be a normal
affine G-variety containing a proper source. Then there exists a non-trivial positive
grading of C[X] induced by the action of a subtorus C∗ ⊂ AutG(X), where AutG(X)
is the group of automorphisms of X commuting with G.

Corollary 2.40. If X is a G-spherical affine variety, containing a proper and closed
G-stable subvariety then AutG(X) contains a non-trivial subtorus.

Proof. Indeed, in the spherical case C(X)B = C, hence every G-invariant valuation
of C(X) is central. It follows that every proper closed G-stable subvariety of X is a
proper source. We conclude by the preceding proposition. �
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We now proceed to the proof of Prop. 2.37

Proof of Prop. 2.37. If Y is a sherical cone then Y contains a fixed point under the
action of G by the proof of the part “i) ⇒ ii), (b)” in Thm. 2.35. Conversely, the
fixed point of G in Y is a proper subvariety of Y , hence by the previous corollary,
AutG(Y ) contains a non-trivial torus. It follows that dim linV = dimNG(H)/H =
dimAutG(Y ) ≥ 1, hence V contains a line. �

Proof of Theorem 1.2. Direct consequence of Prop. 2.16 and Prop. 2.37. �

2.5. Relation with Fano cones. Recall that a T -affine cone is a normal affine
variety with a good action of T (i.e. T acts with a fixed point, contained in the closure
of any orbit). A Fano cone is a Q-Gorenstein T -affine cone with klt singularities.

Proposition 2.41. Let Y be a spherical cone. Then Y is a normal TH -affine cone.
If moreover Y is Q-Gorenstein, then Y is a Fano cone.

Proof. It is clear by definition that TH acts effectively and holomorphically on Y
with a unique fixed point {0Y }.

Next, let us show that TH defines a good action. Let C[Y ] be the ring of regular
functions on Y and M(TH) be the weight lattice of TH , with dual lattice being
N (TH). Under the right-action of TH , we have a decomposition

C[Y ] =
⊕

α∈Γ

Rα, Γ := {α ∈ M(TH), Rα 6= 0}

where Rα is a simple TH -module of C[Y ] with weight α. The cone σ∨ ⊂ M(TH)R
generated by Γ is strictly convex by Sjammar’s criterion [Bri97, 1.2, Corollaire], and
of maximal dimension since Y has a fixed point under TH (see [AH06]).

It follows from the orbit-faces correspondence for TH -affine varieties that {0Y }
correponds to σ∨, and that the closure of any orbit of TH in Y contains the fixed
point [Bri97, 1.2, Remarque].

Finally, since any Q-Gorenstein spherical cone has klt singularites (cf. e.g. [Pas17,
Proposition 5.6] for a short proof), this completes our proof. �

By duality, the cone σ = (σ∨)∨ is also strictly convex, of maximal dimension,
and is said to be the Reeb cone. In particular, the interior of σ is non-empty and
coincides with its relative interior:

Int(σ) = {ξ ∈ N (TH)R, 〈ξ, α〉 > 0,∀α ∈ Γ}
Definition 2.42. The set Int(σ) is called the set of Reeb vectors of Y . A couple
(Y, ξ), ξ ∈ Int(σ), is said to be a polarized cone.

If ξ ∈ N (TH)Q, then it is called quasi-regular, otherwise it is said to be irregular.
A polarized cone with a quasi-regular (resp. irregular) Reeb vector is called a quasi-
regular (resp. irregular) cone.

2.6. Examples.

Example 2.43. Every normal affine toric variety defined by a strictly convex cone
of maximal dimension is a toric cone. On the other side, flag varieties are projective,
hence never admit any conical embedding.

Example 2.44. Consider the spherical space SL2/U of Ex. 2.6. From the colored
fans of all spherical embeddings of SL2/U (cf . Examples 2.14, 2.17), we see that
the only conical embedding is C2
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Example 2.45. Now consider G = SL3 and H = U− as in Ex. 2.7. Since H is
maximal unipotent, it is a horospherical subgroup of G.

The embedding defined by the colored cone
(
R≥0(α

∨
1 |M, α∨

2 |M),
(
α∨
1 |M, α∨

2 |M
))

clearly satisfies the criterion 2.35, hence is a conical embedding. The automorphism
group TH is exactly the maximal torus T acting on the right.

We can identify this embedding with the 5-dimensional affine quadric

Q =

{
(x1, x2, x3, y1, y2, y3) ∈ (C)6,

3∑

i=1

xiyi = 0

}

The SL3-orbits of Q, which correspond to the faces of the colored cone, are the open
dense orbit SL3/U

−, two copies of C3, and the unique fixed point {0}. In fact, Q
is the affine cone over the complex grassmannian G(2, 4). In particular, Q is a cone
with a unique isolated singularity.

We also have that Q is Gorenstein, since the element β = 2ω1+2ω2 clearly satisfies
〈β, α∨

i |M〉 = 2, i ∈ {1, 2}.

ρ(D1)

ρ(D2)

Figure 1. Colored cone of a horospherical conical embedding.

Horospherical spaces of rank 0 are flag varieties, hence never embed into spherical
cones. Below is an example of a rank-one horospherical space not having any conical
embeddings. This behavior is completely different from toric spaces, which always
admit conical embeddings.

Example 2.46. Again we consider G = SL3. Fix a root system with simple roots
(α1, α2) and fundamental weights (ω1, ω2) (see Ex. 2.7 for their expressions). Let
H = ker(ω1 − ω2). In particular,

H = {(bij) ∈ SL3, b22 = 1}
Clearly, H ⊃ U , so it is a horospherical subgroup. The weight and coweight lattices
are M = Zω1 and N = Zα∨

1 . The images of colors are easily determined to be
−α∨

1 |M, α∨
1 |M. From these data, one can see that the only embedding with all colors

is determined by the colored fan
{(

R≥0(α
∨
1 ), α

∨
1

)
,
(
R≥0(−α∨

1 ),−α∨
1

)}
,

This is a compact embedding by Thm. 2.16, hence non-conical.
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α∨
1 |M−α∨

1 |M

Figure 2. Horospherical space without conical embeddings.

Not all open orbits of conical embeddings are horospherical, as the following ex-
ample shows.

Example 2.47. Let G = SL2×C∗ andH = N×{1} where N is the normalizer of the
maximal torus in G. The homogeneous space G/H is then a reducible symmetric
space. Fix a root system of SL2 with α as the unique simple root. Let e be a
primitive character of C∗. The weight lattice is M = Zγ ⊕ Ze, where γ = 2α.
Let (γ∗ = ω∨/2, e∗) be the dual basis, where ω∨ is the unique coweight. Then
N = Zγ∗ ⊕Ze∗, and there exists a unique color D whose image in N is ρ(D) = 2γ∗.

The valuation cone of G/H is a half-space defined by the hyperplane

{(x, y) ∈ MR, x ≤ 0} ,
Consider the embedding defined by (R≥0 {2γ∗, e∗ − 2γ∗} , 2γ∗). This colored cone
is clearly of maximal dimension and contains the unique color, so defines a conical
embedding of G/H, which is symmetric and non-horospherical (since the valuation
cone is not a vector space).

V ρ(D) = 2γ∗

.

Reeb cone

Figure 3. Conical embedding of a symmetric space. The dashed
half-line represents the Reeb cone

While many familiar spherical spaces admit conical embeddings, there exists a
large class which does not, as shown by the following example.

Example 2.48. A spherical space G/H is said to be sober if H is of finite index
in NG(H). This is equivalent to the fact that V(G/H) is a strictly convex cone (cf.
Prop. 2.29), hence does not contain any line. It follows that sober spaces never admit
any conical embedding. In particular, semisimple symmetric spaces do not embed
equivariantly into any symmetric cone, since their valuation cone is the restricted
negative Weyl chamber, which is strictly convex.

On the other hand, notice that sober spaces always embed into a canonical compact
and toroidal embedding, whose colored cone is exactly the valuation cone. When the
embedding is smooth, it is called a wonderful embedding.
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V

Figure 4. Valuation cone of a semisimple symmetric space.

3. Conical Calabi-Yau metrics on horospherical cones

3.1. Preliminaries.

3.1.1. Structure of horospherical cones. Let us recall some basic properties of horo-
spherical varieties. For more information, the reader might consult Pasquier’s the-
sis [Pas08].

Definition 3.1. A horospherical cone is a conical embedding of a horospherical space.

Consider a conical embedding G/H ⊂ Y of a horospherical space of rank r > 0
with colored cone (CY ,DY ). Let K be the maximal compact subgroup of G and T
be a maximal torus of G such that T ∩K is the maximal compact subtorus of T .

Denote by (., .) the Weyl-invariant scalar product on t, whose restriction to the
semisimple part t ∩ [g, g] coincides with the Killing form. For all m1,m2 ∈ t∗, we
denote by tm2

the unique element in t such that

(m1,m2) = 〈m1, tm2
〉

Recall that the connected automorphism group compatible with G is isomorphic to
the torus TH := (NG(H)/H)0. In the horospherical case, NG(H) = P (see Prop.
2.24), so TH = P/H. In particular, P is the right-stabilizer of the open Borel-orbit.
After choosing an adapted Lévi subgroup of Q, (cf. [Bri97, 2.4, Proposition 2]), we
have Q/H = T/T ∩ H = TH . We can thus identify TH with T/T ∩ H as a group,
and the weight lattice M(G/H) with the weight lattice M(TH) of the torus TH .
Moreover, r = rank(G/H) = dimTH .

Remark. We emphasize here the fact that TH acts on G/H in two different ways:
on the left and on the right. In the rest of this article, unless stated otherwise, by
an action of TH , we mean its action on the right, i.e.

p.(gH) = gp−1H, ∀g ∈ G, p ∈ TH

By a G× TH action, we mean the combined action of G on the left and TH on the
right.

Let tH be the Lie algebra of TH . The compact and non-compact part of tH are
denoted by tH,c and tH,nc. They are respectively the Lie algebras of the compact
real torus TH,c ≃ (S1)r and TH,nc ≃ (R>0)

r in the decomposition TH = TH,c×TH,nc.
Moreover, we can choose the maximal compact subgroup K such that TH,c = TH∩K.

Recall that there exists a natural isomorphism between tH,c and N (TH)R. We
identify an element ξ ∈ tH,c in the Reeb cone with the vector field it generates
(called the Reeb vector field). Let J be the complex structure on Yreg. The vector
field generated by −Jξ ∈ tH,nc defines a radial right-action of R∗

+ on Y .
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Remark. The reader should be aware that for a horospherical cone, the Reeb cone
is exactly the opposite of the cone CY . Indeed, if we look at the decomposition of
C[Y ] into TH -modules with respect to the left-action of TH , then the cone generated
by the weights is exactly C∨

Y . However, with respect to the right-action, it is −C∨
Y .

Below is the Reeb cone for the conical embedding in Ex. 2.45.

ρ(D1)

ρ(D2)

Reeb cone

Figure 5. The Reeb and colored cones of a SL3/U
−-conical embed-

ding.

Denote by Tξ the compact torus generated by ξ, which is the closure of exp(Rξ)
in AutG(Yreg)

0. In particular, Tξ is a compact subtorus of TH,c. If dimTξ = 1, or
equivalently ξ ∈ N (TH)Q, we say that ξ is quasi-regular. If dimTξ > 1 it is called
irregular.

Let Φ be the root system corresponding to (G,T ). Let us denote by Φ+ the set
of positive roots (with respect to a choice of the Borel subgroup) and S the positive
simple roots. Let P u (resp. Qu) be the nilpotent radicals of P (resp. Q). The choice
of the parabolic group P = NG(H) is equivalent to the choice of a subset I ⊂ S (cf.
Prop. 2.24). Moreover, let ΦI be the root system generated by I, the set of P u-roots
is then ΦPu := Φ+\ΦI . In particular, ΦPu = −ΦQu. The Lie algebra of G can be
decomposed as:

g = qu ⊕ l⊕ pu

where qu, pu and l are the Lie algebras of Qu, P u, and the adapted Lévi subgroup
L = P ∩Q. Since G/H is a bundle with fiber P/H ≃ TH over G/P , we have:

n = r + |ΦPu|
We will denote by SPu := ΦPu ∩ S = S\I the set of simple roots of P u and (two
times) the sum of roots in Qu (resp. P u ) by:

̟Q = 2
∑

α∈ΦQu

α = −̟P

The following proposition describes the colors in a horospherical space in terms of
coroots.

Proposition 3.2. [Pas08] The images of the colors D in a horospherical space are
exactly the restriction to M of the coroots associated to SPu:

ρ(D) =
{
α∨|M, α ∈ SPu

}
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Since we only work with quasi-affine spherical spaces, ρ(D) does not contain 0,
i.e. for all α ∈ ΦPu , α∨|M 6= 0. Moreover, Q≥0ρ(D) is a strictly convex cone, i.e. its
dual cone is of maximal dimension equal to r.

The following proposition follows straightforwardly from our criterion in Thm.
2.35.

Proposition 3.3. Let Y be a horospherical affine variety with open G-orbit G/H
and colored cone (CY ,DY ). The following assertions are equivalent :

(i) Y is a cone.
(ii) CY is full dimensional and DY = D.
(iii) G acts on Y with a fixed point.
(iv) TH acts on Y with a fixed point.

Example 3.4. The spaces SL2/U and SL3/U
− in Examples 2.6, 2.7 are all horo-

spherical. The parabolic subgroups P = NG(H) are respectively the Borel subgroups
of upper-triangular matrices B ⊂ SL2 and lower-triangular matrices B− ⊂ SL3. The
torus TH in both cases is exactly the maximal torus of diagonal matrices.

Both spaces admit conical embeddings as in Examples 2.44, 2.45.

3.1.2. Conical Calabi-Yau metrics on horospherical cones. Let Y be a Q-Gorenstein
horospherical cone of rank r and of dimension n , which is G × TH -equivariantly
embedded in CN . Let us first state a useful remark.

Remark. By the Iwasawa decomposition ofG, cf. [Del20a, Prop. 2.7], exp(tH,nc)H =
TH defines a fundamental domain for the K-action on G/H, i.e. G/H can be written
as a disjoint union of K-translated copies of TH . It follows that every K-invariant
function u on G/H restricts on TH to a function left-invariant by TH,c. In particular,
in the coordinates (z1, . . . , zr) of TH ,

u(z1, . . . , zr) = u(log |z1|2 , . . . , log |zr|2)
As a consequence, u is also right-invariant by TH,c. Therefore every K-invariant
function on G/H is automatically (K × TH,c)-invariant. The same goes for K-
invariant forms on G/H.

Definition 3.5. A K-invariant plurisubharmonic (psh) function on Y is a function
f such that for every local K-equivariant embedding of Y , f is the restriction of a
global SUN -invariant psh function on CN .

Definition 3.6. Let (Y, ξ) be a polarized horospherical cone. A K-invariant ξ-radial
function (or ξ-conical potential) on Y is a positive K-invariant strictly psh function
ρ2 : Y → R>0 such that ρ2|G/H is smooth and

L−Jξρ
2 = 2ρ2

on Yreg. If moreover ρ2 is locally bounded on Y , the K-invariant Kähler (1,1)-current
defined as

ω := ddcρ2

is then called a Kähler cone current.

Note that ω is well-defined by the local theoy of Bedford-Taylor [BT76]. Since Tξ ⊂
TH,c, a K-invariant ξ-radial function is automatically ξ-invariant. Before stating the
definition of conical Calabi-Yau metrics on Y , let us first make some digressions on
linearized line bundles.
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Definition 3.7. Let G be a linear algebraic group and X be any G-variety. A G-
linearized line bundle on X is a line bundle L over X endowed with an action of G
such that (i) the projection π : L → X is G-equivariant and that (ii) G acts linearly
on the fibers of L.

For all section s ∈ H0(X,L) and x ∈ X, G induces an action on H0(X,L) by:

(g.s)(x) = g.s(g−1x)

The group G then acts on H0(X,L) and the latter is a rational G-module. For every
reductive group G and every line bundle L over a normal G-variery, there exists a
positive integer m > 0 such that mL is G-linearized. If in addition C[G] is factorial,
then one can choose m = 1. Every G-linearized line bundle over G is trivial. We
refer the reader to [KKLV89] for proofs of these assertions.

Example 3.8. Let H be any closed subgroup of G. Every G-linearized line bundle
L over G/H is determined by a character χH of H. Indeed, given χH , the quotient
LχH

of G× C by the action:

h(g, z) = (gh−1, χH(h)z)

is a G-linearized line bundle over G/H. Conversely, if L is G-linearized, then H acts
on the fiber LeH by a character χH . We can then directly prove that G×LeH → L,
(g, z) → (gH, g.z) induces an isomorphism between LχH

and L.

Let us come back to the setting of our cone Y . Since Y is Q-Gorenstein, the
canonical bundle mKY is a well-defined Cartier divisor and naturally (G × TH)-
linearized for some integer m > 0.

Note that the Picard group of Y is trivial (since Y = Y{0Y },B by Thm. 2.10, and
Pic(Y{0Y },B) = 0 by [Bri91, 2.1, Proposition]). It follows that there exists a nowhere
vanishing holomorphic (G × TH)-invariant section s of mKY , and a K-invariant
volume form dVY defined by

dVY = (
√
−1

mn2

s ∧ s)1/m

Remark. To simplify the notation, we will sometimes abuse the language and say

that s is a “multivalued” holomorphic section of KY and simply write dVY = in
2

s∧s.
The Q-Gorenstein singularities of Y implies the existence of a linear function

l : (−CY ) → R>0 (which is −β in Prop. 2.32) such that for all Dν ∈ VY and D ∈ D:

〈l, ρ(Dν)〉 = −1, 〈l, ρ(D)〉 = −aD
where aD is the coefficient of D in the expression of KY .

Definition 3.9. A TH,c-invariant nowhere-vanishing section sY ∈ H0(Y,KY ) is said
to be a canonical section if

L−JξsY = 〈l, ξ〉 sY
on Yreg for all ξ ∈ Int(−CY ), where −CY is the Reeb cone of Y and L−Jξ is the Lie
derivative for the right-action of −Jξ.

A volume form dVY on Y is called canonical if on Yreg,

L−JξdVY = 2 〈l, ξ〉 dVY
Remark. Since every Q-Gorenstein spherical variety has klt singularities [Pas17],
it follows from [MSY08] (see also [CS19, Lemma 6.2]) that a canonical volume form
always exists. In the subsequent, we will give an explicit expression of the canonical
volume form on Y .
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Remark. A canonical section sY determines a canonical volume form by setting

dVY := in
2

sY ∧ sY . Conversely, let dVY be a canonical volume form determined by
a multivalued holomorphic section s. For each ξ, there exists a real function fξ such
that

L−Jξs = fξs

It follows that L−JξdVY = 2fξi
n2

s ∧ s, hence fξ = 〈l, ξ〉 for all ξ ∈ −CY .

Remark. A canonical section is unique up to a constant. Indeed, for any two
canonical sections, there exists f ∈ C[Y ]∗ = C such that s1 = fs2. In particular, a
canonical volume form is unique up to a constant.

Definition 3.10. Let (Y, ξ) be a Q-Gorenstein polarized horospherical cone of di-
mension n and dVY its canonical volume form. A K-invariant conical Calabi-Yau
metric on Y is a K-invariant Kähler cone current ω on Y satisfying

ωn = (ddcρ2)n = dVY

such that the ξ-radial function ρ2 is smooth on the regular locus Yreg. The function
ρ2 is then said to be a conical Calabi-Yau potential.

As one will see, the above equation takes the form of a real Monge-Ampère equa-
tion due to symmetry by K.

3.2. Curvature and canonical volume form.

3.2.1. Curvature form. The expression of a K-invariant Kähler form ω on G/H was
given by Delcroix [Del20a]. Let us first introduce some terminologies.

Recall that tH,nc ≃ Rr is the Lie algebra of TH . Let pu be the Lie algebra of the

unipotent radical P u. Denote by J the complex structure of G/H, and
√
−1 the

complex structure coming from the complexification of the real vector space g/h,
which can be decomposed as

g/h ≃
⊕

α∈qu

Cuα
⊕

tH,nc
⊕√

−1tH,nc

Here uα is the eigenvector with weight α of qu.
Let us come back to our conical embedding G/H →֒ Y . Consider a (G × TH)-

linearized line bundle L over G/H with a K-invariant hermitian metric h. Let i∗L
be the line bundle over TH induced by the natural inclusion i : TH →֒ G/H, endowed
with the TH,c-invariant metric i∗h.

After replacing i∗L by a multiple large enough, we can suppose that i∗L is TH -
linearized and trivial over TH . In particular, the metric i∗h is the curvature form of
a TH,c-invariant global potential u.

By pullback using the map exp : tH,nc → TH , we can consider u as a function
u : tH,nc ≃ Rr → R. This potential in turn defines the metric, as shown by Delcroix.

Proposition 3.11. [Del20a, Proposition 2.7] The metric h is completely determined
by the global potential u : tH,nc → R of the metric i∗h, called the toric potential.

By the Iwasawa decomposition in loc. cit., the K-invariant curvature form of h,
denoted by ω, is uniquely determined by its restriction to TH .

Let (lj)1≤j≤r be a real basis of tH,nc, (Jlj)1≤j≤r a basis of JtH,nc, (u−α)α∈ΦPu the
basis of the root decomposition in qu.

Consider the associated holomorphic vector

ζj :=
1

2
(lj −

√
−1Jlj), wα =

1

2
(u−α −

√
−1Ju−α)
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and associate to them the TH -invariant holomorphic vector fields of the tangent
bundle of G/H by translation under the action of TH , i.e. for all p ∈ TH , we define:

zj : p→ (Rp−1)∗ζj, wα : p→ (Rp−1)∗wα

Let
{
z∗j

}
1≤j≤r

∪{w∗
α}α∈ΦPu

be the dual (1, 0)-forms of the vector fields {zj}∪{wα}.

Proposition 3.12. [Del20a] For all x ∈ tH,nc,

ωexp(x)H =
∑

1≤j1,j2≤r

1

4

∂2u

∂xj1∂xj2
iz∗j1 ∧ z∗j2 +

∑

α∈ΦPu

e−2〈α,x〉(α, dxu+̟)
i

2
w∗
α ∧w∗

α

where (dxu+̟Q, α) =
〈
∇u(x) + t̟Q

, α
〉
. In particular, the volume form defined by

ω is:

ωnexp(x)H =
n!

2r
e−〈̟Q,x〉 det(d2xu)

∏

α∈ΦPu

(α, dxu+̟Q)
∧

1≤j≤r

i

2
z∗j ∧ z∗j

∧

α∈ΦPu

i

2
w∗
α ∧w∗

α

3.2.2. Canonical volume form. We provide in this part an expression of the canonical
volume form of a Q-Gorenstein horospherical cone.

Proposition 3.13. The canonical volume form on Y is K-invariant on G/H and
writes in TH as (up to a constant):

(dVY )exp(x)H = e〈β−̟Q,x〉 ∧

1≤j≤r

i

2
z∗j ∧ z∗j

∧

α∈ΦPu

i

2
w∗
α ∧w∗

α

for all x ∈ tH,nc.

Proof. Let dVY be the canonical section of Y (which always exists, cf. the remark
that follows Defn. 3.9). Consider the following K-invariant volume form of G/H as
constructed in [Del20b, Prop 2.6]:

dVexp(x)H := e〈−̟Q,x〉 ∧

1≤j≤r

i

2

(
z∗j ∧ z∗j

)

exp(x)H

∧

α∈ΦPu

i

2

(
w∗
α ∧w∗

α

)
exp(x)H

Now for all (z1, . . . , zr) ∈ TH and α = (α1, . . . , αr) ∈ Qr, let zα := zα1

1 . . . zαr
r and

xj = log |zj |2. Consider the following K-invariant volume form:

(dV ′
Y )exp(x)H := |z|2β dVexp(x)H

Let us prove that dVY restricts to dV ′
Y on G/H. Indeed, since dV is K-invariant,

L−JξdV = 0, hence:

L−JξdV
′
Y = (L−Jξ |z|2β)dV

By embedding equivariantly TH into (C∗)r with coordinates (z1, . . . , zr), one can
identify −Jξ with

r∑

j=1

ξjℜ(zj∂zj), ξj > 0

where ξj is the weight of vξ = (−Jξ−
√
−1ξ)/2 on zj. By integration, one finds that

the one-parameter right-action generated by −Jξ is

ϕ−Jξ
t (z1, . . . , zr) = (e−tξ1z1, . . . , e

−tξrzr)

A computation on TH then yields:

L−Jξ |z|2β =
d

dt
|t=0e

−2t
∑r

j=1
βjξj

r∏

j=1

|zj|2βj

= 2 〈−β, ξ〉 |z|2β
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It follows that L−JξdV
′
Y = 2 〈l, ξ〉 dV ′

Y , where l = −β as in Defn. 3.9. There exists
thus a K × (−Jξ)-invariant smooth non-vanishing function f on G/H such that
dVY |G/H= fdV ′

Y . In particular, f is also ξ-invariant for all ξ. Since (vξ)ξ∈−CY

generate the action of TH , f is TH -invariant and thus descends to a K-invariant
function on the K-homogeneous manifold G/P , whence f is constant. The canonical
volume form restricted to G/H is therefore (up to a constant)

(dVY )exp(x)H = |z|2β dVexp(x)H
Since |z|2β = e〈β,x〉, this completes our proof. �

3.2.3. Real Monge-Ampère equation. Let G/H ⊂ Y be a Q-Gorenstein horospherical
cone of dimension n, with colored cone (CY ,DY ) and canonical volume form dVY , as
constructed in the previous part.

The Duistermaat-Heckman polynomial PDH associated to G/H is defined as

PDH(p) =
∏

α∈ΦPu

(α, p)

for every p ∈ t∗H,nc.

Lemma 3.14. Let ξ be a Reeb vector and ρ a ξ-conical potential on Y . Then
ρ is uniquely determined by a smooth and strictly convex positive function u̟ =
exp∗(ρ|TH ) := u+̟Q|tH,nc

: tH,nc → R, satisfying

u̟(x− tξ) = etu̟(x)

for all t ∈ R. Here, u is a smooth, strictly convex funtion t∗H,nc → R. We shall call
u̟ a ξ-horospherical cone potential and u a ξ-toric cone potential.

Proof. By the Iwasawa decomposition and K-invariance, ρ is uniquely determined
by its restriction on TH . Following [Del20a, Proposition 2.7], for all x ∈ tH,nc :

ρ2|TH (exp(x)H)) = u(x) +̟Q(x)(:= u̟(x))

hence L−Jξρ
2 = 2ρ2 if and only if u̟(x− tξ) = etu̟(x). It is clear that ρ is positive

and smooth over G/H iff u̟ is also positive and smooth on TH . In particular, u is
smooth.

In the local coordinates z of TH , by TH,c-invariance, we have

ρ2(z) = ρ2(log |z1|2 , . . . , log |zr|2)
Since ρ2 is smooth and strictly psh on TH , a direct computation of the Levi form
shows that the function u̟ = ρ2(exp(.)H) is strictly convex. In particular, u is also
strictly convex since ̟Q is linear. �

Proposition 3.15. Let ω be a K-invariant Kähler cone current defined by a horo-
spherical cone potential u̟ = u +̟Q on t∗H,nc. The Calabi-Yau equation on G/H
is equivalent to the real Monge-Ampère equation

(1) det(d2u)
∏

α∈ΦPu

(α, du +̟Q) = Ceβ

where C is a constant depending only on the dimension n. Moreover, u is a solution
of (1) iff u̟ = u+̟Q is a solution of

(2) det(d2u̟)P (du̟) = eβ
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Remark. By rescaling of variables and using homogeneity of PDH , we see that
solving (2) is equivalent to solving

det(d2v)PDH(dv) = Ceλ〈β,x〉

for all real positive λ and some positive constant C > 0 depending only on λ.

Proof. Indeed, using the expressions of the curvature and volume forms as in Prop.
3.12 and 3.13, we have

ωn = dVY ⇐⇒ n! det(d2u)
∏

α∈ΦPu

(α, du +̟Q) = 2reβ

Since the real Monge-Ampère operator (in Alexandrov’s sense) is invariant under
translation by an affine function, we obtain the equivalence between (1) for u and
equation (2) for u̟ up to a positive constant C. Since C depends only on G/H,
rescaling by a positive constant and using homogeneity of PDH , we can suppose that
C = 1. �

Example 3.16. Consider the unique conical embedding C2 of SL2/U (cf. Examples
2.14, 2.44). Let α be the unique positive simple root of the system (SL2, B, T ),
defined on t := {diag(z,−z), z ∈ C} by :

〈α, z〉 := α(diag(z,−z)) = 2z

We have (α,α) = 1; Q = B− is the stabilizer on the left of the open B-orbit,
hence P = B, and ̟Q = −̟P = −2α. Recall that the image of the unique color
is α∨, hence β = α is the linear function associated to KC2 . Next, we have the
Duistermaat-Heckman polynomial:

PDH(p) = p(α,α) = p, ∀t ∈ t∗nc ≃ R∗

In the basis {α} of t∗nc, one has dxu = u′(x)α, and the Calabi-Yau equation becomes

u′′(x)(u′(x)− 2) = e〈α,x〉 = e2x

A solution is then
u(x) = ex + 2x

This defines a SU2-invariant conical potential with with Reeb vector ξ = −α∨/2.

3.3. Proof of Theorem 1.3. Let (CY ,DY ) be the colored cone of Y . Since the
support of CY contains ρ(D), the dual cone C∨

Y is then contained in

{m ∈ MR, 〈m,ρ(D)〉} ≥ 0

It follows that
PDH |C∨

Y
≥ 0, PDH |Int(C∨

Y
) > 0

Recall that β is the linear function on CY corresponding to the Q-Cartier divisor KY .
In what follows, dλ will denote the Lebesgue measure on an appropriate affine space
(which will be clear in the context).

Remark. To simplify our exposition and to avoid confusion due to TH acting in two
different ways, we will work on the cone CY of opposite Reeb vectors and consider
the normalized opposite Reeb vectors defined by

〈β, ξ−〉 = 1, ξ− ∈ CY
Note that the conical condition of u̟ under −Jξ, where ξ ∈ −CY , then becomes

u̟(x+ tξ−) = etu̟(x), for ξ− ∈ CY
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Let 〈., .〉 be the natural bilinear form on M×N , and (δ1, . . . , δr−1, β) a basis of
M such that :

〈δj , ξ−〉 = 0, 1 ≤ j ≤ r − 1

We will denote as in Hamiltonian mechanics the coordinates of (N ,M) by (x, p)
respectively. Consider the polytopes

∆ξ =
{
p ∈ C∨

Y , 〈p, ξ−〉 = 1
}
, ∆0

ξ := ∆ξ − β

with Duistermaat-Heckman barycenters barDH(∆ξ) and barDH(∆
0
ξ) Let

ϕ∆0
ξ
(x) := sup

p∈∆0
ξ

〈x, p〉 , ϕ∆ξ
= ϕ∆0

ξ
+ β

be the support function of the polytopes ∆0
ξ and ∆ξ.

Definition 3.17. The PDH-weighted volume function, or Duistermaat-Heckman vol-
ume, is defined over the normalized opposite Reeb vectors as:

ξ− → volDH(ξ−) := volDH(C∨
Y ∩ {〈ξ−, .〉 ≤ 1})

Lemma 3.18. The PDH-weighted volume function has the following global expres-
sion:

n! volDH(ξ−) =

∫

C∨

Y

e−〈ξ−,p〉PDH(p)dλ(p),

In particular, volDH is smooth and strictly convex, and its minimum is attained in
Int(CY ).
Proof. Let g := PDH and C := CY . By the (m− r)-homogeneity of g:

∫

{〈ξ−,.〉<s}
1C∨g(p)dλ(p) = sm

∫

{〈ξ−,.〉<1}
1C∨g(p)dλ(p)

From this, we have:
∫

C∨

e−〈ξ−,p〉g(p)dλ(p) =

∫

{s>0}
e−s

d

ds

(∫

{〈ξ−,.〉<s}
1C∨g(p)dλ(p)

)
ds

=

∫

{s>0}
ne−ssn−1 volg(ξ−)ds = m! volg(ξ−)

It follows that volg is continuous and convex as the average by the positive measure

gdλ of the continuous and convex function p → e−〈p,ξ−〉. To show that volg attains
its minimum in the interior of the cone, it is enough to show that volg(ξ−) → ∞
when ξ− → ξ0 ∈ ∂C. Indeed, since ξ0 ∈ (C∗)⊥ and that ξ− is normalized, there exists
p0, p1 ∈ C∗ such that 〈ξ0, p0〉 = 0, 〈ξ0, p1〉 = 1. It follows that the polyhedra Pξ0 :=
{{ξ0, .} = 1} is not bounded since it contains p1 + cp0, ∀c > 0, hence volg(ξ0) ≥∫
Pξ0

gdλ = ∞, which finishes our proof. �

Since we want the conical condition u̟(x + tξ−) = etu̟(x) for all ξ− ∈ CY , it is
natural to impose that du̟(R

r) = Int(C∨
Y ), or a relatively weaker one as follows.

Proposition 3.19. Let ξ ∈ −CY be a Reeb vector and ξ− its opposite. The following
assertions are equivalent

(i) There exists uniquely up to translation a strictly convex smooth function
u : Rr → R that satisfies u̟(x+ tξ−) = etu̟(x) and

(3) PDH(du̟) det(d
2u̟) = eβ, du̟(Rr) = C∨

Y ,

(ii) barDH(∆ξ) = β.
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(iii) The normalized opposite Reeb vector ξ− is the unique minimizer of the
volume volDH .

Proof. Let v := u̟, g := PDH and C := CY . Set v = eψ = eϕ+β . The asymptotic
condition dv(Rr) = C∨ and the fact that v(x+ tξ−) = etv(x) gives dψ(Rr) ⊂ Int(C∨)
and 〈dψ(.), ξ−〉 = 1, hence

dψ(Rr) = ∆ξ, dϕ(Rr−1) = ∆0
ξ

It is immediate to check that the function ϕ is strictly convex, smooth and satisfies
as a function on Rr:

ϕ(x+ tξ−) = ϕ(x) + t− t 〈β, ξ−〉 = ϕ(x)

by the normalization condition on ξ−. It follows that ϕ depends only on the coordi-
nates δ. A straightforward but tedious computation gives us:

det(d2v) = det(d2δ,β(e
ϕ+β)) = e(rβ+rϕ) det(d2δϕ)

and

g(dv) = g(dδ,βe
ϕ+β)

= e(m−r)(ϕ+β)g(dδϕ+ β)

We then obtain the following equivalence under the conical condition

det(d2v)g(dv) = emβ , dv(Rr) = C∨ ⇐⇒
det(d2δϕ)g(dδϕ+ β) = e−mϕ, dϕ(Rr−1) = ∆0

ξ

Since barg(∆
0
ξ) = 0 iff barg(∆ξ) = β, the equivalence between (i) and (ii) is a direct

consequence of Thm. 3.21.
For the equivalence between (ii) and (iii), first remark that:

−dξ log(m! volg(ξ−)) =

∫
C∨ pe

−〈ξ−,p〉g(p)dλ(p)∫
C∨ e−〈ξ−,p〉g(p)dλ(p)

= barg(∆ξ)

Indeed: ∫

C∨

pe−〈ξ−,p〉g(p)dλ(p) =

∫

C∨∩〈〈ξ−,.〉=s〉

∫

{s>0}
pe−sg(p)dλ(p)ds

=

∫

C∨∩〈〈ξ−,.〉=1〉
pg(p)dλ(p)

∫

{s>0}
sme−sds

By the same token,∫

C∨

e−〈ξ−,p〉g(p)dλ(p) =

∫

C∨∩{〈ξ−,.〉=1}
g(p)dλ(p)

∫

{s>0}
sme−sds

Since ξ− → − logm! volg(ξ−) is a convex function, going to ∞ when ξ− → ξ0 ∈
∂C, its unique minimizer belongs to C and coincides with the critical point. As a
consequence, ξ− is the unique minimizer of volg if and only if barg(∆ξ) = β. �

Proposition 3.20. The following are equivalent:

1) The polarized horospherical cone (Y, ξ) admits a unique K-invariant conical
Calabi-Yau metric.

2) There exists uniquely up to translation a strictly convex smooth function
u : Rr → R that satisfies u̟(x+ tξ−) = etu̟(x) and

PDH(du̟) det(d
2u̟) = eβ, du̟(Rr) = C∨

Y ,
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Proof. The implication (1) ⇒ (2) is obvious.
(2) ⇒ (1). From the assumption, the function u̟ corresponds to a conical Calabi-

Yau potential smooth over G/H. Let us show that it can be extended to a locally
bounded function over Y . First, by Prop. 2.21 there exists a proper and birational

morphism d and a toroidal horospherical variety Ỹ such that

d : Ỹ → Y

The torus TH is identified under pullback by this morphism to the open dense orbit of
a toric variety Z whose fan CZ (in the toric sense) corresponds exactly to the opposite
of CY with its colors removed. In particular Z is a toric cone by our criterion 2.35.
The toric cone potential u then corresponds to a potential, still denoted by u, over
the open dense orbit TH ⊂ Z.

By the C0-estimate in Thm. 3.21, one obtains:

u̟ ≤ exp(ϕ∆ξ
) = exp

(
ϕ∆0

ξ
+ β

)
,

It is then enough to show that the function exp(supp∈∆0
ξ
〈x, p〉) pulled back by Log :

TH → tH,nc extends to a continuous function over Z. This is well-known in the toric
situation (cf. e.g. [BB13, Proposition 3.3], [Ber20, 3.3]). We provide a proof here
for the reader’s convenience. The toric variety Z is endowed with an action of R∗

+

generated by −Jξ. Let (ni)1≤i≤N be a collection of lattice points of C∨
Z , satisfying

〈ni, ξ〉 ≤ C, where C is a positive constant. Consider an action of R∗
+ on CNZ1,...ZN

defined by:
c.Zi := c−〈ξ,ni〉Zi

Since Z is a TH -toric affine variety, for C sufficiently large, we have a TH -equivariant
(hence R∗

+-equivariant) embedding:

Fp : TH ≃ (C∗)r → CN , z → (zn1 , . . . , znN )

such that the closure of its image coincides with Z. Now by Kakutani’s thereom,
there exists a finite number of elements p1, . . . , pM , which are the vertices of ∆0

ξ ,
satisfying

exp


 sup
p∈∆0

ξ

〈x, p〉


 = max

1≤i≤M
exp 〈x, pi〉

It is then enough to show that for all pi, Log∗ exp 〈x, pi〉 extends continuously over
Z. We remove the index i in what follows. Since p ∈ M(TH) ∩ C∨

Z and that C∨
2 is of

maximal dimension, there exists lattice points ni1 , . . . , niL ∈ M(TH) ∩ C∨
Z such that

p = a1ni1 + · · ·+aLniL . Under push-forward by Fp, the function Log∗ exp 〈x, p〉 then
corresponds to:

|Zi1 |2a1 . . . |ZiL |2aL
which is clearly continuous on CN . As a consequence, expϕ∆0

ξ
extends to a con-

tinuous function on Z. Finally, we obtain a locally bounded (in fact continuous)
conical Calabi-Yau potential u̟ over Y . This completes our proof of the (2) ⇒ (1)
direction, except the smoothness of the radial function on the regular locus of Y .
The smoothness over the regular locus results from [Ngh22]. �

Proof of main Theorem 1.3. We shall prove that (i) ⇒ (ii) ⇒ (iii) and (i) ⇔ (iii).
It is known that existence of a ξ-conical Calabi-Yau metric implies K-stability for

(Y, TH , ξ) (cf. [LWX21, Corollary A.4]). From [CS18, Theorem 6.1] (see also [LX18,
Remark 2.27]) if (Y, TH , ξ) is K-stable, then ξ minimizes the volume functional on
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the space of normalized Reeb vectors (i.e. ξ− is a minimizer of the PDH -weighted
volume functional in our case).

The equivalence between conical Calabi-Yau metrics existence and volume mini-
mization is a direct consequence of Prop. 3.19 and Prop. 3.20. �

3.4. Variational approach on weighted real Monge-Ampère equations.

3.4.1. Existence condition on a Kähler-Einstein-related equation. We have shown
that the study of (2) is equivalent to solving an equation of the type :

(4) g(dϕ + β)MAR(ϕ) = e−mϕ, dϕ(Rr−1) = ∆0
ξ

where MAR denotes the real Monge-Ampère operator in the sense of Alexandrov. It
is clear that g ≥ 0 on ∆0

ξ and g > 0 on Int(∆0
ξ).

In the next part, we will study (4) in the more general setting where ∆ is any
convex body and g a bounded function satisfying.

g|∆ ≥ 0, g|Int(∆) > 0

Theorem 3.21. Let ∆ be a convex body in Rm,m ∈ N∗ such that 0 ∈ Int(∆). Let
g be a bounded function, ≥ 0 on ∆ and > 0 on Int(∆). Then there exists a strictly
convex function ϕ, unique up to translation, satisfying :

(5) g(dϕ)MAR(ϕ) = e−ϕ, dϕ(Rm) = ∆

in the weak sense if and only if barg(∆) = 0. Moreover, there exists a constant C > 0
such that

sup
Rr

|ϕ− ϕ∆| ≤ C

If g is smooth, then the weak solution ϕ is actually a smooth solution.

Proof. In [BB13], the weight g is supposed to be > 0 everywhere, but the proof can
be adapted almost word to word from [BB13, Theorem 1.1] to our setting, except
the regularity of ϕ, as remarked after formula (2.1) in ibid.. Instead of repeating the
authors’ proof, we indicate below the places where the arguments involving g are
used, and show that our assumptions on g do not affect the validity of the theorem.
For regularity of the solution when g is smooth and the C0-estimate, see Lem. 3.23
and Lem. 3.24.

Let ϕ : Rr → [−∞,∞[ be a convex proper function (i.e. non identically equal to
−∞ ). The subdifferential ∂ϕ of ϕ is defined as :

∂ϕ(x0) := {z ∈ Rr, ϕ(x0) + 〈z, x− x0〉 ≤ ϕ(x), ∀x ∈ Rr}
Denote by P(Rr) and P+(Rr) the set of proper convex functions ϕ in Rr such that
∂ϕ(Rr) ⊂ ∆ and ∂ϕ(Rr) = Int(∆), respectively.

• The g-weighted Monge-Ampère measure in Alexandrov’s sense is again well-
defined: for every Borel subset E ⊂ Rr and convex proper function ϕ:∫

E
MAg(ϕ) =

∫

∂ϕ(E)
g(p)dλ(p)

This still makes sense even if g is any L1(Rm) function.
• The measure gdλ still defines a positive finite Borel measure on ∆ because
g vanishes only on ∂∆ and that dλ does not put mass on ∂∆. In particular,
for all ϕ ∈ P+(Rr),

∫

Rr

MAg(ϕ) =

∫

Int(∆)
gdλ = volg(∆) > 0
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• There exists a unique functional Eg, called g-energy, defined on P+(Rr) such
that

dϕEg = MAg(ϕ)

The proof is the same as in [BB13, Proposition 2.9]. A fact used by the
authors in the proof is the following: for all non-negative continuous function
f , ∫

Rr

fMAg(ϕ) =

∫

∆
f(dϕ∗|p)g(p)dλ(p)

where ϕ∗ is the Legendre transform of ϕ. The equality still makes sense in
our setting since dϕ∗ exists dλ-a.e., hence gdλ-a.e..

• Eg extends uniquely to an increasing u.s.c. functional P(Rr) → [−∞,+∞[
by:

(6) Eg(ϕ) = −r!
∫

∆
ϕ∗(p)g(p)dλ(p)

The hypothesis g ≥ 0 on ∆ guarantees that Eg is an increasing and u.s.c
functional on P(Rr). Indeed, since the Legendre transform is decreasing and
g ≥ 0, we see that Eg is increasing. The upper-semicontinuity now follows
from Fatou’s lemma (which applies to the positive measure gdλ) and the
fact that for every sequence ϕi → ϕ in P(Rr), inf ϕ∗

i ≥ ϕ∗
i .

Let E1(Rr) be the set of ϕ ∈ P(Rr) whose g-Monge-Ampère mass is volg(∆) and
whose g-energy is finite. Notice that P+ ⊂ E1. Let

I(ϕ) := − log

∫
e−ϕ(x)dλ(x) ∈]−∞,+∞]

The Ding functional Dg : E
1 →]−∞,+∞] is defined as

Dg,∆(ϕ) =
1

r! volg(∆)
Eg(ϕ)− I(ϕ)

The geodesic between two strictly convex and smooth functions ϕ0 and ϕ1 in P(Rr)
is the function t ∈ [0, 1] → ϕt = (tϕ0 + (1− t)ϕ1)

∗ ∈ P+(Rr).
The following properties of Dg still hold in our setting:

• Dg is strictly concave along geodesics in P+(Rr), i.e. t→ Dg(ϕt) is a concave
function which is affine iff the geodesic is a translation ϕt(p) = ϕ(p + ta)
[BB13, Proposition 2.15]. The proof uses the Prekopa-Leindler on t → I(ϕt),
which is independent of g, and the affineness of Eg along a geodesic(this is
clear by equation (6))

• The coercivity of Dg [BB13, Theorem 2.16]: for all ε > 0, there exists Cε > 0
such that

Dg ≤ (1− ε)Eg + Cε

[BB13, Lemma 2.14, Theorem 2.16]. Here, the proof uses concavity of
Dg as well as affineness of Eg along geodesics, and refinement by scaling of
the functional −I (which is independent of g). The latter is based on the
following inequality [BB13, Formula (2.16)]: for a well-chosen ϕ0 ∈ P(Rr),

e−ϕ0 ≤ CMAg(ϕ0)

• Dg is bounded iff Dg(ϕ(. + a)) = Dg(ϕ) iff barg(∆) = 0. Again, concavity
of Dg and affineness along geodesics of Eg are used in the arguments. The
proof for the direction “barg(∆) = 0 ⇒ Dg bounded” uses the coercivity of
Dg.
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Conclusion: Suppose that barg(∆) = 0, then supϕ∈E1 Dg is attained. This can be
seen by showing that Dg is u.s.c. But since Eg is already u.s.c. (the non-negativity of
g is required for this property), it is enough to show that −I is u.s.c.. This functional
is actually continuous and the proof is the same as in [BB13] because the expression
of −I does not involve g. The maximizer of Dg actually satisfies (5) in the weak
sense, and is unique up to translation by strict concavity of Dg.

Conversely, if there exists a maximizer ϕ satisfying (5) in the weak sense, then Dg

is bounded, hence barg(∆) = 0.
Finally, apply Lem. 3.24 for µ = e−ϕdλ yields the C0-estimate. The assertion on

smoothness is proved in Lem. 3.23, which completes our proof of the theorem. �

Let us recall the following regularity properties, which go back to Caffarelli [Caf90b,
Caf90a] (see also [BB13, Theorem 2.24]):

Theorem 3.22. Let Ω be an open bounded convex set in Rr and f > 0. Then every
convex solution ϕ on Ω of the equation:

MA(ϕ) = fdλ(x), ϕ = 0 on ∂Ω

is

(i) strictly convex and C1,α
loc (Ω) for every α > 0 if there exists a constant C > 0

such that 1/C ≤ f ≤ C.

(ii) W 2,p
loc (Ω) for all p > 1 if f is in addition continuous.

Lemma 3.23. Let ϕ ∈ P+(Rr) be a weak solution of MAg(ϕ) = e−ϕdλ. If g is
smooth, then ϕ is actually smooth.

Proof. Since ϕ is proper, ΩR := {ϕ < R} ⋐ Rr are bounded convex and relatively
compact domains in Rr which cover Rr. In particular, e−ϕ, eϕ ∈ L∞(B(0, R)) for all
R > 0. By assumption g > 0 on Int(∆), hence :

Cg := sup
∆
g > 0

It follows that for all Borel set E,

Cg

∫

E
MAR(ϕ) = Cg

∫

∂ϕ(E)
dλ(p) ≥

∫

∂ϕ(E)
g(p)dλ(p)

=

∫

E
e−ϕdλ(x) ≥ e−R

∫

E
dλ(x)

hence MAR(ϕ) ≥ (e−R/Cg)dλ(x) =: CR,gdλ(x) on ΩR in the sense of measures.

We assert that ∂ϕ(ΩR) is compact in Int(∆) for all R. Indeed, by definition of
subdifferential

∂ϕ(ΩR) = ∪x∈ΩR
∂ϕ(x) ⊂ ∂ϕ(Rr) = Int(∆)

Since ΩR is compact, ∂ϕ(ΩR) is also compact (for a proof, see e.g. [Fig17, Lemma
A.22]), so it is a compact of Int(∆). By our assumption g > 0 on Int(∆) and bounded
on ∆, so we have:

inf
∂ϕ(ΩR)

g ≥ min
∂ϕ(ΩR)

g > 0

As a consequence, there exists a constant C∆,R = 1/ inf∂ϕ(ΩR) g > 0 (depending only
on ∆ and R) such that :

MAR(ϕ) ≤ C∆,Rdλ(x)

on ΩR in the sense of measures. It follows that

CR,gdλ(x) ≤ MAR(ϕ) ≤ C∆,Rdλ(x)
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By Caffarelli’s regularity results in Thm. 3.22, ϕ ∈ C1,α(ΩR) for all R > 0, hence
dϕ ∈ C0(Rr). Therefore :

MAR(ϕ) = hdλ

for the continuous function h = e−ϕ/g(dϕ) on ΩR satisfying CR,g ≤ h ≤ C∆,R.

Finally, ϕ ∈ W 2,p
loc (R

r) for all p > 0. A bootstrapping argument of Evans-Krylov
and smoothness of g allow us to conclude that ϕ ∈ C∞(ΩR) for all R > 0, hence
ϕ ∈ C∞(Rr). �

Lemma 3.24. Let ∆ be a convex body in Rr and µ a measure of total mass volg(∆)
on Rr. Suppose that there exists a weak convex solution ϕ : Rr → R to the following
problem:

(7) MAg(ϕ) = µ, (∂ϕ)(Rr) = Int(∆)

Then after normalizing ϕ such that sup∆(ϕ − ϕ∆) = 0, we have for all q > r the
following inequality:

sup
Rr

|ϕ− ϕ∆| ≤ C(q, r,∆, µ)

where C(q, r,∆, µ) is a constant that depends only on q, r,∆ and the measure µ.
More precisely:

C(q, r,∆, µ) =
d(∆)

vol(∆)

∫

Rr

|x|µ+Cq,r
d(∆)(1−r/q)

vol(∆)

(∫

Rr

|x|q µ
)1/q

where d(∆) is the diameter of the convex body ∆. In particular, ϕ ∈ P+(Rr), hence
has full gdλ-mass.

We will consider the following Sobolev space:

W 1,q(∆, gdλ) = {h ∈ Lq(∆, gdλ), weak first derivatives of h are in Lq(∆, gdλ)}
Proof. Let ϕ be a weak solution with sup∆(ϕ − ϕ∆) = 0. The Legendre trans-
form f := ϕ∗ defines a convex function on Int(∆). Since ϕ ∈ P+(Rr), we have
f ∈ Lq(∆, gdλ) because the Legendre transform is a bijection between P+(Rr) and
bounded convex functions on ∆ [BB13, Proposition 2.3]. Using MAg(ϕ) = µ =
(dϕ∗)∗(dλ) (cf. [BB13, Lemma 2.7]), we have

∫

∆
|df(p)|α g(p)dλ(p) =

∫

Rr

|x|αMAg(ϕ) =

∫

Rr

|x|α µ, ∀α > 0

hence f ∈W 1,q(∆, gdλ).
If q > r, then by Sobolev’s inequality for the continuous embedding W 1,q(∆, gλ) ⊂

L∞(∆, gdλ), we have:

sup
∆

|f | ≤ 1

vol(∆)

∫

∆
|f | gdλ+ Cq,r

d(∆)(1−r/q)

vol(∆)

(∫

∆
|df |q gdλ

)1/q

The proof is exactly the same as in e.g. [Bre83, Theorem IX.12], where it is given
when ∆ is a cube of length d and containing 0 in the interior, but this generalizes
word-by-word to any convex body of diameter d, containing 0 in its interior. The
second integral term on the rhs is exactly

(∫

Rr

|x|q µ
)1/q

Now let ϕ∆ the support function of ∆. Using that − sup(ϕ − ϕ∆) = inf∆ f [BB13,
Proposition 2.3] and the normalization condition sup(ϕ− ϕ∆) = 0, we have:

− sup(ϕ− ϕ∆) = inf
∆
f = 0
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Let p0 ∈ Rr such that f(p0) = inf∆ f . By the convexity of f , the differential exists
Lebesgue-a.e. (hence gdλ- a.e.), so we have gdλ-a.e:

|f(p)| ≤ df(p).(p − p0),

which implies by Cauchy-Schwartz inequality:∫

∆
|f(p)| g(p)dλ(p) ≤ d(∆)

∫

∆
|df(p)| g(p)dλ(p) = d(∆)

∫

Rr

|x|µ

This allows us to conclude. �

4. Examples of Calabi-Yau horospherical cones

4.1. Regular Calabi-Yau cones.

4.1.1. An easy example.

Example 4.1. Consider the conical embedding of SL3/U
− in Example 2.7. Fixing

a root system (SL3, B, T ) with positive roots (α1, α2, α1 + α2). The linear function
associated to the canonical divisor is β = α1 + α2.

The cone admits a regular conical Calabi-Yau metric for the normalized (opposite)
Reeb vector ξ− = (α∨

1 +α
∨
2 )/4. Although it is possible to prove this by direct compu-

tations, we will employ a symmetry argument. Note that the volume minimization
condition is invariant by the symmetry exchanging two roots, hence by uniqueness of
the solution, the opposite Reeb vector is also invariant by this symmetry. Therefore,
letting ξ− = (xα∨

1 + α∨
2 )/4, we have xα∨

1 + α∨
2 = xα∨

2 + α∨
1 , hence x = 1.

ρ(D1)

ρ(D2)

ξ−

Figure 6

4.1.2. Examples arising from symmetric spaces. Let us give a brief overview about
the structure of (algebraic) symmetric spaces. The reader may consult [Vus74],
[Vus90] or [DCP83] for a detailed treatment. Let G be a complex connected semisim-
ple group, endowed with an algebraic involution σ 6= Id. Let H be a closed subgroup
such that Gσ ⊂ H ⊂ NG(G

σ). The homogeneous space G/H is called a symmetric
space. It is well-known that a symmetric space is spherical (see [Vus74]).

Let Ts ⊂ G be a maximal torus satisfying σ(t) = t−1, ∀ t ∈ Ts. The rank of the
symmetric space coincides with the dimension of Ts. After choosing a Lévi subgroup
adapted to H, we have an identification M(G/H) = M(Ts/Ts ∩ H). Moreover,
Ts/Ts ∩H is a subgroup of finite index in Ts (cf. [Vus90, 2.2]), whence

M(G/H)R = M(Ts)R

Let ts be the Lie algebra of Ts. The non-compact part tnc,s of ts is isomorphic to
N (Ts)R ≃ Hom(C∗, Ts)⊗ R.
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Definition 4.2. [DCP83] [Vus76]

• There exists a σ-stable maximal torus T containing Ts.
• Let Φ the root system (G,T ). The restricted root system of G/H, which has

the same rank as G/H, is defined by:

R := {α 6= 0, α = α− σ(α), α ∈ Φ}
In particular, α|ts = 2α|ts .

• After fixing a restricted root system, the valuation cone V of a symmetric
space can be considered as the negative restricted Weyl chamber, which is
always strictly convex (if G/H is semisimple) and polyhedral of maximal
dimension.

The multiplicity of an element α is

mα := # {γ ∈ Φ, α = γ − σ(γ)}
The set of multiplicities of a symmetric space is defined as the set of multiplicities of
its restricted root system. Let n and r be respectively the dimension and the rank
of G/H; we have:

n = r +
∑

α∈R

mα

Definition 4.3. [Vus90, Lemma 2.3] Let α be a root of Φ. The restricted coroot
of α is defined as

• (α)∨ = 1
2α

∨ if σ(α) = −α
• (α)∨ = 1

2(α
∨ − σ(α)∨), if 〈α∨, σ(α)〉 = 0.

• (α)∨ = α∨ − σ(α)∨, if 〈α∨, σ(α)〉 = 1.

Proposition 4.4. [Vus90, 2.4, Proposition 1] The images of the colors in N (Ts/Ts∩
H) are in bijection with the restricted coroots of G/H. More precisely, let D be the
colors of G/H. Then

ρ(D) =
{
(α)∨, α ∈ R

}

If G/H is not hermitian (i.e. the center of Gσ is discrete), then ρ is injective on D;
if not, then each fiber of ρ contains at most two points.

We denote by

̟R =
∑

α∈R+

mαα =
∑

α∈Φ+

α

the sum of positive restricted roots (counted with multiplicities). The Killing form
κ of ts, allows us to identify NR with MR.

Now consider an irreducible semisimple symmetric space G/H of rank 2 with
valuation cone V. For all ξ ∈ IntV, the colored cones generated by ξ and the images
of the colors cover the whole valuation cone V, hence define a compactification Xξ

(cf. Thm. 2.16). The unique G-stable divisor Dξ
0 of Xξ corresponds to the ray

generated by ξ.
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(α1)
∨ = α1

(α2)
∨ = α2

ξ ∈ Int(V)

Figure 7. Compactification of A2-symmetric spaces with a unique
G-stable divisor.

The open G-orbit of Dξ
0 is then G-isomorphic to a horospherical space G/H0. This

can be seen from the combinatorial data (M0,N0,V0,D0) of G/H0, which in turn
can be read from G/H thanks to the work of Brion-Pauer [BP87].

Let us briefly describle the combinatorial data of G/H0. Let M0 be the weight
lattice of G/H0. Then

M0 = (M⊕ Z) ∩ (Nξ)⊥

Let N0 be the lattice of coweights. Define:

π0 : N ⊕ Z → N0

as the natural dual application to the inclusion M0 ⊂ M. We have V0 = π0(V) =
(N0)Q (cf. [BP87, Théorème 3.6]), so G/H0 is horospherical. By loc. cit., the (left)-
stabilizer Q0 of the open Borel-orbit of G/H0 is exactly the stabilizer of the open
Borel-orbit of G/H. Let P0 be the opposite parabolic subgroup to Q0. Let I0 be the
positive simple roots in G associated to P0. We then have by Prop. 3.2:

ρ0(D0) =
{
α∨|M0

, α ∈ S\I0
}

where S is the set of positive simple roots of G, and one can show that ρ0(D0)
actually consists of multiples of π0((α1)

∨) and π0((α2)
∨) (cf. [Vus90, 2.3, Remarques

2)]).
Consider now the horospherical space G/H0×C∗. It is immediate that M(G/H0×

C∗) = M0⊕Z. Its dual lattice N (G/H0×C∗) is then N0⊕Z. In particular N (G/H0×
C∗)R ≃ NR. The colors of G/H0 × C∗ are exactly D0 × C∗ := {D × C∗,D ∈ D0}.

Let C0 be the colored cone generated by the images of D0 ×C∗; then C0 coincides
with the cone generated by restricted coroots. It follows that C0 does not depend
on the choice of ξ. Denote by C∨

0 the dual cone, generated by primitive directions
orthogonal to ρ0(D0 × C∗); then C∨

0 is exactly the negative Weyl chamber V.
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(α1)
∨ = α1

(α2)
∨ = α2

π0((α1)
∨)

C∨
0

−C0

Figure 8. Horospherical cone constructed from a A2-symmetric
space. Note that ρ0(D0) consists exactly of the images of the re-
stricted coroots by π0.

Lemma 4.5. The embedding G/H0 × C∗ →֒ Y0 associated to (C0,D0 × C∗) is a
horospherical cone.

Proof. The cone C0 is a polyhedral cone of maximal dimension containing all the
colors, hence defines a horospherical cone by Thm. 2.35. �

Now consider the real vector space t∗nc,s with basis (δ, τ) where τ is in the interior
of the positive Weyl chamber, such that:

〈τ, ξ〉 = −1, κ(τ, δ) = 0, κ(α1, δ) < 0

We are interested in finding a vector τ satisfying the barycenter condition for the
existence of a conical Calabi-Yau metric on Y0. The vector τ might be interpreted
as the opposite Reeb vector −ξ as we explained in the previous section.

For practical reasons, we parametrize the orthogonal direction δ by:

δ = −xα̃1 + α̃2, x ∈ R

Here α̃1, α̃2 denote the directions of the Weyl wall orthogonal to α2, α1 defined as

α̃1 = α1 −
κ(α1, α2)

κ(α2, α2)
α2, α̃2 = α2 −

κ(α1, α2)

κ(α1, α1)
α1

It is then easy to see that τ belongs to the interior of the cone C0 iff x > 0.
Let

P (p) =
∏

α∈R+

κ(α, pδ +̟R)
mα , p ∈ t∗nc,s

Consider the polytope ∆τ = [λ−(x), λ+(x)] where λ− and λ+ are the intersections
with the Weyl walls of the line containing ̟R and orthogonal to τ . In more explicit
terms:

λ+(x) =
−κ(α1,̟R)

κ(α1, δ)
, λ−(x) =

−κ(α2,̟R)

κ(α2, δ)

By our main theorem, the polarized cone (Y0, ξ) admits a conical Calabi-Yau metric
if and only if:

barP (∆τ ) = ̟R

where barP is the barycenter with respect to the measure P (p)dp. Equivalently, we
have:
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Proposition 4.6. There exists conical Calabi-Yau metrics on Y0 if and only if the
polynomial equation equivalent to

(8)

∫ λ+(x)

λ−(x)
pP (p)dp = 0

admits a (necessarily unique) positive root. In particular, Y0 is a quasi-regular
Calabi-Yau cone if and only if the root is positive and rational.

Example 4.7. Consider the symmetric spaces G/H of rank 2 whose root system is
of type A2. The multiplicities of the two simple restricted roots α1, α2 all equal to
m, hence

̟R = 2m(α1 + α2)

We also have :

κ(α1, α1) = κ(α2, α2) = 1, κ(α1, α2) = −1/2, κ(α1, α̃1) = κ(α2, α̃2) = 3/4

so κ(α1,̟R) = κ(α2,̟R) = m and κ(α1 + α2,̟R) = 2m. It follows that the
polynomial equation (8) remains unchanged under the symmetry of t∗nc,s exchanging
two roots, hence the (opposite) Reeb vector is fixed (by uniqueness of the volume
minimization condition) and δ is sent to its opposite under this symmetry. It follows
that

δ = −xα̃1 + α̃2 = xα̃2 − α̃1

hence x = 1 and τ = α1+α2. As a consequence, the horospherical cones constructed
from

SL3/SO3, SL3 × SL3, SL6/Sp6, E6/F4

(which are symmetric spaces of type A2 with multiplicities m = 1, 2, 4, 8 respectively)
all have quasi-regular Calabi-Yau structures with a rational Reeb vector.

4.2. Irregular Calabi-Yau cones. We consider in this part rank-two symmetric
spaces with root system of type B(C)2 of multiplicities (m1,m2,m3). Let (α1, α2)
be the simple restricted roots with multiplicities (m1,m2). The positive roots of
multiplicity m1 are (α1, α1 + 2α2), the ones with multiplicity m2 are (α2, α1 + α2),
and those with multiplicity m3 are (2α2, 2α1 + 2α2).

We also have

κ(α1, α1) = 2, κ(α1, α2) = −1, κ(α2, α2) = 1,

κ(α1, α̃1) = 1, κ(α2, α̃2) = 1/2

Moreover,

̟R = (2m1 + 2m2 + 4m3)α2 + (2m1 +m2 + 2m3)α1

A direct calculation gives us (up to multiplying by a constant) :

P (p) =(2m1 − px)m1(2m1 + 2m2 + 4m3 + p(1− x))m1

(2m2 + 4m3 + p)m2+m3(4m1 + 2m2 + 4m3 + (1− 2x)p)m2+m3

The vertices of the polytope ∆τ have coordinates

λ+(x) =
−κ(α1,̟R)

κ(α1, δ)
=

2m1

x
, λ−(x) =

−κ(α2,̟R)

κ(α2, δ)
= −(2m2 + 4m3)

Example 4.8. Let Gk := SLk/SL2 × SLk−2 be the complex grassmannian of mul-
tiplicities (m1,m2,m3) = (2, 2k − 8, 1), k ≥ 5, which we can view as the tangent or
cotangent bundle over a real grassmannian, endowed with an appropriate complex
structure. If SLk acts on Ck on the left, then geometrically, Gk is SLk-isomorphic
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to a pair (V,W ) of vector subspaces of Ck with dimensions (2, k − 2) such that
Ck = V ⊕W .

Consider the complex grassmannian Gk=5, with multiplicities (m1,m2,m3) =
(2, 2, 1). We have :

̟R = 8α1 + 12α2, λ− = −6, λ+ =
4

x
The polynomial P then becomes

P (p) = (4− px)2(12 + p(1− x))2(16 + p(1− 2x))3(8− p)3

and the barycenter condition is thus equivalent to the following polynomial equation

(1 + 2x)11(−42− 84x− 63x2 + 60x3 + 240x4 + 336x5 + 224x6) = 0

This equation has a unique irrational positive root, as follows from the Eisenstein’s
criterion for the prime number 3. In particular, there exists no compactification with
a unique SL5-stable Kähler-Einstein divisor, but the horospherical cone Y0 still has
an irregular conical Calabi-Yau structure.

We believe that the following holds.

Conjecture. For each k ≥ 5, the horospherical cone constructed from Gk has a
irregular conical Calabi-Yau sructure.

Example 4.9. Now consider the following symmetric spaces

SO5 × SO5/SO5, Sp8/Sp4 × Sp4, SO10/GL5, E6/SO10 × SO2,

They are respectively of multiplicities

(2, 2, 0), (3, 4, 0), (4, 4, 1), (6, 8, 1),

The polynomial equations resulting from (8) are, respectively:

(1 + x)9(−7− 15x− 14x2 + 2x3 + 24x4 + 28x5) = 0

(3 + 4x)15(− 99− 319x− 545x2 − 549x3 − 140x4

+ 616x5 + 1296x6 + 1360x7 + 704x8) = 0

(2 + 3x)19(− 6006 − 25025x − 55770x2 − 80850x3

− 69300x4 + 4914x5 + 134820x6

+ 264880x7 + 314160x8 + 240240x9 + 96096x10) = 0

(3 + 5x)31(− 6128925 − 38326211x − 129851491x2 − 309121659x3

− 563633385x4 − 802569405x5 − 849852729x6

− 498060849x7 + 375429054x8 + 1679517840x9

+ 3059056000x10 + 4002942944x11 + 4101349824x12

+ 3312646656x13 + 2032884480x14 + 859541760x15

+ 191009280x16) = 0

One can check directly using e.g. Mathematica that the unique positive solution of
these polynomials are irrational. As a consequence, we obtain examples of irregular
horospherical cones.
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