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Abstract. A famous conjecture of Stanley states that his chromatic symmet-

ric function distinguishes trees. As a quasisymmetric analogue, we conjecture

that the chromatic quasisymmetric function of Shareshian and Wachs and of
Ellzey distinguishes directed trees. This latter conjecture would be implied

by an affirmative answer to a question of Hasebe and Tsujie about the P -

partition enumerator distinguishing posets whose Hasse diagrams are trees.
They proved the case of rooted trees and our results include a generalization

of their result.

1. Introduction

As an extension of the chromatic polynomial χG(k) of graph G = (V,E), Stanley
[Sta95] introduced the chromatic symmetric function XG(x) defined by

(1.1) XG(x) =
∑
κ

x
#κ−1(1)
1 x

#κ−1(2)
2 · · ·

where the sum is over all proper colorings κ : V → {1, 2, . . .}. Observe that set-
ting xi = 1 for 1 ≤ i ≤ k and xi = 0 otherwise yields χG(k). Two famous
and unsovled conjectures appear in [Sta95]. One of these, known as the Stanley–
Stembridge conjecture [SS93, Conj. 5.5][Sta95, Conj. 5.1] is about the e-positivity
of XG(x) for incomparability graphs of (3 + 1)-free posets and does not concern us
here. Of more interest to us is that Stanley gave a pair of non-isomorphic graphs
on five vertices (see Figure 1.1(c) with the arrows removed) that have the same
XG(x). As a result, we say that XG(x) does not distinguish graphs. Stanley stated
“We do not know whether XG distinguishes trees.” Subsequent papers, such as
[APdMZ17, APdMZ21, APZ14, Fou03, HJ19, HC20, LS19, MMW08, OS14, SST15],
have established that XG(x) distinguishing trees is certainly worthly of being called
a conjecture; for example, [HJ19] shows that XG(x) distinguishes trees with up to
29 vertices.

We focus on a generalization ofXG(x) to labeled graphs introduced by Shareshian
and Wachs [SW16], denoted XG(x, t), which has an extra parameter t and is now
just a quasisymmetric function in general. In fact, we will use a further generaliza-

tion of XG(x) to directed graphs (digraphs)
−→
G due to Ellzey [Ell17a, Ell17b, Ell18],

denoted X−→
G

(x, t).

Our original goal in this project was to study equality among X−→
G

(x, t). It is

not obvious if X−→
G

(x, t) will be more or less successful at distinguishing digraphs

compared to XG(x) distinguishing graphs: there are far more digraphs than graphs
for a given number of vertices, but X−→

G
(x, t) contains more information than XG(x).
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(a) (b) (c)

Figure 1.1. Pairs of digraphs with equal chromatic quasisymmet-
ric functions

It is not hard to find digraphs with the same X−→
G

(x, t); three such equalities are
given in Figure 1.1.

One way to bring Stanley’s conjecture into the quasisymmetric setting would be
by stating that X−→

G
(x, t) distinguishes directed acyclic graphs, but (a) and (c) of

Figure 1.1 show that such a statement is false. Instead, we offer the following con-
jecture, which is a natural extension of Stanley’s conjecture to the quasisymmetric
setting; it is stated as a question in [AS21].

Conjecture 1.1. X−→
G

(x, t) distinguishes directed trees.

In other words, the conjecture states that if directed graphs
−→
G and

−→
H are not

isomorphic then X−→
G

(x, t) 6= X−→
H

(x, t). Our approach to tackling Conjecture 1.1

will be to translate it into a question about posets. When
−→
G is a directed acyclic

graph, we can represent
−→
G as a poset by saying vi ≤ vj if there is a directed path

from vi to vj . In other words, draw
−→
G so that all the edges point upwards on the

page; removing the arrows results in a Hasse diagram of a poset, possibly with some
redundant edges. Let P denote the resulting poset. As we will see, the coefficient
of the highest power of t that appears in X−→

G
(x, t) will be the well-known strict P -

partition enumerator KP (x), a fact previously mentioned in [AS21, Theorem 7.4]
and [Ell17b, p. 11]. Obviously two chromatic quasisymmetric functions are different
if their coefficients on the highest power of t are different. So to prove Conjecture 1.1
it suffices to prove the following conjecture. A poset being a tree simply means its
Hasse diagram is a tree.

Conjecture 1.2. KP (x) distinguishes posets that are trees.

We have verified this conjecture for all posets with at most 11 elements; thanks
to [S+19]. A main advantage of the poset setting is that Conjecture 1.2, and equal-
ity among KP in general, has already been studied in the literature as we detail
in Section 3. In fact, Conjecture 1.2 appears as a question in [HT17, Problem 6.1].
Section 2 will give the necessary background, including definitions of the quasisym-
metric functions mentioned above. While we only needed the strict P -partition



QUASISYMMETRIC FUNCTIONS DISTINGUISHING TREES 3

enumerator above, in Section 4, we consider the original (P, ω)-partition enumera-
tor K(P,ω)(x) which allows for a mixture of strict and weak relations. Such (P, ω)
are called labeled posets. Interestingly, K(P,ω) does not distinguish labeled posets
that are trees, but we offer the following conjecture. A poset that is a tree is said
to be a rooted tree if it has a unique minimal element.

Conjecture 1.3. K(P,ω)(x) distinguishes labeled posets that are rooted trees.

Hasebe and Tsujie [HT17] have shown the case when all the relations are weak
(or all strict), and we generalize their result by establishing Conjecture 1.3 for a
class of labeled rooted trees that we call fair trees. We conclude in Section 5 with
some directions for further study.

2. Preliminaries

2.1. The chromatic symmetric function for directed graphs. Let P denote
the set of positive integers. For a postive integer n, we write [n] to denote the set
{1, . . . , n}.

Definition 2.1. [Ell17b] Let
−→
G = (V,E) be a directed graph. Given a proper

coloring κ : V → P of
−→
G , we define an ascent of κ to be a directed edge (vi, vj) ∈ E

with κ(vi) < κ(vj), and we let asc(κ) denote the number of ascents of κ. The

chromatic quasisymmetric function of
−→
G is

(2.1) X−→
G

(x, t) =
∑
κ

tasc(κ)x
#κ−1(1)
1 x

#κ−1(2)
2 · · ·

where the sum is over all proper colorings of
−→
G .

Setting t = 1 yields Stanley’s chromatic symmetric function XG(x) of (1.1),

where G denotes the undirected version of
−→
G . When

−→
G is a directed acyclic graph,

which is the case of most interest to us, X−→
G

(x, t) coincides with the chromatic
quasisymmetric function of Shareshian and Wachs. We use the digraph setting
because in the labeled graph setting of Shareshian–Wachs, there are lots of trivial
equalities among XG(x, t) that result just from relabeling.

Example 2.2. Let
−→
G be the 3-element path with the directions as shown below.

With colors a < b < c, the proper colorings κ of
−→
G fall into the 8 classes given by

the following table.

v1 v2 v3

κ(v1) κ(v2) κ(v3) asc(κ)
a b c 1
a c b 2
b a c 0
b c a 2
c a b 0
c b a 1
a b a 2
b a b 0
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Figure 2.1. Converting from a proper coloring of a digraph to a
strict P -partition. The numbers next to each node correspond to
a coloring in the digraph on the left and the corresponding (P, ω)-
partition of the labeled poset on the right.

Thus

X−→
G

= (2 + 2t+ 2t2)M111 + t2M21 +M12 ,

where M denotes the basis of monomial quasisymmetric functions (see Subsec-
tion 2.3 for the necessary background on quasisymmetric functions). Setting t = 1

gives XG(x) = 6m111 +m21 from which we get χG(k) = 6
(
k
3

)
+k(k−1) = k(k−1)2,

as expected.

Let us make a couple of observations about types of X−→
G

(x, t)-equality that arise.

By setting t = 1, we know equal X−→
G

(x, t) means the underlying undirected graphs

must have equal XG(x) and the examples in Figure 1.1 show two scenarios: either
the underlying undirected graphs are isomorphic, or they are not isomorphic but
have equal XG(x). The XG(x)-equality implied by Figure 1.1(c) is the one given
by Stanley in [Sta95].

Figure 1.1(a) shows an example of X−→
G

(x, t) being invariant under reversal of all
the edge directions. This will be true whenever the coefficients ofMα andMα reversed

in X−→
G

(x, t) are equal for all α, so in particular when X−→
G

(x, t) is symmetric [SW16,

Cor. 2.7] [Ell17b, Prop. 2.6]. But not all equalities among X−→
G

(x, t) with isomorphic

underlying graphs arise from reversal of all edges, as shown by Figure 1.1(b).

2.2. The poset perspective. As mentioned in the Introduction, when
−→
G is a

directed acyclic graph we can view it as a poset; see Figure 2.1 for an example,
with a coloring given by numbers next to each vertex.

Now consider the coefficient of the highest power of t that appears in X−→
G

(x, t).
This coefficient enumerates colorings that strictly increase along every directed
edge, as in Figure 2.1(a). We now compare this to the definition of Stanley’s
(P, ω)-partitions.

Let P be a poset with n elements; we write |P | = n. Denote the order relation
on P by ≤P , while ≤ denotes the usual order on the positive integers. A labeling
of P is a bijection ω : P → [n]. A labeled poset (P, ω) is then a poset P with an
associated labeling ω.

Definition 2.3. For a labeled poset (P, ω), a (P, ω)-partition is a map f from P
to the positive integers satisfying the following two conditions:

◦ if a <P b, then f(a) ≤ f(b), i.e., f is order-preserving;
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◦ if a <P b and ω(a) > ω(b), then f(a) < f(b).

In other words, a (P, ω)-partition is an order-preserving map from P to the
positive integers with certain strictness conditions determined by ω. Examples of
(P, ω)-partitions f are given in Figure 2.2, where the images under f are written
in bold and blue next to the nodes.

The meaning of the double edges in the figure follows from the following observa-
tion about Definition 2.3. For a, b ∈ P , we say that a is covered by b in P , denoted
a ≺P b, if a <P b and there does not exist c in P such that a <P c <P b. Note that
a definition equivalent to Definition 2.3 is obtained by replacing both appearances
of the relation a <P b with the relation a ≺P b. In other words, we require that f
be order-preserving along the edges of the Hasse diagram of P , with f(a) < f(b)
when the edge a ≺P b satisfies ω(a) > ω(b). With this in mind, we will consider
those edges a ≺P b with ω(a) > ω(b) as strict edges and we will represent them in
Hasse diagrams by double lines. Similarly, edges a ≺P b with ω(a) < ω(b) will be
called weak edges and will be represented by single lines.

From the point-of-view of (P, ω)-partitions, the labeling ω only determines which
edges are strict and which are weak. Therefore, we say that two labeled posets
(P, ω) and (Q,ω′) are isomorphic if P and Q are isomorphic as posets and they
have equivalent sets of strict and weak edges according to a poset isomorphism.
Thus many of our figures from this point on will not show the labeling ω, but
instead show some collection of strict and weak edges determined by an underlying
ω.

1
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4

3
2

4
3

7

(a)

1
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2

3
3

4
4

4

(b)
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3
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4
2

7

(c)

Figure 2.2. Examples of (P, ω)-partitions

If ω is order-preserving, as in Figure 2.2(b), then P is said to be naturally labeled
and all the edges are weak. In this case, we typically omit reference to the labeling
and so a (P, ω)-partition is then traditionally called a P -partition. At the other
extreme, when ω is order-reversing, as in Figure 2.2(c), f must strictly increase
along each edge. Such (P, ω)-partitions that are required to strictly increase along
each edge will be called strict P -partitions.

Returning to Figure 2.1, the key observation is now clear: the proper colorings

of a directed acyclic graph
−→
G that contribute to the coefficient of the highest power

of t in X−→
G

(x, t) are in bijection with strict P -partitions of the corresponding poset
P .
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(a) (b)

Figure 2.3. Pairs of posets with equal P -partition enumerators

To make the algebraic connection, the well-known (P, ω)-partition enumerator
is defined by

(2.2) K(P,ω)(x) =
∑
f

x
#f−1(1)
1 x

#f−1(2)
2 · · ·

where the sum is over all (P, ω)-partitions f : P → P. When all the edges of
(P, ω) are weak, so the sum is over P -partitions, we will denote the P -partition
enumerator K(P,ω)(x) simply by KP (x) or just KP . Similarly, we will use KP to
denote K(P,ω)(x) when all the edges are strict, thus enumerating strict P -partitions.
Comparing (2.1) and (2.2) when P is the poset corresponding to a directed acyclic

graph
−→
G , we see that KP (x) is exactly the coefficient of the highest power of

t in X−→
G

(x, t). This connection between KP and X−→
G

(x, t) has previously been

mentioned in [AS21, Theorem 7.4] [Ell17b, p. 11]. As a corollary, if Conjecture 1.2
is true, then so is Conjecture 1.1.

With this implication now established, we will work almost entirely in the poset
setting. Although the direct connection between X−→

G
(x, t) and K(P,ω) uses the

setting of strict P -partitions and KP , most of the results in the literature work
with P -partitions and KP . However, for equality questions, the two settings are
equivalent sinceKP can be obtained fromKP and vice-versa; see [MW14, §3] for the
full details of this equivalence and involutions on (P, ω)-partition enumerators. In
particular, Conjecture 1.2 can be restated as the assertion that KP (x) distinguishes
posets that are trees.

Remark 2.4. In addition to its simple statement, Conjecture 1.2 has the virtue
that there is not an obvious more general statement that is true. The first example
of non-isomorphic posets with the same KP was given in [MW14] and appears in
Figure 2.3(a). A bowtie is the poset consisting of elements a1, a2, b1, b2 with cover
relations ai < bj for all i, j. Notice that each poset in Figure 2.3(a) has a bowtie
as an induced subposet. Otherwise, we say the poset is bowtie-free. Weakening the
tree hypothesis of Conjecture 1.2 to bowtie-free results in a false statement, with
Figure 2.3(b) being the smallest counterexample.
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Figure 2.4. The strict P -partition enumerators of these two
posets have the same F -support

Conjecture 1.2 equivalently states that for posets P and Q that are trees, if
KP = KQ then P and Q are isomorphic. We can consider weakenings of the equal-
ity hypothesis in this statement. The F -support of a quasisymmetric function f is
the set of compositions α for which the coefficient of Fα is non-zero when f is the ex-
panded in the F -basis. But the F -support of KP and KQ being equal does not im-
ply that P and Q are isomorphic, with a counterexample given by the posets in Fig-
ure 2.4, which both have F -support {221, 212, 122, 2111, 1211, 1121, 1112, 11111}.

2.3. Quasisymmetric functions. It follows directly from its definition thatK(P,ω)

is a quasisymmetric function. In fact, K(P,ω) served as a motivating example for
Gessel’s original definition [Ges84] of quasisymmetric functions.

For our purposes, quasisymmetric functions are elements of Z[[x1, x2, . . .]] and
we denote the ring of quasisymmetric functions by QSym. We will make use of
both of the classical bases for QSym. If α = (α1, α2, . . . , αk) is a composition of n,
then we define the monomial quasisymmetric function Mα by

Mα =
∑

i1<i2<...<ik

xα1
i1
xα2
i2
· · ·xαk

ik
.

As we know, compositions α = (α1, α2, . . . , αk) of n are in bijection with subsets
of [n−1], and let S(α) denote the set {α1, α1 +α2, . . . , α1 +α2 + · · ·+αk−1}. It will
be helpful to sometimes denote Mα by MS(α),n. Notice that these two notations are
distinguished by the latter one including the subscript n; this subscript is helpful
since S(α) does not uniquely determine n.

The second classical basis is composed of the fundamental quasisymmetric func-
tions Fα defined by

(2.3) Fα = FS(α),n =
∑

S(α)⊆T⊆[n−1]

MT,n .

The relevance of this latter basis to K(P,ω) is due to Theorem 2.5 below, which
first appeared in [Sta71, Sta72] and, in the language of quasisymmetric functions,
in [Ges84].

Every permutation π ∈ Sn has a descent set des(π) given by {i ∈ [n − 1] :
π(i) > π(i + 1)}, and we will call the corresponding composition of n the descent
composition of π, denoted co(π). For example, if π = 243561, then des(π) =
{2, 5} and co(π) = 231. Let L(P, ω) denote the set of all linear extensions of P ,
regarded as permutations of the ω-labels of P . For example, for the labeled poset
in Figure 2.2(a), L(P, ω) = {1423, 1432, 4123, 4132}.
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1

3

2 4

Figure 2.5. The labeled poset of Example 2.6

Theorem 2.5 ([Ges84, Sta71, Sta72]). Let (P, ω) be a labeled poset with |P | = n.
Then

K(P,ω) =
∑

π∈L(P,ω)

Fdes(π),n =
∑

π∈L(P,ω)

Fco(π) .

Example 2.6. The labeled poset (P, ω) of Figure 2.5 has L(P, ω) = {1324, 1342}
and hence

K(P,ω) = F{2},4 + F{3},4

= F22 + F31

=
(M{2},4 +M{1,2},4 +M{2,3},4 +M{1,2,3},4)

+ (M{3},4 +M{1,3},4 +M{2,3},4 +M{1,2,3},4)

= M22 +M31 +M112 + 2M211 +M121 + 2M1111.

3. Consequences of the poset viewpoint

As mentioned in the Introduction, an advantage of the poset viewpoint is that
equality among KP has already been studied in the literature. In this largely
expository section, we gather together these results, especially those relevant to
Conjecture 1.2. As the KP notation indicates, these results are confined to posets
with all weak edges.

Results from the literature mostly fall into three classes: irreducibility, classes
of posets within which we know that the P -partition enumerator distinguishes the
posets, and necessary conditions on P and Q for KP = KQ.

3.1. Irreducibility. If P disconnects into two posets P1 and P2, then it follows
from the definition of KP that KP = KP1

KP2
. On the other hand, a key result

from [LW21] is that if P is connected, then KP is irreducible in QSym. Moreover,
QSym is known to be a unique factorization domain [Haz01, LP08, MR95]. As a
consequence, Liu and Weselcouch deduce the following result.

Corollary 3.1. [LW21, Corollary 4.20] For a poset P , the irreducible factorization
of KP is given by KP =

∏
iKPi

, where the Pi are the connected components of P .

Therefore, when studying KP = KQ, it suffices to consider the case when both
P and Q are connected (see [LW21, Corollary 4.21]). Additionally, a proof of
Conjecture 1.2 would also mean that KP distinguishes forests.

Returning briefly to the setting of the chromatic quasisymmetric function X−→
G

we get the following consequence.

Proposition 3.2. For directed acyclic graphs
−→
G and

−→
H with X−→

G
(x, t) = X−→

H
(x, t),

if
−→
G is connected then so is

−→
H .
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Proof. If
−→
H has connected components

−→
H 1, . . . ,

−→
H r with r ≥ 2, then it follows from

Definition 2.1 that X−→
H

(x, t) factors as

X−→
H

(x, t) = X−→
H1

(x, t) · · ·X−→
Hr

(x, t).

Thus

(3.1) X−→
G

(x, t) = X−→
H1

(x, t) · · ·X−→
Hr

(x, t).

Now consider the irreducibility of the coefficient of the highest power of t on
both sides of (3.1). On the left-hand side, this is KP for the poset P corresponding

to
−→
G , and KP is irreducible since

−→
G and hence P is connected. On the right-hand

side, this coefficient is the product of the coefficients of the highest powers of t in
each X−→

H i
(x, t), which is a contradiction since we know these coefficients are not

constants. �

3.2. Distinguishing within classes of posets. The P -partition enumerator KP

is known to distinguish posets within each the following classes.

◦ Rooted trees [HT17, Zho20], i.e, posets that are trees with a single minimal
element.

◦ More generally, posets that are both bowtie-free and N-free [HT17]. As one
would expect, N is the poset consisting of elements a1, a2, b1, b2 whose cover
relations are a1 < b1 > a2 < b2, and a poset is N-free if it does not contain
N as an induced subposet.

◦ Series-parallel posets [LW21, Theorem 5.2]. These can be defined in two
ways. They are the posets that can be formed by repeated operations of
disjoint union and ordinal sum. Equivalently, they are the N-free posets.

◦ Posets of width two [LW20].
◦ Posets whose Greene shape is a hook [LW20]. The Greeen shape of a poset
P is the partition (c1− c0, c2− c1, . . .) where ci is the maximum cardinality
of a union of k chains of P . So a poset whose Green shape is the hook (j, 1i)
has a maximal chain with j elements and i additional elements which form
an antichain.

◦ Posets with Greene shape (k, 2, 1, 1, . . . , 1) for some k ≥ 2 [LW20].

3.3. Necessary conditions for equality. If KP = KQ, then all the statements in
the next list hold. In the same way that knowledge of KP is equivalent to knowledge
of KP , both are equivalent to knowledge of KP∗ where P ∗ is the dual of P (see,
for example, [MW14, §3]). Thus all the statements below have dual versions.

◦ P and Q obviously have the same number of vertices; if they are not trees,
they need not have the same number of edges, as shown by Figure 2.3(a).

◦ By Theorem 2.5, P and Q have the same number of linear extensions.
◦ The jump of an element p of P is defined to be the length (number of edges)

of the longest chain from p down to a minimal element of P . Then P and
Q have the same number of elements of jump i for all i [MW14]. This can
sometimes be a quick way to show that KP 6= KQ .

◦ KPi = KQi , where Pi denotes the induced subposet of P consisting of
elements of jump at least i [MW14]. For example, with i = 1, we get
that KP− = KQ− , where P− denotes the result of deleting all the minimal
elements from P .
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◦ The up-jump of p denotes the length of the longest chain from p to a maximal
element, and define the jump-pair of P to be (jump of p, up-jump of p).
Then for all i and j, the number of elements with jump pair (i, j) is the
same for P as for Q [LW20].

◦ Let antik,i,j(P ) denote the number of k-element order ideals I of P such
that I has i maximal elements and P \ I has j minimal elements. Then
antik,i,j(P ) = antik,i,j(Q) for all i, j, k [LW20].

◦ Summing over j and k in the previous item, we get that P and Q have
the same number of antichains of each size, as conjectured in [MW14] and
shown in [LW20].

◦ Suppose that for some k and i, P has a unique order ideal IP of size k with i
maximal elements, and similarly for an order ideal IQ of Q. Then KP\IP can
be determined from KP [LW20, Corollary 3.6] and hence KP\IP = KQ\IQ .

◦ The number of order ideals of size k with i maximal elements has to be the
same for P as for Q. The proof is similar to that of [LW20, Corollary 3.6].

◦ There are various ways we can combine the results above. For example, the
number of elements with principal order ideal of size k and up-jump j is the
same for P as for Q [LW20].

◦ The Greene shape of P equals that of Q [LW20].
◦ A P -partition f is pointed if f is surjective onto [k] for some k and f−1(i)

has a unique minimal element for all i with 1 ≤ i ≤ k. The weight of
f is the composition wt(f) = (#f−1(1),#f−1(2), . . .). The number of
pointed P -partitions of any given weight is the same for P and Q. This
follows immediately from the result of [AS21] that if we expand KP in the
(unnormalized) power sum basis ψα of type I, then the coefficient of ψα
equals the number of pointed P -partitons of weight α .

◦ [LW20, Lemma 4.10] observes that any finite poset P has a unique antichain
A of maximum size such that any other antichain of maximum size is con-
tained in the order ideal I(A) generated by A. Let P− be the subposet
consisting of elements less than A in P . Then since KP− is determined by
KP (also shown in [LW20]), we must have KP− = KQ− . Similarly for the
subposet P+ above A.

If one is given non-isomorphic trees T1 and T2, it is typically straightforward to
find a result on the list above that will show that they have unequal P -partition
enumerators. However, the problem is that the result used will depend on T1 and
T2, i.e., we don’t have a systematic way.

Trees of rank one are difficult enough that they are a good test case for tech-
niques; see Figure 3.1 for a non-isomorphic pair. We can use antik,1,j(P ) and
antik,1,j(P

∗) to determine the degree sequences for the maximal and minimal ele-
ments, respectively; these match up in the figure. To distinguish the pair in the
figure, we can use pointed P -partitions: the tree on the right has a pointed P -
partition of weight (4, 1, 4, 2) but the tree on the left does not.

4. Adding strict edges

This section considers extending Conjecture 1.2 in the following way, as inspired
by [HT17, Problem 6.2]: does K(P,ω) distinguish labeled trees when we allow any
mixture of strict and weak edges? The answer is “no” in general as shown, for
example, by the labeled trees in Figure 4.1.
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Figure 3.1. Two trees of rank one with the same degree sequences
but different KP

(a) (b)

Figure 4.1. Pairs of labeled trees with the same K(P,ω)

In fact, this question connects to a studied one in the realm of symmetric func-
tions. Semistandard Young tableaux of a skew shape λ/µ can be considered as
(P, ω)-partitions of a particular labeled poset; see [Sta99, §7.19], for example. In
this case, K(P,ω) equals the skew Schur function sλ/µ. When λ/µ is a ribbon, mean-
ing it has no 2-by-2 block of cells, then the corresponding (P, ω) will be a tree. It
is well known that sλ/µ is invariant under rotation of λ/µ by 180◦ thus yielding
an infinite class of pairs of trees with the same K(P,ω); the simplest example is in
Figure 4.1(b). It is natural to ask if they are other pairs of ribbons, unequal under
180◦ rotation, that give rise to the same skew Schur function. The answer is “yes”
and the full classification of such pairs is given in [BTvW06].

On the other hand, Hasebe and Tsujie [HT17] have shown that K(P,ω) distin-
guishes rooted trees with all strict (equivalently all weak) edges. In Conjecture 1.3,
we propose that their result also holds for arbitrary labeled posets that are rooted
trees. In other words, if we want K(P,ω) to distinguish trees with a mixture of strict
and weak edges, restricting to rooted trees works. We have verified Conjecture 1.3
for n ≤ 10.

Although we have not succeeded in resolving Conjecture 1.3, the rest of this
section focuses on results that still significantly generalize those in [HT17], as we
next explain.

4.1. Fair trees. We consider rooted trees as being rooted at the bottom, and thus
a child is above its parent.

Definition 4.1. A fair tree is a labeled poset (P, ω) such that:

◦ the underlying poset P is a rooted tree,
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Figure 4.2. Example of a fair tree of size 13.

Figure 4.3. Example of an element of C of size 14.

◦ for each vertex v in (P, ω), its outgoing edges (to its children) are either all
strict or all weak.

Figure 4.2 shows an example of a fair tree. The “fair” terminology comes from
the idea that each parent is equally strict with all its children.

We will prove that the fair trees are distinguished by the (P, ω)-partition enu-
merator K(P,ω). In fact, we shall consider a wider class C which we introduce next.

Let us define the following (noncommutative) operations on labeled posets. For
(P, ω) and (Q,ω′) two labeled posets (considered as posets with assignements of
strict and weak edges), the weak (resp. strict) ordinal sum (P, ω) ↑ (Q,ω′) (resp.
(P, ω) ⇑ (Q,ω′)) is the labeled poset obtained by placing (P, ω) below (Q,ω′) and
adding a weak (resp. strict) edge from each maximal element of P to each minimal
element of Q.

It will be helpful in what follows to pick an explicitly labeling of the elements of
these ordinal sums that is consistent with the strictness of the edges. We will label
(P, ω) ↑ (Q,ω′) by copying over the labels from (P, ω) and (Q,ω′) but increasing
each of the ω′-labels by |P | so that the labeling is a bijection to [|P |+ |Q|]. We can
label the disjoint union (P, ω)t (Q,ω′) in the same way. Similarly, (P, ω) ⇑ (Q,ω′)
will be labeled by instead increasing each of the ω-labels by |Q|.

Definition 4.2. We define the set C of labeled posets recursively by:

(a) the one-element labeled poset [1] is in C;
(b) for any (P, ω) and (Q,ω′) in C, their disjoint union (P, ω) t (Q,ω′) is in C;
(c) for any (P, ω) in C, the ordinal sums [1] ↑ (P, ω) and [1] ⇑ (P, ω) are in C;
(d) for any (P, ω) in C, the ordinal sums (P, ω) ↑ [1] and (P, ω) ⇑ [1] are in C.

Figure 4.3 shows an example. See Subsection 4.5 for a characterization of C in
terms of forbidden subposets.

Remark 4.3. We can use Definition 4.2 to give an alternative and recursive defi-
nition of fair trees. Define fair forests as the class defined recursively by (a)–(c) in
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1

2

6

5

3

4

Figure 4.4. This labeled poset has (P, ω)-partition enumerator F312.

Definition 4.2. Fair trees are nothing but connected fair forests, thus are elements
of C.

The main result in this section is the following. It is a generalization of Theo-
rems 1.3 and 5.1 in [HT17]; see Proposition 4.10 below for the analogue of Hasebe
and Tsujie’s bowtie- and N-free characterization.

Theorem 4.4. The (P, ω)-partition enumerator K(P,ω) distinguishes elements in
C, thus in particular fair trees. More formally, for labeled posets (P, ω) and (Q,ω′)
in C, the following assertions are equivalent:

(a) (P, ω) and (Q,ω′) are isomorphic;
(b) K(P,ω) = K(Q,ω′).

The crux of the proof is the irreducibility result Proposition 4.7, in the same
way that the irreducibility played a key role in [HT17, LW21]. We first need more
background on QSym.

4.2. Products of quasisymmetric functions. It will help our intuition to recall
how to interpret Fα as a (P, ω)-partition enumerator. If α is a composition of n, we
let P be the chain with n elements, labeled from top to bottom by any permutation
π of [n] such that co(π) = α. That the resulting K(P,ω) = Fα follows directly from
Theorem 2.5; see Figure 4.4 for an example. Thinking just in terms of strict and
weak edges, for a general α, simply insert the strict edges so that the numbers of
elements in the chains of contiguous weak edges, from bottom to top, match the
parts of α.

From (2.2), we know that labeled posets (P, ω) and (Q,ω′) satisfyK(P,ω)K(Q,ω′) =
K(P,ω)t(Q,ω′). Thus we can interpret the product FαFβ as a (P, ω)-partition enu-
merator for a disjoint union of two appropriately labeled chains. The fact that we
need later from this interpretation is summarized in the following remark, which
follows from Theorem 2.5.

Remark 4.5. For any non-empty α and β, the F -support of FαFβ contains at least
one γ whose first part γ1 is at least 2. We see this is also true for the product of any
two non-constant elements of QSym by considering the respective lexicographically
maximal elements of their F -supports. Similarly, there is at least one γ in the
F -support of FαFβ whose last part is at least 2, and the same is true of any two
non-constant elements of QSym.
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Let us introduce two operations on compositions (which are already known but
we shall use notation relevant to our context):

(4.1) (α1, α2, . . . , αk) ↑ (β1, β2, . . . , β`) = (α1, α2, . . . , αk + β1, β2, . . . , β`),

and

(4.2) (α1, α2, . . . , αk) ⇑ (β1, β2, . . . , β`) = (α1, α2, . . . , αk, β1, β2, . . . , β`).

which give rise to two (noncommutative) products in QSym, defined on the F -basis:

(4.3) Fα ↑ Fβ = Fα↑β ,

and

(4.4) Fα ⇑ Fβ = Fα⇑β ,

The use of the same notation as for labeled posets is justified by the following
statement.

Proposition 4.6. For any two labeled posets (P, ω) and (Q,ω′),

K(P,ω)↑(Q,ω′) = K(P,ω) ↑ K(Q,ω′)

and

K(P,ω)⇑(Q,ω′) = K(P,ω) ⇑ K(Q,ω′).

Proof. Let us prove the first assertion. By Theorem 2.5,

K(P,ω)↑(Q,ω′) =
∑

π∈L((P,ω)↑(Q,ω′))

Fco(π).

By definition of ↑ for labeled posets, those π ∈ L((P, ω) ↑ (Q,ω′)) are concatena-
tions of σ ∈ L(P, ω) and τ ∈ L(Q,ω′) but where each entry of τ is increased by
|P |. Consequently, co(π) = co(σ) ↑ co(τ). Thus, using (4.3), we have

K(P,ω)↑(Q,ω′) =
∑

σ∈L(P,ω), τ∈L(Q,ω′)

Fco(σ)↑co(τ)

=
∑

σ∈L(P,ω), τ∈L(Q,ω′)

Fco(σ) ↑ Fco(τ)

= K(P,ω) ↑ K(Q,ω′) .

The second assertion is proved similarly. �

4.3. An involution. Given a labeled poset (P, ω), we can switch the strictness of

the edges to obtain a new labeled poset (P, ω). We will follow [MW14] by referring
to this operation on labeled posets as the bar operation. We can extend this oper-
ation to QSym by again considering Fα = K(P,ω) as at the start of Subsection 4.2

and defining Fα = K
(P,ω)

. In the example of Figure 4.4, we get F312 = F1131. In

general, Fco(π) = Fco(π′) where π and π′ are permutations whose descent sets are
complements of each other.

Thinking of the bar operation as switching strictness of edges and of FαFβ as

the (P, ω)-enumerator for disjoint chains, it is clear that (FαFβ) = Fα Fβ for any α

and β. Extending the bar operation to QSym linearly, we also have that fg = fg
for any f and g in QSym.
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4.4. Irreducibility. A crucial fact towards proving Theorem 4.4 is the irreducibil-
ity of K(P,ω) for elements of C.

Proposition 4.7. If (P, ω) is a connected element of C then K(P,ω) is irreducible
in QSym.

To prove this, we first recall the following general property. A polynomial with
integer coefficients is said to be primitive if the greatest common divisor of its
coefficients is 1. We can extend this definition by saying that a formal power series
with integer coefficients is primitive if the greatest common divisor of any finite
subset of its coefficients is 1. Since all our K(P,ω) have integer coefficients, it makes
sense to ask whether K(P,ω) is primitive.

To answer this question, let us define the leading term of a formal power series f
expanded in terms of monomials as the term cαx

α = cαx
α1
1 xα2

2 · · · with lexicograph-
ically largest α such that cα 6= 0; naturally, we call this cα the leading coefficient.
For a labeled poset (P, ω), we define xjump(P,ω) = xj11 x

j2
2 · · · where ji is the number

of elements of (P, ω) of jump i− 1.

Proposition 4.8 ([MW14, proof of Proposition 4.2]). For any labeled poset (P, ω),
the leading term of K(P,ω) is xjump(P,ω). In particular, the leading coefficient of
K(P,ω) is 1 and K(P,ω) is primitive.

The next lemma is relevant to the recursive construction of C.

Lemma 4.9. If q is a primitive element of QSym then the polynomials F1 ↑ q,
F1 ⇑ q, q ↑ F1, and q ⇑ F1 are irreducible in QSym.

Proof. Let us first deal with F1 ⇑ q. Assume that F1 ⇑ q is reducible. Note that
if q expands as

∑
cαFα then F1 ⇑ q =

∑
cαFα+ , where α+ is obtained from α

by appending an entry of 1 at the start. Thus since q is primitive, F1 ⇑ q is also
primitive, so there exist non-constants p, p′ ∈ QSym, such that

(4.5) F1 ⇑ q = pp′.

All α in the F -support of F1 ⇑ q all satisfy α1 = 1 but by Remark 4.5, the F -support
of the right-hand side of (4.5) contains at least one α with α1 ≥ 2, a contradiction.
The case of q ⇑ F1 is treated similarly, using the last part of α instead of the first
part.

Let us now consider F1 ↑ q. We again assume F1 ↑ q is reducible and now α+

is obtained from α by increasing the first part by 1. The primitivity implies the
existence of two non-constants p, p′ ∈ QSym, such that F1 ↑ q = pp′. We apply the
bar operator to this equality and get

F1 ↑ q = pp′ = pp′.

Since the elements α of the F -support of F1 ↑ q all satisfy α1 ≥ 2, we know all α′ in
the F -support of F1 ↑ q satsify α′1 = 1. We are thus led to the same contradiction
as in the first case. The case of q ↑ F1 is treated similarly. �

Proof of Proposition 4.7. If P has just a single element, then KP = F1, which is
irreducible. Otherwise, since P is connected and constructed recursively, it must
be of one of the forms [1] ↑ P ′, [1] ⇑ P ′, P ′ ↑ [1], or P ′ ⇑ [1], where P ′ ∈ C. The
result now follows from Propositions 4.6 and 4.8, and Lemma 4.9. �
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We are now in a position to prove the main result of this section. Since we will
only be considering labeled posets in C for the remainder of this section, we will
abbreviate (P, ω) as P for easier reading.

Proof of Theorem 4.4. It is obvious that when P and Q are isomorphic, then KP =
KQ. Let us prove the converse.

We shall use induction on the size of P , with the case of size 1 being trivial.
Assuming now that the size of P is at least 2, we may decompose P and Q

uniquely into non-empty connected components: P = tri=1Pi and Q = tsi=1Qi.
We have

r∏
i=1

KPi =

s∏
i=1

KQi .

Since QSym is a unique factorization domain [Haz01, LP08, MR95], the irreducibil-
ity of KPi

and KQi
from Proposition 4.7 implies that r = s and that for every i,

we have KPi
= KQi

(up to a suitable renumbering).
When r ≥ 2, the size of each Pi and Qi is smaller than the size of P and thus

Pi and Qi are isomorphic for every i by the induction hypothesis. Thus P and Q
are also isomorphic.

Suppose now that r = 1, i.e., P and Q are connected. Thus, since their size
is greater than 1, they may be written as P = [1] ↑ P ′ or P = [1] ⇑ P ′ or
P = P ′ ↑ [1] or P = P ′ ⇑ [1], and similarly for Q. By Theorem 2.5, we can
distinguish among these four possibilities by observing whether the first (resp. last)
part of the compositions α in the F -support of KP (equivalently KQ) are all equal
to 1 or all greater than 1. Specifically, if P = [1] ↑ P ′ (resp. P = [1] ⇑ P ′), we know
that α1 > 1 (resp. α1 = 1) for all α. If P = P ′ ↑ [1] (resp. P = P ′ ⇑ [1]), we know
that the last part of α is greater than 1 (resp. equals 1) for all α. So for a given P
and Q with KP = KQ, at least one of the following four properties holds:

◦ P = [1] ↑ P ′ and Q = [1] ↑ Q′, or
◦ P = [1] ⇑ P ′ and Q = [1] ⇑ Q′, or
◦ P = P ′ ↑ [1] and Q = Q′ ↑ [1], or
◦ P = P ′ ⇑ [1] and Q = Q′ ⇑ [1].

In the first case, we have F1 ↑ KP ′ = F1 ↑ KQ′ . Let us expand this in the
F -basis as

∑
cαFα. From (4.3) and (4.1), we see that by just subtracting 1 from

the first part α1 in each term Fα, we get KP ′ = KQ′ , with P ′ of size smaller than
P . By induction, P ′ and Q′ are isomorphic, and so are P and Q.

In the second case, we have F1 ⇑ KP ′ = F1 ⇑ KQ′ . Let us expand this in the
F -basis as

∑
cαFα. From (4.4) and (4.2), we see that by just removing the first

part α1 = 1 in each term Fα, we get KP ′ = KQ′ , with P ′ of size smaller than P ,
giving the same conclusion.

The last two cases are resolved similarly by focusing on the last entry of α. �

4.5. A different characterization of C. To end this subsection, we shall give a
characterization of the class C in terms of forbidden subposets.

We need to distinguish two notions of subposets of labeled posets. For the first,
we ignore the labeling and consider the usual notion of induced subposets. A poset
(labeled or not) that avoids a set of unlabeled subposets S in this sense is said to
be (S)-free. The second notion is of convex labeled subposets, considered as convex
subposets with specific assignments of strict and weak edges. A labeled poset that
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avoids a set of labeled convex subposets S′ in this sense is said to be [S′]-free. Of
course these two notions can be used together.

The following result is the analogue in our context of [HT17, Theorem 4.3].

Proposition 4.10. Labeled posets in C are exactly ( , )-[ , ]-free posets.

The proof is modeled on the proof of [HT17, Theorem 4.3]. We first recall [HT17,
Lemma 4.4].

Lemma 4.11. A finite connected ( , )-free poset has a unique minimal or max-
imal element.

Proof of Proposition 4.10. Let P be an element of C. We shall prove that it is
( , )-[ , ]-free by induction on its size. If P is disconnected then P = P ′tP ′′
with P ′ and P ′′ in C and non-empty. By the induction hypothesis, P ′ and P ′′ are
( , )-[ , ]-free, and thus so is P . If P is connected, then by definition of C, P
is of the form [1] ↑ P ′ or [1] ⇑ P ′ or P ′ ↑ [1] or P ′ ⇑ [1] for some P ′ in C. We may
assume without loss of generality that P = P ′ ↑ [1]. The induction hypothesis shows
that P ′ is ( , )-[ , ]-free. This implies that P is ( , )-free too; otherwise,
we would find three elements a, b, c in P ′ such that the subposet ({1, a, b, c},≤P )

is isomorphic to or , but this is absurd since and do not have a unique
maximal element. This implies also that P is [ , ]-free too; otherwise, we would
find two elements a, b in P ′ such that the convex labeled subposet ({1, a, b},≤P ) is

equal to or , but this is impossible by construction.
Let us then prove the converse. The proof is again based on induction on the size

of P . If a finite ( , )-[ , ]-free poset P is disconnected, then P = P ′ tP ′′ for
some non-empty ( , )-[ , ]-free posets P ′ and P ′′. The induction hypothesis
shows that P ′ and P ′′ are in C, and thus so is P . So let us suppose that P is
connected. Because of Lemma 4.11, together with the [ , ]-freeness, we may
assume without loss of generality that P is of the form P ′ ↑ [1] for some poset
P ′. Since P ′ is a convex subposet of P , it is ( , )-[ , ]-free, from which the
induction hypothesis implies that P ′ is in C, and thus so is P .

�

5. Open problems

Resolving any one of Conjectures 1.1, 1.2 and 1.3 would represent a significant
advance. Taking them in turn, we offer some further observations.

◦ Even though our starting point was Conjecture 1.1, the only approach taken
here is to consider it in terms of Conjecture 1.2. Perhaps there is a more
direct way to tackle the former.

◦ One difficulty we failed to surmount in tackling Conjecture 1.2 was how to
use the fact that the posets under consideration are trees; any methods used
cannot apply to the posets in Figure 2.3.

◦ A special case of Conjecture 1.3 worthy of consideration is that of binary
trees, defined here as rooted trees where every element has exactly 0 or 2
children.

Referring to Subsection 3.2, one could consider series-parallel posets
where we allow a mixture of strict and weak edges. In particular, one
could define fair series-parallel posets by replacing all appearances of “[1]”
in Definition 4.2 with “Q.” Does the analogue of Theorem 4.4 hold?
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For any class of posets, labeled or not, we expect the crux of a proof
would be the irreducibility, as in Proposition 4.7, [HT17, Lemma 3.13], and
[LW21, Theorem 4.19]. The general question of the irreducibility of K(P,ω)

appears as [MW14, Questions 7.2 and 7.3]. The irreducibility of Mα and
Fα is shown in [LP08].

We have given much less consideration to two other open problems which we next
describe. Liu and Weselcouch’s impressive progress in the naturally labeled case
[LW21] depends on the expansion of KP in the (unnormalized) power sum basis ψα
of type I and, in particular, the combinatorial interpretation of this expansion due to
Alexandersson and Sulzgruber [AS21]. Can other bases of QSym give new insight?
Even though the expansion of KP in other bases might be neither integral nor
positive, there could still be interesting combinators with appropriate normalization
and interpretation of the signs. We did a careful study of the expansion of KP in the
(unnormalized) power sum basis φα of type II. Here, we are following the notation
of Ballantine et al. [BDH+20], where extensive information about the bases ψα and
φα can be found. In particular, they show that the power sum symmetric function
pλ expands as

(5.1) pλ =
∑

α : α̃=λ

zλψα =
∑

α : α̃=λ

zλφα

where both sums are over all compositions α whose weakly decreasing reordering
is λ. As usual, zλ = 1m1m1! 2m2m2! · · · kmkmk! where mi is the multiplicity of i in
λ and where λ1 = k. It follows immediately from (5.1) that when f is a symmetric
function, the coefficient of ψα in f ’s ψ-expansion equals the coefficient of φα in f ’s
φ-expansion. We offer the following question: is the converse true? In other words,
does the coefficients being equal give a characterization of symmetric functions?
We have only anecdotal evidence related to this question and have not given it
significant thought.

We close with another question which is wide open and brings us all the way back
to Stanley’s original consideration of XG(x) distinguishing (undirected) graphs and
Conjecture 1.1. We ask the following ill-defined question: does X−→

G
(x, t) distinguish

undirected trees? Here below is one concrete way to make this question make sense.

Question 5.1. Given an undirected tree G, construct the multiset {X−→
G

(x, t)}−→
G

as
−→
G varies over all orientations of G. Do the same for a different undirected tree H.
Are the multisets for G and H always different?
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