Identifying and localizing dynamic affordances to improve interactions with other agents - Archive ouverte HAL Access content directly
Conference Papers Year :

Identifying and localizing dynamic affordances to improve interactions with other agents

(1) , (1) , (2, 3)
1
2
3

Abstract

Allowing robots to learn by themselves to coordinate their actions and cooperate requires that they be able to recognize each other and be capable of intersubjectivity. To comply with artificial developmental learning and self motivation, we follow the radical interactionism hypothesis, in which an agent has no a priori knowledge on its environment (not even that the environment is 2D), and does not receive rewards defined as a direct function of the environment's state. We aim at designing agents that learn to efficiently interact with other entities that may be static or may make irregular moves following their own motivation. This paper presents new mechanisms to identify and localize such mobile entities. The agent has to learn the relation between its perception of mobile entities and the interactions that they afford. These relations are recorded under the form of data structures, called signatures of interaction, that characterize entities in the agent's point of view, and whose properties are exploited to interact with distant entities. These mechanisms were tested in a simulated prey-predator environment. The obtained signatures showed that the predator successfully learned to identify mobile preys and their probabilistic moves, and to efficiently target distant preys in the 2D environment.
Fichier principal
Vignette du fichier
main.pdf (444.26 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03828062 , version 1 (25-10-2022)

Identifiers

  • HAL Id : hal-03828062 , version 1

Cite

Simon Gay, Jean-Paul Jamont, Olivier L. Georgeon. Identifying and localizing dynamic affordances to improve interactions with other agents. IEEE International Conference on Development and Learning (ICDL 2022), IEEE, Sep 2022, Londres, United Kingdom. ⟨hal-03828062⟩
0 View
0 Download

Share

Gmail Facebook Twitter LinkedIn More