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Abstract—Allowing robots to learn by themselves to coordinate
their actions and cooperate requires that they be able to recognize
each other and be capable of intersubjectivity. To comply with
artificial developmental learning and self motivation, we follow
the radical interactionism hypothesis, in which an agent has
no a priori knowledge on its environment (not even that the
environment is 2D), and does not receive rewards defined as a
direct function of the environment’s state. We aim at designing
agents that learn to efficiently interact with other entities that
may be static or may make irregular moves following their own
motivation. This paper presents new mechanisms to identify and
localize such mobile entities. The agent has to learn the relation
between its perception of mobile entities and the interactions
that they afford. These relations are recorded under the form of
data structures, called signatures of interaction, that characterize
entities in the agent’s point of view, and whose properties are
exploited to interact with distant entities. These mechanisms
were tested in a simulated prey-predator environment. The
obtained signatures showed that the predator successfully learned
to identify mobile preys and their probabilistic moves, and to
efficiently target distant preys in the 2D environment.

Index Terms—developmental learning, interactionism, affor-
dance, autonomous mental development, spatial awareness.

I. INTRODUCTION

We address the problem of how an artificial agent that learns
an emergent model of its environment through interaction can
acquire knowledge about mobile entities that move freely in
the environment (e.g., other agents).

This study is situated within the framework of artificial
constructivist learning [e.g., 1] and enactive learning [e.g., 2].
In this framework, the learning occurs through the enaction of
control loops that implement Piagetian sensorimotor schemes
[3], which we call interactions. This framework also relates
to the notion of intrinsic motivation of artificial agents for
developmental learning [e.g., 4].

More precisely, we investigate a modeling hypothesis called
Radical Interactionism (RI) [5] and artificial interactionism
[6]. We implement a kind of self motivation called inter-
actional motivation [7]. The agent starts with a predefined
set of uninterpreted interactions associated with predefined
numerical valences, and seeks to enact interactions of positive
valence and to avoid interactions of negative valence. Overall,
the learning is unsupervised. There are no human-defined
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labels attached with perceptions, actions, or categories of
entities, not even spatial localization of percepts.

Through the learing of interaction with other mobile entities,
we pursue the long-term goal of allowing the emergence of
social behaviors within groups of artificial agents [e.g., 8],
for example collective hunting. Generating such behaviors
requires overcoming two main problems:

1) learning to define, recognize and localize other agents
that make self-motivated movements in the environment,

2) inferring the intentions of other agents based on their
own environmental contexts.

This paper focuses on the resolution of the first problem. It
is subdivided as follows: Section II summarizes and formalizes
the Radical Interactionism model, Section III presents a model
for defining and recognizing probabilistic affordances, and
Section IV presents a mechanism to recognize and localize
distant probabilistic affordances in space. Finally, Section V
encompasses some conclusive remarks and future development
of the intersubjectivity problem.

II. THE RADICAL INTERACTIONIST (RI) HYPOTHESIS

In contrast with most machine learning approaches, an RI
agent cannot directly access the state of its environment: its
input data is outcome of control loops rather than percepts of
the environment’s state. The agent learns and exploits regu-
larities in sequences of control loops offered by its coupling
with its environment. The learning mechanism differs from
reinforcement learning (e.g., as it is typically implemented in
a Partially Observable Markov Decision Process) by the fact
that RI agents have no reward defined as a function of the
system’s state. Our goal is not to design agents that reach
predefined goals or maximize a reward value, but to study the
open-ended learning of emergent models of the environment,
and to generate social behaviors.

Let I be the set of predefined primitive interactions (control
loops). At the beginning of step t, the agent selects an intended
interaction it ∈ I . An example consists in moving forward for
a predefined duration. At the end of step t, the agent receives
the enacted interaction et ∈ I that was actually enacted. If
it = et then the enaction is a success. The agent did move
forward. Otherwise, the enaction of it is a failure. For example,
the agent actually enacted another interaction consisting in
bumping into an obstacle, which may have a negative valence.



An RI agent learns to anticipate the results of its interactions,
and tries to enact interactions of high valence.

To help the agent discover that its environment has a spatial
structure (2D in our experiments), we designed the Parallel-
RI (PRI) model [9] which allows the simultaneous enaction
of multiple interactions. The PRI considers additional stimuli
that cannot be separated from the movement that produced
them. The optical flow is an example of such stimuli, that must
be associated with a movement to characterize a position in
space. Thus, the PRI model considers primary interactions as
control loops (action,result), and secondary interactions as a
couple (interaction, stimulus). At the end of step t, the agent
receives, not one, but a set of k enacted interactions Et =
{e1, ..., ek} ⊂ I , containing a primary interaction and a set of
secondary interactions associated with this primary interaction.

Previous PRI experiments showed that the agent was able
to identify and localize static affordances (possibilities of
enacting an interaction [10]), and to store and keep track of
them in an emergent structure, called Space Memory [9]. This
memory generates an implicit context of affordances that the
agent can exploit to generate behaviors in accordance with its
interactional motivation. A subsequent model also showed the
possibility to identify objects that moved in a straight line,
by considering sequences of interactions [11]. These models,
however, could not integrate entities moving irregularly (other
agents). The present study addresses this limitation.

III. INTEGRATING MOBILE AFFORDANCES

This section explains the signature mechanism [9] by which
the agent estimates the possibility of enacting interactions in
a given context. This mechanism is based on the assumption
that the enaction result of an interaction i depends on a limited
context of elements in the environment, defining the affordance
of i. As a PRI agent can only perceive its environment
through enacted interactions, we define the signature Si of
an interaction i as an emerging structure characterizing one or
several sets of interactions (i.e. {jk} ⊂ Et) whose enaction
can characterize the presence of an element affording i for
next step t+ 1.

Defining objects by learning the affordances they provide
is abundant in literature, e.g., [12]–[14]. Most of these ap-
proaches define affordances from perception, which limits
the detection to next action, or requires prior knowledge on
environment and space [e.g., 15] to detect distant affordances.
Signatures cope with this limitation by using interactions
instead of perception, allowing to exploit spatial properties
implicitly encoded in interactions to detect distant affordances.

Formally, a signature of interaction is a function Si :
P(I) → [−1; 1], where P(I) is the partition of I , i.e., the set
of all possible contexts. Si(Et) ∈ [−1, 1] gives the prediction
of successfully enacting interaction i at step t + 1: 1 for
certainty of success, -1 for certainty of failure. The agent
adjusts the parameters of Si each time i succeeds or fails.

Signatures must be reversible by defining a pseudo-reverse
function Ŝi : {−1; 1} → P(P(I)) such that Ŝi(1) gives the
set of minimal contexts Ci

l in which i is possible, i.e. contexts

that afford i, and Ŝi(−1) gives the set of minimal contexts in
which the enaction of i is impossible.

However, when interacting with mobile entities, the pres-
ence of an affordance at the end of step t does not guaranty
that the interaction can be enacted during step t+1 because the
entity may move in the meantime. We thus must separate the
estimation of the presence of an affordance from the prediction
of success of enacting the interaction.

A. Separating affordances from prediction of success

From an observer’s perspective, three types of situations can
happen when the agent tries interacting with a mobile entity:

1) The affordance is present at the right place, and the agent
enacts the interaction successfully (e.g., a prey is in front
of the agent, and the agent catches the prey).

2) The affordance is present, but the interaction fails (e.g.,
a prey is in front of the agent, but the prey moves and
the agent fails to catch it).

3) The affordance is absent, leading to a failure of the
interaction (e.g., there is not pray in front of the agent,
but the agent tries to catch one and fails).

From the agent’s perspective, situations 2 and 3 cannot
be distinguished, as they have the same result. Situations 2
distorts the learning of signatures, as situations 1 and 2 can
occur in the same context E, causing the prediction Si(E) to
remain negative even though the affordance is present.

However, our preliminary tests showed that, despite remain-
ing negative, signature predictions are slightly higher in case
of situations 1-2 than in situations 3. Indeed, situations 1 allow
contexts of interactions designating the affordance to emerge,
while remaining insufficient to predict with a positive value.

We thus use the average prediction in case of failure Sf
i as a

threshold to distinguish between situations 2 and 3. When the
interaction fails in an assumed situation 2 (i.e., Si(Et) > Sf

i ),
the signature is not reinforced, which limits the influence of
situations 2 in signature construction.

Symmetrically, some interactions may fail due to the pres-
ence an entity in a specific location (e.g., trying to move
forward will succeeds unless an obstacle appears). As success
of such interactions are expected to be more frequent than
failures, the average of predictions will converge to a positive
value. In this case, the average of positive predictions Ss

i is
used as a threshold to prevent the signature reinforcement in
case of success in an assumed situation 2 (i.e. Si(Et) < Ss

i ).
It is then possible to define the ratio of success when the

prediction Si(Et) > Sf
i (or failure when Si(Et) < Ss

i ),
implying that the agent is in a situation of type 1 or 2. A ratio
pi
Ci

l
is thus defined for each context Ci

l ∈ Ŝi(1) measuring the
probability that the interaction will succeed in the presence of
an affordance containing a mobile entity.

B. Implementation of Signatures

We extend Gay et al’s signature architecture [9] using
multiple neurons as illustrated in Fig. 1. Each signature Si

consists of m neurons N1
i to Nm

i ; the neuron with the



strongest output defines the prediction of Si. In case of
success, the neuron with the strongest output is reinforced,
while a failure reinforces all neurons. This competition leads
to a specialization of each neuron for a specific context,
while they are desensitized from other contexts. Thus, with a
sufficient number of neurons, a signature can identify contexts
affording its interaction independently.

Formally, a neuron Nn
i is defined as a set of weights {wn

k},
with Card({wn

k}) = Card(I), and an output defined as:

Nn
i (Et) = f(

∑
k

Et[k]× wn
k ) , f(x) =

1

1 + e−x
(1)

where Et[k] = 1 when ik ∈ Et and Et[k] = 0 otherwise.
Then, the response of the group is defined as the maximum

output, and remapped to a range in [−1; 1]:

Ni(Et) = maxn(N
n
i (Et)) × 2 + 1 (2)

In order to consider interactions that are afforded by the
absence of an entity instead of its presence, we added an output
weight Wi defining the output of the signature:

Si(Et) = Ni(Et)×Wi (3)

The weight Wi is restrained in the interval [−1, 1], allowing
to inverse the result of the prediction, which makes neurons
able to integrate contexts preventing the enaction of i.

The learning process uses a classical gradient descent1 and
prediction values obtained with Et−1.

A consequence of this implementation is that high weights
of neurons characterize contexts affording i. Weights of
neurons can be grouped by primary interaction, each group
containing a weight related to a primary interaction and
weights related to its associated secondary interaction. Thus,
a signature Si can be subdivided into minimal contexts Ci

j,n,
associated with a primary interaction j and a neuron n. It
is then possible to define the ratio of success pij,n of each
context Ci

j,n by updating it when j ∈ Et−1 and neuron n has
the highest activity, and Si(Et−1) < Ss

i .
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Fig. 1. Signature architecture based on multiple neurons. As the signature
output relies on the neuron with the greatest output, neurons are in compe-
titions, leading to a specialization of each neuron for a specific context. The
last function remaps the output to range [−1; 1] and uses a global weight Wi,
that can inverse the signature result, allowing the representation of contexts
preventing the enaction of an interaction.

1The enaction result of it is defined as rt = 1 in case of success (it ∈ Et)
and rt = −1 in case of failure (it ̸∈ Et). The weight Wi is updated as
follows: Wi ⇐ Wi+∆i.(α∗Ni−α/2), with ∆i = rt−Si(Et−1) and
α the learning rate. In case of success, only the neuron with the highest output
is reinforced. In case of failure, all neurons are reinforced: wn

k ⇐ wn
k +

α.∆n
i .N

n
i , with ∆n

i = (rt.Wi + 1)/2−Nn
i .

C. Test Environment

This signature mechanism was tested on an artificial agent
moving in the 2-dimensional discrete environment shown in
Fig. 2. The sensorimotor possibilities of the agent define the
following five primary interactions:

- move forward by one step,
- bump in a solid element, - turn left by 90◦

- eat something edible, - turn right by 90◦

Interactions move forward, bump and eat are considered as
mutually alternative: intending one of these interactions may
lead to the enaction of one of the two others instead.

We add a set of secondary interactions provided by the
agent’s visual system, that can detect colors and measure
distances, with a field of view of 180°. Secondary interactions
consist in seeing the displacement of a red, green or blue entity
at a certain (but unknown) position in egocentric space, while
enacting a primary interaction. Interaction bump does not
generate visual interactions (no movement). We discretize the
visual field as a grid of 15 × 8 positions in front of the agents
that matches the environment’s grid. We thus define 4 × 3 × 15
× 8 = 1440 secondary interactions. Signatures are implemented
using sets of m = 6 neurons. The signature learning process
is driven by a learning mechanism that foster interactions with
low certainty of success or failure (low |Si(Et)|).

The environment contains three types of objects offering
spatial regularities that the agent can discover by interacting
with them, and characterized by a color that makes them
recognizable through its sensorimotor system: 1) wall (green),
affording bump, 2) algae (red), that are walkthroughable (and
thus useless in the agent’s perspective), and 3) fish (blue),
affording eat. The fish move randomly: at each simulation step,
they can stay immobile, or move left, right, up, or down, with a
probability of 20% each. If the fish cannot move in the selected
direction because of an obstacle (wall, alga or other fish),
it remains immobile, making the immobile situation slightly
more probable than other directions. This random movement
simulates agents with unknown behavior.

20%20% 20%

20%

20%

Fig. 2. Test environment. The agent is represented as a grey shark (bottom
left), wall as green blocks, algae as red leafs and mobile preys as blue fishes.
At each simulation step, the fish has 20% of remaining at current position or
to move up, down, left, or right.

We then let the agent behave in its environment, driven
by the signature learning mechanism. Signature of bump
(Fig. 3) emerges and stabilizes within 5000 simulation steps.



The signature is similar to signatures obtained in previous
environments [9][11]. It associates the success of bump with
the presence of seeing a green element moving right in front
of the agent, and of a previously enacted bump. The signature
thus gathered every interaction allowing to detect the presence
of a wall in front of the agent, even through they come from
different sensory modalities.
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Fig. 3. Signatures of interaction bump after 100 000 steps. It is characterized
by the weights of 6 formal neurons, each neuron being represented by a
column. As the signature identified a unique context, we only represent
weights of one neuron. As en external observer, knowing that the environment
is 2D, we organize weights of a neuron to make signatures more readable:
first, weights associated with primary interactions are represented with five
squares below (green for a positive weight, red for a negative weight). Weights
associated with secondary interactions are grouped according to their primary
interactions, forming the four groups (from top to bottom: forward, eat, turn
left, turn right ; bump does not produce visual interactions). Each group
is organized to place visual interactions with their associated position in
space, relative to the agent (orange triangle). Colors associated with visual
interactions are overlapped to generate signatures under the form of a RGB
image. Signature of bump identified a context that consist of seeing a green
element in front of the agent, which corresponds to the presence of a wall
in front of the agent. Bump is also related to the success of previous bumps,
since the agent can bump repeatedly.

Signatures of secondary interactions related to static ele-
ments (seeing red and seeing green) progressively stabilize,
depending on their frequency of occurrence. After 50 000
simulation steps, most of these signatures stabilized. These
signatures are also similar to signatures obtained with static
entities [9][11]. They designate elements of the same color but
on a different position in space. From an external point of view,
the spatial offset between the visual interaction and the entity
designated by its signature matches the movement performed
by the enaction of its associated primary interaction. This
property is used for distant affordance detection [9] (details
in Section IV).

Signatures of interactions related to mobile elements require
more steps, as they relate to a larger variety of contexts to
identify: at least 45 000 steps are required to identify contexts
affording move forward and eat. Signature of interaction eat
(Fig. 5) characterizes five contexts corresponding to the five
positions of fish that can lead to a success of eat. Note that
the position under the agent does not appear in contexts of
interactions associated to move forward, as this situation is
not possible. The signature of move forward (Fig. 4) has a
negative weight W . The signature thus shows the affordance
that prevents this interaction. The signature designates five
contexts associated with the presence of a fish, and one context

associated with the presence of a wall in front of the agent.
Signatures of secondary interactions consisting in seeing

blue (Fig. 6) elements designate five contexts, corresponding
to the five positions leading to a success of these interactions,
with an offset (from an external point of view) corresponding
to the movement of the associated primary interaction.

wall front left right ahead below

wall

wall

wall

wall

front

front

front

left

left

left

right

right

right

ahead

ahead

ahead below

below

Fig. 4. Signature of move forward, recorded after 100 000 simulation
steps. Each column represents a neuron of the signature. The weight W is
negative: the signature thus represents contexts preventing moving forward.
The signature identifies six contexts, represented (from an external point of
view) above. As a fish cannot be below the agent after forward or eat, only
5 contexts are related to forward primary interaction (greyed context has low
weights and is thus unused by the signature). As eat interaction is rarely
enacted, contexts related to this primary interaction (second line) are still
constructing.

We also analyze the ratio of successful enaction after a
prediction of success. The ratios obtained in contexts implying
static objects (such as walls) are close to 1 indicating that the
presence of this type of affordance implies the success of the
interaction. Ratios obtained with mobile fish are close to 20%,
which correspond to the probability that the fish moves in the
right direction when the agent tries to eat it. The contexts with
a fish in front of the agent is however slightly greater. This
can be explained by the fact a prey cannot move to a different
position when blocked by a wall or an alga, increasing the
probability of eating the fish when in front of the agent.
These ratios, summarized in table I, show that signatures can
integrate and encode stochastic properties of the environment.

TABLE I
AVERAGE RATIOS OF SUCCESSFUL PREDICTION IN CONTEXTS: WALL, FISH

IN FRONT, AND FISH IN OTHER POSITIONS (SURROUNDING)

interaction wall front surround.
forward 0.96 0.25 0.19
bump 0.97 / /

eat / 0.24 0.19
seeing blue (Fig. 6) / 0.24 0.18

IV. LOCALIZING DISTANT AFFORDANCES

The detection of distant affordances relies on a property of
signatures: a signature of an interaction designates an affor-
dance as sets of interactions {jk} ∈ Ŝi(1) allowing to detect
the presence of this affordance. However, each interaction jk
can have its own signature. It is thus possible to define, from
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Fig. 5. Signature of eat. The weight W is positive. The signature identifies
5 configurations of fish (front, ahead, left, right, below), 4 in the case of a
move forward (as below context cannot be observed). In contexts with fish
around front position, we can observe the absence of a green or red element
(dark blob) in front of the agent, as this would prevent the prey from moving
to this position.

Fig. 6. Signature of secondary interaction seeing a blue element at the position
identified with a red square, while moving forward. The weight W is positive.
The signature identifies 5 configurations of fish. The signature also indicates
the absence of an element that would prevent the fish from moving on the
right place, but also elements that could hide the fish (dark blobs).

these signatures Sjk , a set of contexts, called predecessor Ŝ⟨j⟩
i ,

that, after enacting j, afford i. The backmove principle [9]
consists in defining the initial predecessor Ŝσ0

i = Ŝi(1),
with σ0 = ⟨⟩ (empty sequence). Then, recursively project
the predecessor Ŝσa

i with: Ŝ
σa+1

i =
⋃

∀Ci
l∈Ŝσa

i /j∈Ci
l
{E ∈

P(I)/∀jk ∈ Ci
l , Sjk(E) > 0}, with σa+1 = ⟨j, σa⟩ and

Ci
l = {jk} contexts of interactions associated with the same

primary interaction j. A predecessor Ŝσ
i characterizes a set of

contexts that are expected to afford i after enacting sequence
σ. Then, when a context Cj

l ∈ Ŝσ
i is observed in Et, a distant

affordance of i is assumed to be present at position σ, in
egocentric reference.

A. Backmoving a Probabilistic Affordance

Applying the backmove principle to a signature of a
probabilistic affordance would generate a set of predecessor
covering all possible future positions of this affordance after
enacting a sequence σ. This would lead to a detection of
an affordance through multiple positions, which cannot be
exploited by a Space Memory. We thus propose to only
consider most probable predicted position of an affordance
after enacting a sequence σ.

The proposed backmove method introduces a new structure
called projection sequence. The idea is to split predecessors
into individual interactions: for each backmove, each sequence
considers a unique interaction of Sσ

i . A projection sequence ξ
is a tuple (σ, λ, p) characterized by:

- a sequence σ of primary interactions, characterizing the
movement required to reach the affordance,

- a sequence λ of primary or secondary interactions, that
characterize the successive projections from an interaction to
an interaction of its signature (principle of backmove).

- a probability p characterizing the probability of enacting
i from the partial affordance characterized by the sequence.

The set of projection sequence is constructed as follows:
from a signature Si, a first set of sequences ξki = (σk

0 , λ
k
0 , p

k
0)

is generated for each interaction jk ∈ Ci
l (and for each Ci

l ∈
Ŝi(1)), where σ0 = ⟨ ⟩, λ0 = ⟨jk⟩, and p0 is the success ratio
of the context Ci

l containing jk. Note that this set characterizes
Si under the form of projection sequences.

Then, the set of sequences is recursively backmoved. A
sequence (σ, λ, p) leads to interaction λ[0]. This sequence is
backmoved by primitive interaction j associated to λ[0] (or
by λ[0] if primary): from signature Sλ[0], a set of sequences
(⟨j, σ⟩, ⟨jk, λ⟩, p ∗ pCj,n

λ[0]
) is generated, for each interaction

jk ∈ Cj,n
λ[0] designated by Sλ[0] (i.e. Cj,n

λ[0] ∈ Ŝλ[0](1)).
A sequence ξ1 is removed from the list if it exists another

sequence ξ2 with pξ2 > pξ1 that have similar properties:
- same backmove sequence (σξ1 = σξ2 )
- same final interaction (λξ1 [0] = λξ2 [0])
- divergence comes from different contexts (i.e. ∃k/λξ1 [k] ∈

Ci
l , λξ2 [k] ∈ Ci

m, Ci
l ̸= Ci

m), implying that σξ1 and σξ2 are
related to two exclusive future position of the affordance.

The set of projection sequences of a signature Si provides,
for each interaction i ∈ I , a set of the most probable sequences
of interactions linking interactions from a context Et with enti-
ties designated by Si. It is then possible to gather sequences ξm
with the same σ and λm[0] ∈ Et, and to reconstruct contexts
{λm[k]} for each step k of σ, allowing predicting the most
probable evolution of an affordance position.

B. Detection of Distant Affordances

A projection sequence of a signature Si detects a potential
affordance of i when its last interaction λ[0] is enacted. How-
ever, a sequence only characterizes a part of the affordance;
a larger part of the context must be evaluated to confirm the
presence of the whole affordance. The detection of distant
affordances of an interaction i starts by selecting projection
sequences ξik of signature Si whose last element is enacted,
defining candidate affordances of i. Each candidate ξik gathers
a set Θξik

= {ξil / σl = σk∧λl[0] ∈ Et} of sequences, sharing
the same σ and whose last element λ[0] is enacted.

The set E0
ξik

= {λξil
[0] / ξil ∈ Θξik

} of last interaction
of sequences of Θξik

represents a set E0
ξik

⊂ Et gathering
interactions that can intervene in the detection of the affor-
dance of i at position σξik

. From a context Ea
ξik

, the following
recursive procedure is applied: a candidate context is defined
as Ca+1

ξik
= {λξik

[a + 1], λξik
∈ Θξik

}. Then, each element

jk ∈ Ca+1
ξik

is evaluated with Sjk(E
a
ξik
). Interactions predicted

as a failure are removed from Ca+1
ξik

, and their projection
sequences, removed from Θξik

. Remaining interactions define
context Ea+1

ξik
. The process is repeated until sequence σξik



is completed (or until Θξik
is empty). Interaction i is then

predicted using Si(E
l). If the signature predicts a success,

the affordance of i is confirmed at position σξik
.

C. Test Environments

The affordance detection mechanism was tested with signa-
tures recorded after 200 000 simulation steps. The projection
mechanism generates projection sequences with a maximum
length up to 7 interactions.

The projection sequence construction mechanism was
adapted for a signature implementation based on neurons.
First, we only project interactions designated by a signature
with a weight with an absolute value that is greater than a
threshold, eliminating non-significant weights. Then, we added
a new property to projection sequences, the global weight,
characterizing the pertinence of the sequence to represent the
affordance. This global weight is computed as follows: first
sequences have a global weight defined as wglobal = WS×wk.
Then each backmove through a weight wk of a signature
S, the global weight of the new sequence is updated as
wglobal = wglobal × WS × wk. The filter mechanism then
compare values p×wglobal instead of p alone, offering a good
compromise between probability and pertinence of sequences.

The agent is presented to different environment configura-
tions. An enaction cycle is performed to let the agent perceive
its environment, and sequences of detected affordances are
analyzed. Fig. 7 shows the detection in a context containing
two wall blocks, two fish and an alga. Sequences localizing
static objects (walls) allows moving toward them. Sequences
localizing fish do not reach the position of the prey, but
a position just next to it. Indeed, as the agent can eat a
fish on its side, the resulting sequence is a compromise
between probability and length of the sequence. The alga is
ignored since it has the same property as an empty space.
Thus, the affordance detection mechanism can still detect and
localize distant affordances under the form of sequences of
interactions, which can be stored and exploited by the space
memory similar as in a static environment.

Fig. 7. Distant affordances are detected and localized through sequences of
interactions allowing to reach them. Circles show the position and orientation
associated with these sequences (red: not moving forward, blue: eat, green:
bump). We can notice that the agent ignores the alga since it has the same
interactional property as an empty space.

V. CONCLUSION AND FUTURE WORK

This work proposes a new mechanism to enable an interac-
tionist agent to consider mobile and non-predictable entities in
its emergent model of the environment. Results obtained in a
simulated environment showed that the agent can still localize

distant affordances without the notion of space, and define
their positions in a similar way than in static environment,
allowing the use of a Space Memory [9].

Future work will study how the space memory can be used
to better interact with other agents, and how the intrinsically
motivated decisional mechanism can integrate probabilities
of presence of affordance into consideration. In multi-agent
contexts, this will allow us to study the mutual integration of
agents in each other’s environmental model, and how these
models can be exploited for generating behaviors involving
collaborative tasks, such as coordinated hunt of large preys.

We will also study how an agent can predict another
agent’s intentions through the observation of the other agent’s
context, as a previous implementation of the space memory
demonstrated the possibility of reference change, opening
intersubjectivity possibilities between agents.
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