Forces for the Navier-Stokes equations and the Koch and Tataru theorem - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Forces for the Navier-Stokes equations and the Koch and Tataru theorem

Résumé

We consider the Cauchy problem for the incompressible Navier--Stokes equations on the whole space $\mathbb{R}^3$, with initial value $\vec u_0\in {\rm BMO}^{-1}$ (as in Koch and Tataru's theorem) and with force $\vec f=\Div \mathbb{F}$ where smallness of $\mathbb{F}$ ensures existence of a mild solution in absence of initial value. We study the interaction of the two solutions and discuss the existence of global solution for the complete problem (i.e. in presence of initial value and forcing term) under smallness assumptions. In particular, we discuss the interaction between Koch and Tataru solutions and Lei-Lin's solutions (in $L^2\mathcal{F}^{-1}L^1$) or solutions in the multiplier space $\mathcal{M}(\dot H^{1/2,1}_{t,x}\mapsto L^2_{t,x})$.
Fichier principal
Vignette du fichier
forcess_v2.pdf (308.91 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03787489 , version 1 (25-09-2022)
hal-03787489 , version 2 (18-10-2022)
hal-03787489 , version 3 (16-04-2023)

Identifiants

  • HAL Id : hal-03787489 , version 2

Citer

Pierre Gilles Lemarié-Rieusset. Forces for the Navier-Stokes equations and the Koch and Tataru theorem. 2022. ⟨hal-03787489v2⟩
75 Consultations
91 Téléchargements

Partager

More