Quasisymmetric functions distinguishing trees
Résumé
A famous conjecture of Stanley states that his chromatic symmetric function distinguishes trees. As a quasisymmetric analogue, we conjecture that the chromatic quasisymmetric function of Shareshian and Wachs and of Ellzey distinguishes directed trees. This latter conjecture would be implied by an affirmative answer to a question of Hasebe and Tsujie about the $P$-partition enumerator distinguishing posets whose Hasse diagrams are trees. They proved the case of rooted trees and our results include a generalization of their result.
Domaines
Combinatoire [math.CO]Origine | Fichiers produits par l'(les) auteur(s) |
---|