N

N

Forces for the Navier-Stokes equations and the Koch
and Tataru theorem

Pierre Gilles Lemarié-Rieusset

» To cite this version:

Pierre Gilles Lemarié-Rieusset. Forces for the Navier-Stokes equations and the Koch and Tataru
theorem. 2022. hal-03787489v2

HAL Id: hal-03787489
https://hal.science/hal-03787489v2

Preprint submitted on 18 Oct 2022 (v2), last revised 16 Apr 2023 (v3)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-03787489v2
https://hal.archives-ouvertes.fr

Forces for the Navier—Stokes equations and the
Koch and Tataru theorem.

Pierre Gilles Lemarié-Rieusset™®

Abstract

We consider the Cauchy problem for the incompressible Navier—
Stokes equations on the whole space R3, with initial value @y € BMO™!
(as in Koch and Tataru’s theorem) and with force f = divF where
smallness of I ensures existence of a mild solution in absence of initial
value. We study the interaction of the two solutions and discuss the
existence of global solution for the complete problem (i.e. in presence
of initial value and forcing term) under smallness assumptions. In par-
ticular, we discuss the interaction between Koch and Tataru solutions
and Lei-Lin’s solutions (in L2F~!'L') or solutions in the multiplier

space M(Hgfl — Ltzx)

Keywords : Navier-Stokes equations, critical spaces, parabolic Sobolev
spaces, parabolic Morrey spaces, mild solutions.

AMS classification : 35K55, 35Q30, 76D05.

In this paper, we consider global mild solutions of the Cauchy problem for
the incompressible Navier-Stokes equations on the whole space R®. When
looking for assumptions that respect the symmetries of the Navier—Stokes
equations (with respect to spatial translation or to dilations), one is lead to
consider the initial data to be in BMO~" (this is the famous Koch and Tataru
theorem [Koc01]) but there is no natural choice for the forcing term. We are
going to consider forces that are known to lead to global mild solutions (if
they are small enough) in the absence of initial value, but the interaction
between those forces and an initial value in BMO™! or between forces in
different functional spaces has not been discussed in the literature.

*LaMME, Univ Evry, CNRS, Université Paris-Saclay, 91025, Evry, France; e-mail :
pierregilles.lemarierieusset@Quniv-evry.fr



1 Navier—Stokes equations with a forcing term
and the Koch and Tataru theorem

Let us give a short description of mild solutions in critical spaces for the
Navier—Stokes equations. We shall look for minimal regularity assumptions
for thhe solution @. It is therefore better to write the non-linear term - Vi
in the Navier-Stokes equations as div(# ® u) (the two vector fields are equal
when ¥ is a regular divergence free vector field). The Navier—Stokes equations
we study are then

Oyl = At — Vp + div(F — 7 ® @)
divi =0 (1)

u(0,.) = Uy
Taking the divergence of the first equation, we get
Ap=(VaV) (F-i®i)

and thus . L
AszV((V@V)-(IF—ﬁ@ﬁ)). 2)

Assuming that Vp is equal to 0 at infinity, equation (2) defines p as a func-
tion of F and w. More precisely, if F — & ® @ is assumed to belong to

Li ((0,+00), Ll(lf‘—ilél)), then [Fer21] shows that the solution Vp of equation

(2) which is equal to 0 at infinity is given by the formula

where, writing

for the fundamental solution of —A
(—AG = § so that, for f € D(R?, f = G * (—Af))

and choosing a function ¢ € D(R? which is equal to 1 on a neighbourhood
of 0, %@8]0;@ is defined as

1

A 0i0i0cf = —0:0;0 (V@) * f) = (0:0;0k((1 = ¥)G)) = f.

Thus, we have an equation with one unknown « and two data w, and F.
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Defining (formally) the Leray projection operator P as
P — Id——~¥di
=Id ——Vdiv
A )
the Navier—Stokes equations then become

{aﬂzz AT+ Pdiv(F — @ ® ) -

ﬁ(O, ) = ﬁo, div l_l,'o =0

This is viewed as a non-linear heat equation and is transformed into the
Duhamel formula

t
i = ey + / AP Aiv(F — @ @ @) ds (4)
0

where e'® is the convolution operator with the heat kernel: e f = W, * f
with

1 _z2
Wt = W@ 4,
We rewrite (4) as
il = ey + L(F) — B(, 7) (5)
where .
L(F) = / AP div F ds
0
and

t
B(i, 7) = / e AP div(i @ 7) ds.
0

[Remark that we defined PdivF for regular enough tensors F, i.e. F €
Li . ((0,+00), Ll(lf‘fclél)), but we may also consider more singular data I, as
long as we are able to give a sense to L(IF).]

To have lighter computations and notations, it is better to forget the
vectorial setting of the problem and to look at the bilinear operator B as

a family of scalar operators acting on scalar functions: if & = B(w, ¢) then
w; = Zlgj,kg3 Bi,j,k(ujyvk) with

t
1
Bijr(u,v) = / €260 — Kaiajak)(uv) ds.
0



More generally, we define &, as the space of smooth functions ¢ on R? which
are positively homogeneous of degree 1 (c(A) = Ao(§) for A > 0). To
o € Gy, we associate the Fourier multiplier o(D) and the operator

The formalism of global mild solutions of the Cauchy problem for the
Navier—Stokes equations is then described by the following definition and
proposition:

Definition 1.
An adapted Banach space is a Banach space Y of locally integrable functions
on (0,400) x R® such that, for every o € &y, the bilinear operator B, is
bounded on Y:

1Bo (u, )|y < Collullylv]ly-

For vector fields & with coordinates in )}, we shall write « € ) instead of
@ € V3. The following theorem is then easy to check (through the Banach
contraction principle):

Proposition 1.
Let' Y be an adapted Banach space. If iy is a (divergence free) vector fields
of tempered distribution on R® such ety € Y, L(F) € Y and if @y and F
are small enough:

4Co([le"dolly + IL(F) ) < 1,

where Cy is the norm of the bilinear operator B on Y3, then the Navier—Stokes
problem (4) has a global solution @ with

Iy < 20l dolly + [1£(F)]ly)-

Navier—Stokes equations have symmetries. In particular, we have the two
following properties: if 4 is a solution of the Navier—Stokes problem (4) with
data 1y and FF, then

e [space translation] @(t, x—x) is a solution of the Navier—Stokes problem
(4) with data @y(z — zo) and F(t,z — xo),

e [space dilation] if A > 0, A@(\?¢, \z) is a solution of the Navier—Stokes
problem (4) with data \iy(Az) and A2 F(A\%t, \x).



In particular, we shall look for critical spaces ), meaning that we have
invariance of the norms under space translations and space dilations: for
every o € R?* and A > 0

[ult, z = zo)lly = l[ully, [Au(A*E, Az) |y = [fully.

Finally, in order to give sense to the formula

t t
ﬁ(t,.):ﬁoJrA/ ﬁ(s,.)ds+IP’div(/ F— @ ads),
0 0

d
we require the continuous embedding ) C ﬂ L*((0,T), L*( i )) [Due

1+ |z*
T>0
to the invariance through space translations or space dilations, it is equivalent
to ask that u — L(91)xp(0,1)u is bounded from Y to L*((0,1) x B(0,1)).]
In particular, we have

YycYr={u/ sup 7 ullraonxpeov) < +00)-
t>0,z0€R3

Thus, Y, is maximal in the class of Banach spaces ) that satisfy the condi-
tions [[u(t, x — zo)lly = [Jully, [[Au(N*t, Ax)[ly = [ully and

1
Sup// lu(s,y)|* dsdy < +oc.
lully<1Jo JB(0,1)

Koch and Tataru [Koc01] identified the space & such that uy € X implies
S(UQ) € ygi

Proposition 2.
For a tempered distribution ug, the following assertions are equivalent:

(i) e®ug € Vs

(i) up € BMO™" = Fz_olo (i.e., there exists Uy in BMO?® such that uy =
diVﬁo).

However, ), is not an adapted Banach space (see a counter-example in
Proposition 5 in the Appendix). The Koch and Tataru theorem deals with
a subspace of ),. We define the space

Zo = {u € Ly, ((0, +00) x R* / sup Vt||u(t, .|| < +00}.
t>0

The Koch and Tataru space Vg7 is then defined as:

Yirr = Yo N 2.



yKT is normed with HtuKT = Htuz + SUPys~ \ﬁHU(t, ~)||oo; where

3
— 1 )
[ully, Lo 1l 22 (0,6 x B, v

Koch and Tataru’s theorem is then the following one [Koc01, Lem02]:

Theorem 1.
A) For every o € &1, the bilinear operator B, is a bounded bilinear operator
from Ygr X Vo to Vs. It is also a bounded bilinear operator from YVir X Vi1

to Vir.
B) The following assertions are equivalent:

(i) e®ug € Vir;
(ii) up € BMO™';

C) Yk is an adapted Banach space. Thus, there ezists a positive constant €
such that, if ||e"®@o|yr + [|L(F)||yy < €0, then the Navier-Stokes problem
(4) has a global mild solution @ € YVir.

Proof. We sketch the proof given by Koch and Tataru in [Koc01], and try to
highlight the obstructing term for proving the boundedness of B, on ). A
simple but key estimate is the following control:

=) u(s, . )vu(s,. L u(s v(s )
o= (D) uls, Yoo NI < Cr [ (s ) (e, )l dy

We need to estimate, for every 7' > 0 and z € R?, || 1g,., Bo(u, v)| 122 where

Qro={(ty) /0 <t <T, |z —y| <VT}.
Koch and Tataru split w = B, (u,v) in three parts:

o wy = By(u, (1-1g,,.,)v) : we easily check that 1, |wi| < C\/LTHUH:))QHUH))Q
and thus
Lo, willzze < CT*|lully, |vlly..

o wy(t,y) = a(D)ed fg 1g,pp,uvds. The main lemma in Koch and

Tataru’s proof states that the operator Q(u, v) = v/—Ae? fot 1gor uvds
maps Vs X Vs, to L2L? with a norm of order 7°%/* and thus

[1q,wallp2r2 < Jlwallp2ze < CT**|Jully, ||v]ly,.



o wy(t,y) = o(D) [7(el)A — )/ =A(1g,y,.uv) ds. They rewrite w;
* es® —1Id

(t—s)

w ——(1

3= /—A / /_—A ( Q1072

and use the maximal regularity of the heat kernel in L2L? to write
e —1d

1
\/1 ( Qior,e U

uv) ds
Jws[r212 < Cll——==— uv)|| 22 < C'|[VELguop, w212

Thus,

Mer.wsllrere < Jwsllrere < ClIVEulloolLouer. vllzzre < CTullyserl[v]lys.
Thus, the obstruction for the boundedness of B, on Y, lies in ws.

To finish the proof, we need to establish the control of B, in L* norm.
Writing

B0 < Cy [ [ el ) (s, ) dy s

we check that

/‘/\m3+u (s, (s, )] dyds < O ol

u(s,y)||v(s C
A/' IR 4y s < sup Sl )oosp vallos, o O
2 s

(VE=s+|z—yl)*

The proof in Theorem 1 is assumed to satisfy L£(F) € Vg7, but one may
consider another forcing term; We have the obvious result:

Proposition 3.

Let Y be an adapted Banach space such that, for every o € &y, the bilinear
operator B, is a bounded bilinear operator from Y x L**L> to Y. Then,
there exists a positive constant eq such that, if ||to]lgpmo-1 + [[L(F)|ly < e€o,
then the Navier—Stokes problem (4) has a global mild solution @ € Yir + .

Let us notice that many adapted spaces studied in the literature satisfy
the assumption of Proposition 3. Here are some examples:

a) the Serrin class Y = LP((0,400), LY(R?)) with 2 < p < +oo and
2 + o =1 [this corresponds to the solutions of Fabes, Jones and Riviere

(Fab72)):



b) direct generalizations of the Serrin class such that J = LP*((0, +00),
Y = L (R3)) or Y = LP*((0,+00), M™(R?)) with 2 < p < +o0,
%+§:1,1§p,0§+ooand1<r§q;

c¢) the time-weighted Serrin class:
Y ={u/ t%u e L"((0, +00), L*7(R?))}

with3<q<+oo,2<p§—|—oo,0§a,1§p,a§+ooand2a+%+
2 =1 [if p = 400, LP* is to be replaced with L] (this corresponds to
the solutions considered by Cannone and Planchon [Can99] or Kozono

and Yamazaki [Koz94] and more recently by Farwig, Giga and Shu
[Far16] and Kozono and Shimizu [Koz18));

d) the case Y = L*((0,+00), L>*(R3)), which is the endpoint of the
Serrin class LPL? with p = 400 and corresponds to the solutions of
Kozono [Ko0z96] and Meyer [Mey99];

e) the case of the Lorentz space Li’f = LP*((0,4+00) x R3) with 1 < p <
+00 seems to be new but is easy: to check that Lf”a’; is an adapted

Banach space, just notice that ———— € L2/
paee. ] VT

inequalities in Lorentz spaces; to check that B, is bounded from Li’g X
L**L> to Ly?, just notice that it is bounded from LYL? x L**L* to

and use convolution

xT

LYLP for 2 < p < +oo and conclude by interpolation.

All those examples are embedded into larger classes of adapted spaces,
namely the parabolic Morrey spaces Mg"r’ where 2 < p < 5:

1 1/p
R, 1 (// [u(s,y)|" dy d5> < +00.
r>0,teR,z€R3 7P (t—r2 t+72)x B(z,r),s>0

We have LPL? ¢ ME™PD® [case a)], LP*((0, +oo), M™(R3)) C M3° with
2 < 0 < min(p,r) [case b)], t*u € LP*((0,400), L?(R?)) = u € M5P
with 2 < 0 < min ﬁzapp, q) [case ¢)], L®L>* ¢ My® for 2 < r < 3 [case
d)], Li’:f C M5 for 2 < 1 < 5 [case e)]. We have the easy result on parabolic
Morrey spaces:

Proposition 4. ‘

For2 < p <5, the parabolic Morrey spaces M§’5 s an adapted Banach space
and, for every o € &1, the bilinear operator B, is a bounded bilinear operator
from ./\/l%;’5 x L>* L[> to M§’5. Thus, there exists a positive constant €q such
that, if ||tdo||gyo-1 + ||£(F)HM;2)5 < €y, then the Navier-Stokes problem (4)

has a global mild solution @ € Vg + M5,

8



Proof. The fact that M§’5 is an adapted Banach space is proved in [Lem16,
Lem18]. One writes that, for o € &y,

! 1
Bo(w )l <€, [ [ ot ) s ) dy s

Thus, B, (u,v) is controlled by the parabolic Riesz potential of |uv|; as |uv| €

Mp /25/2 4 4 and v belong to ./\/l , we conclude by Hedberg’s inequality for
Riesz potentals and Morrey spaces that B, (u,v) is controlled in M5”.

Now let us consider u € /\/lp5 and v € L»*L>. Since p > 2, we have
v e ]\/[2” 1" hence uv € M15/2. For r > 0,t € R and = € R?, we want to
estimate the LP L? norm of By (u,v) on Q,(t,z) = (t—r*t+7?)x B(x,r). Let
p(t—s,z—y) = /t — s+|x—y| be the parabolic distance. Let (s,y) € Q,(t,x)
and (o, 2) be such that 8 28 < p(t — 0,2 — 2) < 16 2¥r with k € N; then

1 <c 1
(Vo—s+lz—gl)' = @)

and thus

1
Jo—_s u(o, z)v(o, 2)|do dz
//5; 2kr<p(t—o,x—2)<16 2kr ( O'—S—l—’z—y|)4‘ ( ) ( )‘

2’< //Q 0, z)v(0, 2)| do dz

162k

<C Qk HuvHM1 5/2

so that
1 P
</ = u(o, z)v(o, z)|dodz| dsdy
//;rtl‘ //8T<pt o,r— Z) ( U—S+|z_y‘)4’ ) ( )’

p
<C//
r(t, x)

ds dy
<C'r’" p\|u||

|uv||M1 5/2

Mp 5 UHLQ,OOLDO‘
On the other hand, we have
ﬂQSr(t’z)u c LPLP

so that

1
w(s,y) = //p(tmzkgr Vo5t y|)4|U(0, z)v(o, z)|

9



satisfies
1
Wl zr(dy) < C/\/ﬁ”%gr(t,w)u(saZ)HLP(dz)HU(SaZ)HLW(dz) ds

and

lwllzrze < Ol ayull oo 0]l 2o e < C"r' 75 |Jull yygs 0| 2o roe.

Thus, B, (u,v) belongs to M5 O

However, for some adapted spaces ), assumptions in Proposition 3 are
not satisfied and we cannot use Proposition 4 as they are not included in M’Q)’S
for any p > 2. For instance, let us consider Y = L?((0, +00), A(R?)) where A
is the inverse Fourier transform of L' (this corresponds to the endpoint p = 2
of the Serrin class and to the solutions of Lei and Lin [Leill] in L2A). Then,
obviously, LA is included in /\/@5 but not in M§’5 for p > 2. Moreover, it is
easy to check that, for o¢(§) = [£|, By, is not bounded from L?A x L**L>
to L2A, and even from L?A X Vx7 to L?A nor to Vgt (see counter-examples
in Proposition 6 in the Appendix).

Another adapted space for which we don’t know whether we may apply
Proposition 3 is the space of singular multipliers ./\/l(Ht1 2, L},). This
space has been introduced by Lemarié-Rieusset [Lem16, Lem18] and inde-
pendently by Dao and Nguyen [Daol7]. Notice that, for 2 < p < 5, we have
the embeddings

M C MU o I2,) € NG
so that ./\/l(Htl 2 L},) may be viewed as an endpoint of the scale of
adapted spaces M§’5 with p > 2. Remark that L?A is not included in
M(Htlf’l — L7 ,) (see a counter-example in Proposition 7 in the Appendix).

Thus, we need to find a new adapted space if we want to consider the
Cauchy problem with an initial value in BMO™! and a forcing term divF
leading (in absence of initial value) to a solution in LA or in ./\/l(Ht1 21
L?x) This will be done in the next section by modifying the space Vg of
Koch and Tataru.

2 A variation on the Koch and Tataru theo-
rem

Recall that the Koch and Tataru space Vg is defined as

Yer={ued/ Stug) Vit|u(t, )| < +oo}.
>

10



It has been designed to grant that, for every o € &;, the bilinear operator
B, is a bounded bilinear operator from Yir X Vs to YVs. B, is also a bounded
bilinear operator from Vi1 X Ygr to Vir.

Let us remark that we may easily check that Ygr C /\/135 C Y. We are
going to describe new spaces Vg7, with 5 < ¢ < 400 so that

- 25
Yir C Yirqe C M,

and, for every o E &1, the bilinear operator B, is a bounded bilinear operator

from Vg, X ./\/l2 to Vi1, In particular, yKTq is an adapted space and, for

every adapted space ) such that Y C MQ , Y1+ Y is an adapted space.
Recall that

Qra={(t,y) /0 <t <T, |z —y| <VT}
and define
Rpw={(ty) / T/2 <t <T,|o —y| < VT}.
If u € Ygr, then 1o, u € LY, and [1g, ullzz, < |lully, T3/*. Moreover,
Lg,,u € LY and [[Lp, ull g, ||’U/||ZO\/» Thus, we have, for 5 < ¢ < +o0,

5 _1
Trrul 2y < Clltar,ullig, < C'lullye T2,

2

Definition 2.
The modified Koch and Tataru space Yir,4 for 5 < g < +00 is defined as the
space of functions u on (0,+00) x R* such that

sup 1~ 3/4||]1QTZUJHL2 < 400

T>0,z€R3
and
sup T2t | L, ul| 20, < 400
T>0,2€R3 Mz
where

Il 2a,= sup 7~ 2 (// |/ (s, ?/)‘ dey)
M, r>0,teR,z€R3 (t—r2,t+r2)x B(z,r)

We first remark that Vg, C M>5”: if we want to estimate the L}, norm
of u on (t —r? ¢+ r?) x B(z,r), we may assume that ¢t > r? (otherwise,
we control the norm of u on (t — 72t + r*) x B(x,r) by the norm of u on
(=r2,r?) x B(z,r)); if r> <t < 4r? we have (t—r? t+r?) x B(z,r) C Q2 4,
so we have a control of the L7, norm of u on (t — %t + r?) x B(z,r)

11



by ||ully,r*?; if t > 4r?) we have (t — r% ¢t + %) x B(z,r) C Rs, ., s0
we have a control of the L7, norm of w on (t — 7%t 4+ r?) x B(z,r) by
15
2 2q ,1_2

5(1_1 . 2 1_2
oG q)HﬂRgz,zuHM;%q’ hence in r3/2 (%) t2 2qH]lR%t,IuH 2 -

M
We may now state our main result:
Theorem 2. Letb < q < +o0o; then:
A) For every o € &y, the bilinear operator B, is a bounded bilinear operator

from Vgrg X M5° to Vi,
B) The following assertions are equivalent:

(i) eug € Vo;

(i) e®ug € Vir,g;

(ii) up € BMO™'.
C) Vi1, is an adapted Banach space. Thus, there exists a positive constant €
such that, if [|to|lgmo-1 + |L(F)|lygr, < €0, then the Navier-Stokes problem
(4) has a global mild solution @ € Vkr,,. .
D) More generally, if Y is an adapted space such that) C M3’5, there exists a
positive constant €, such that, if F = F14+Fy and ||| gyo-1 + (| LF) | vger, +
|IL(F2)|ly < €1, then the Navier—Stokes problem (4) has a global mild solution
U € Vrrg+ V.

Proof. We only need to prove point A), i.e. to estimate B, (u,v) in L} ,(Qr.)

.2 .
and in My “(Ry,) for u € YVgr, and v € M3°.

In order to estimate B, (u,v) in L7 ,(Qr), we follow the proof of Theorem
1 given by Koch and Tataru and we split w = B,(u,v) in three parts:

o wy = By(u, (1 —1g,,,,)v) : we saw that
ILor,willzzz < CT*|ully, [[v]y..
o wy(t,y) = o(D)V—=Ae™ [ 1o, uvds. We saw that
M, wallrere < [Jwallrzre < CT**|ully; [[0]ly.

o ws(t,y) = o(D) fot(e(tfs)A — e2)V=A(1g,,uv) ds. We are going to
prove below (Theorem 3 in next section) that, more generally,

t
1_5
H/O(e(t_s)A—etA)\/_A(uv)d5HL2L2SC sup T2 |[Lpyp ull 2, [|0]]z2re.

T>0,z€R3 2
Thus,

1Lgr, wsllzere < [lwslirere < Cllullyier, 1 Lguoravllzzre < CT**|ullyir, V]l

12



Hence, w € Y5.

.2
In order to estimate B,(u,v) in My ¥, we write w = wy + ws with
wy = By((1 —1s,,)u,v) and ws = By(1s,,u,v), where

Sre ={(t,y) / T/4 <t <T,|z—y| < VI10T}.

We easily check that 1 g, |w,| < C’\/LT [|uv]| ;1572 (see the proof of Proposition
’ 2
4) and thus

_1,5
“]lRTvIleHMQT?»‘I < C||IRT71w4’|Lqu < c'T 313,
2

ull wzslloll s

On the other hand, we have

K 1
us(t.2) < €y [ [ s (s (o) ot )] dy s

Thus, ws is controlled by the parabolic Riesz potential of |1g,. uvl|; as [1g, uv| €
2 5¢q 5¢q

. 2g .
M3 7F (since 1g, u € My and v € M3”°), we conclude by Hedberg's
inequality for Riesz potentals and Morrey spaces that ws is controlled in
2

. q
509,
My

51
H%HM%# < Cl\ﬂsT,quMjg,qHUHMgﬁ < O 2 Jullyep, 0] pzs O

Corollary 1.

a) There ezists a positive constant €y such that, if | = F1+Fy and ||| gyo-1+

I L(F) || yger, + ||‘C(F2)||M(H§QQ’1»—>L§I) < €, then the Navier—Stokes problem

(4) has a global mild solution @ € Y, + M(H;fl = L7 ,).
b) For 5 < p < 400, there exists a positive constant €, such that, if F =
]Fl + ]FQ + Fg and

[dollprvo-1 + 1LE) [yicr, + 1LF) | s + [[L(Fs) |24 < €,

then the Navier-Stokes problem (4) has a global mild solution @ € YVgr,, +
MBS+ [2A.
Proof. a) is direct consequence of Theorem 2, as M(Ht{f’l — L?x) is an
adapted Banach space contained in M3° [Lem16, Lem18, Daol7]. Similarly,
M?B? is an adapted Banach space contained in M3° [Lem16], L*A is an
adapted Banach space contained in M3 [Leill], and, and, for every o € &1,
the bilinear operator B, is a bounded bilinear operator from M§’5 x L?A to
427 by Proposition 4 since L*A C L*>® L™, O

13



3 Parabolic dyadic decomposition of the time-
space domain

We decompose (0, +00) x R? as

(0,400) xR = | ] {(t,2) /1<4t<4,22-ke[0,1)}= |] Ru

JEL,kEZ3 JEZ,kEZ3
and (0,16477) x R? as
(0,1647) xR? = | J{(t.2) /0 <4t < 16,22 —k € [0,1)*} = | Q-
kGZS k€Z3
If v € L2L?, then v can be decomposed in an orthogonal series
> Imw= ) vk
JEZ,KEZ3 JEZ,kEZ3

with

ollZere = > lojallZepe:

JEZ,kEZ3

Similarly, if v € Ygr,4, then
E ]le,ku = E Uj,k
JEZ,kEZ3 JEZ,kEZ3

with, for every 5/2 < p <,

(1-2)
sup 27V ujgll . 2,, < oo
ez ke || J ||M259p

Theorem 3.

Let v € L?L? and u € Yirq with 5 < q¢ < +oo. Write vjp = 1g, v,
= D wezs Uik, and ujp = 1g  u. Then

A)F0r5/2<,0§q and =1~ 5

o’
t
_ 1+
||/ ()% — ) V=AT" (wvy) ds|| 22 < Cllosla sup fujull . 2,
0 kez3 M,
B) We have
t
15
||/(e(t_s)A—etA)\/—A(uv)ds||L2L2 < Clvllzerz sup T2 2a[[1g, ull . 2.,
0 T>0,z€R3 M

14



Proof.

Proof of A).
We first consider 4/t < 16 and estimate W = fg(e(t*sm—em)m uvj) ds
in L2((0,164779), L?), then estimate W* = [°* 7 (116477 =98 164794 /TR (y0;) ds
in L*(R?) and finally we estimate W = fot(e(t_s)A — etA)ml+a(uvj) ds in
L2((1647, +00), L?).

When t < 16477, we write

t s 14+« .
W= 1o, / (793 = et) TR (S ) ds

€73 keZ3

14+«
(

which we reorganize as

t

1+o .
w=> >, 1Qj,k+m/0 (=92 — )/ AT (uj v f) ds = > Wi

meZ3 keZ3 mez3
We have
||VV||L2((o,164ﬂ'),L2 < Z HWmHL2((0,164*J')7L2

meZ3
t " 1/2
= Z (Z |’]]'Qj,k+m/0 (e(t_s)A _em)\/ —A (ujpvng) d5||%2((0,1649'),L2)
meZ3 \keZ3

We have

t
s 14+
|/ (798 — VWA (ujpv0) ds| < CZ () 105)-
0

where

¢ 1
Za(w):/o /(m_i_|x_y|)4+a|w(s,y)|dyds.

Z, is a parabolic Riesz potential and we have the following equivalent of the
Fefferman-Phong inequality [Fef83] for the parabolic Riesz potentials and the
parabolic Morrey spaces [Lem16]: if 0 < 8 < g and 2 < p < 3, then

t
1
s, s,y)| dyds <C 5.
H/O /( ’—t—s+]$—y])5*5‘f( D)a(s )l dydslzezs < Cpsllflazszllgl 5
As4+a:5—%,weget

1Zausrvimllcz, < Cllugil . 2o0llvinllzoce.
2

15



Thus,

[Winl|z222 < C;?élz% ||uj,k||Mg,,,p||vj||Lsz.
2

Moreover, if |m| > 20 and |mo| = 10, we have, for 0 < s < t < 16477,
YEQjk, T € Qjrym and z € Qi rqmy,
(4+a)j
1 < 1 SCQ < 1
(Vs + i o= yfre =i = O a5 + 2 -
so that, for 0 < ¢t < 16477,
C

< W]IQj,k+m0 (l’ - (

m —mo)2 ) Za(uj pvix) (t,  — (m — mg)277))

and

1
HWmHL2((0,164*j),L2) < Cm4+°‘ :SZI; Huj,kHM%p,pHUjHLQLZ-

2

Thus, we have proved that

IWlz2(0,164-9),02) < C sup [Juzil| . 2,,[|villr2e.
kez3 M3

We now estimate W* = 01647J (16477 =9)A _ 164778y /A" () ds. First,

as v; is supported in 477 <t <4477 we write
4477 i B N
W :/ (6(164 I—s)A 6164 JA)M (uvj) ds
44~3 s . 21a
/ / (U4 =sH02) /AT () dB ds
4 0

so that

443 1
Wie)l <C s,y)v;(s,y)| dy df ds
| ) /4 //\/me_y;)mH Y)vi(s,y)l dy
/ / 2= ]+‘:L‘—y‘)5+a| (S,Q)Uj(s,y)|dyd8.

If 12477 <7 <1647/, we have

4477
/4 / 2-7 + |I’ y|)5+a|u(8’y>vj(87y>|dyds

<[ [r=im=

16

lu(s, y)vi(s,y)|dyds = CQ’jZa(T, ).



Thus,

W ()] < €277

1647 C
44j/1 [ Za(7, M2dr < 5”ZaHL2((124*J',164*J'),L2)-

247
This gives
W2 < Csup [lujll . 2,05l 222
kez3 M3

Finally, we estimate W = [;(e(=92—¢/2)y —A1+a(uvj) dsin L*((16477, +00), L?).
For t > 16477, we have

164—7 )
W = / (elt=9)A etA)\/IHa(uvj) ds = v/ —Aelt 104 DA
0
and thus

1
Wl L2((164-3 400),22) < EIIW*IIQ < C:SZ% IIUj,kIIMQgp,AIvaIwm-

Proof of B).
Let U = f;(e(t*s)A — )W =Aw)ds, U =Y., U; with

t
U, = / (eW=928 — 2/~ A(uv;) ds.
0
Let v =1— g and % = % — %. Then 1 — % = —. From point A), we know
that

: 1.5
1Ujll 2 < Cllvgllz sup lupll 200 < C277vglle sup  T272[1p, ull . 2,,-
kez3 Ms T>0,2€R3 M

and

4 1_5
1Uill 25— < Cllvjllz sup [[ujill . 2,, < C277vjlla sup T2 2|1,
kez3 M

T>0,2€R3 ’quMQ%q’q'

We then have

/O+OO/|U(t,x)|2dxdt22%/0+00/|Uj(t,x)|2dxdt
2>, ) '/O—i_oo((_A)_’ij(t")’(_A)VUk(t,.»dt

JEL kEL k<]
1.5 (i
<C( sup T2 QJqII]lRT,IU|Ing,q)2(Z||vj||%2m+2Z > 279y pe e |owllc2r2)
T>0,x€R3 2 jEZL JEL kel k<j
1_5
<C'( sup T2 2| Lpg ull - 2,0)* 0]1Z2 0
T>0,z€R3 M,
The theorem is proved. 0
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Appendix: counter-examples.

Proposition 5.
Let 0o(§) = [£|. Then oy € &1 and By, is not bounded on Y. It is not
bounded as well from M3° x M3° to V.

Proof. Due to the invariance of the norms of Y, a:nd M3”° through transla-
tions and dilations, the operator B,, would be bounded from MP® x M3P
to Y,. if and only if there would exist a constant Cjy such that, for every

2,5
u,v € M5”,

1
[ Batw )R < Gl el e
0 -1,1

We then take u,(t,z) = v,(t,2) = ¥, (z1,72) with 1, € L*(R?). We have,
for T > 0,, to > 0 and 2y € R?,

to+T
/ / (8, 2)? dt d < 2|85 3T,
to B(xo,ﬁ

Thus, u, € M3”.
Moreover, for w,(z) = u,(t,x)? and ¢, = 1?2, we have the Fourier trans-
forms

F(e P ay(D)w,) = eI [](6,(61, &) ® 8(65))

hence
f(e(t_S)AUO(D)wn) _ <6—(t—s)|(§1,§2)\2|(§17 52)|Q§n(§1= 52)> ® 5(53).

Hence, writing A, for the laplacian operator on R?, we get

By (tn, ) = / -8 /" 7o ds = (Id =) —2—g,.
0

\/__AQ

From o € L'(R?) + L*(R?), we find

yy)l

1 1
tAo < -
|6 \/_—A2¢n| = CHganl(l + t)

and thus
/ / o2 Sl e < 36C2] 0
1/2 J[-1,13 V=2,

18



In particular,

¢n|? dt dz < 8(8Cy + 36C7)||¢nl[3-

1
/1/2 /[_1,1]3 | VETAY

Thus, if ¢,, is an approximation of the Dirac mass with ||¢,|; = 1, we find

that the function \/%gbn is bounded in L%((—1,1)?); but it converges in
D'((—1,1)%) to \\ﬁl which is not square-integrable on (—1,1)% Thus, B,, is
not bounded from M3° x M3° to Vs. O

Proposition 6.
Let 0o(§) = [£|. Then oo € &1 and By, is not bounded from Vi1 X L*A to
L?A nor to Yir .

Proof. Let u(t,x) = L2 (t); and v(t,x) = L(o2)(t)o(x1)1(re, x3) Where
the Fourier transforms of ¢ and v are integrable (over R and over R? re-
spectively) and the support of the Fourier transform of 1 is contained in the
corona 1 < &2 + £2 < 4. Then u € Ygr and v € L2A.

For ¢t € (0,2), we have
1 — e_t|§|2

F(Boy(u,v)) = 27 / e =P || H () (61 (2, &) ds = 27

where H is the Hilbert transform. For 1 < ¢t < 2, we have
/\]—“ oo (U, 0)) dE] > (1 — ¢! / |H ())(&1) ]d&/ 96 )] dé, dés
62753
and thus .
| HG ] dés < ClBay (a0
-1

whereas .
[ullygrlvllzea < Cll]-

Assuming that B,, is bounded from YVx7 x L?A to L*A, we obtain that, for
¢ € L'(R),

/ H@))]dér < ol

Applying this to ¢r = ¢(%), we have

R R 1 P P .
[ @l de = [ 1G] de < Clorly = €l

—-R
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Letting R go to +oo, we find that the Hilbert transform is bounded on L!,
which is false. Thus, B,, cannot be bounded from YVx7 x L*A to L2A.

Now, consider a function ¢ whose Fourier transform ¢ € D(R?) is non-
negative, supported in B(0,1) and with ||q£||1 = 1. Similarly, consider a
function v whose Fourier transform é € D(R?) is non-negative, supported in
B(0,4)\ B(0,2) and with |[¢|; = 1. Writing, for a function f on R? and for
€ >0, f(z) = f(%), we define

1
u(t,z) = Lo (t)o 1=(x) and v(t, z) = L1 () VT i@ 2t)|3/4¢m(:1:).

Let us assume that B,, is bounded from Vg X L?A to Vir. As u € Vir
and v € L?A, we should have sup,., v/?|| By, (1, v)(t,.)]|cc < +00, where
the supremum bound holds for every t > 0 by weak-* continuity of ¢ >
0 — By, (u,v)(t,.) € L*. In particular, By, (u,v)(1,.) € L. The Fourier
transform By, (u,v)(1,.) is non-negative, as

1
) 1
_ [ sk n
F(Ba0)(1,) = [ e 0| Pt s
and thus

”Bcro(u?U)( HOO = By, u U ))(5) d§.

The support of F(¢ sv, 1)) is contained in {{ / \/11Ts < €] < 15—3}
and thus, for a constant v > 0,

/f 00 u U d€ > 7/ / PR “1’1 )|3/4‘F(¢\/lfsw\/§>(§) deé
and thus

ds = +o0.

[ e
(t —s)|In(2 — 2s)[3/4

Thus, By, cannot be bounded from Ygr x L2A to Vi O

/f o, 0) (1, ) () dE > Al 11

Proposition 7.
The space L*A is not included in M(H, 1/2 f e L7,).

Proof. 1f L*A C M(H, 1/2 e L},), then the embedding would be continu-
ous (by Baire’s theorem since convergence of a sequence in L?A implies con-

71/2,1
vergence almost everywhere of a subsequence and since M(H, é = L7,)
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has the Fatou property that an almost everywhere conver mg sequence of
bounded functions in M (H, 1/ 21 L2,) remains in M(H,2 — L2,) with
the same bound).

Since the operator T' defined by

t 1
T(u,v)(t,x):/o /(m_'_|x_y|)4u(s,y)v(s,y)dsdy

is bounded on M (H, 1/21|—>L2)andsmce/\/l( 1/21|—>L2)C/\/l ,

t.x
would have the inequality

1
/ / |T(u,u)(t,x)|dtd:ﬁSCHUH%QA.
0o JB(,1)

|| . .
Let ugr(t,z) = w(t)e” ® . By monotonous convergence, we have pointwise

convergence of T'(ug,ur)(t,z) to

/Ot/ (\/mj |z — y|)4w2(s),dsdy - O/Ot m“’Q(S) ds.

Thus, we would have

1 ¢ 2
1 2 ) 4
w(s)ds | dt < Cllwll5.
/( —(s) el

For w,(t) = - 9(’”) with § € D and ||9||2 = 1, we have pointwise convergence

(when € — 0) of fo \/75 w?(s) ds to \[, Fatou’s lemma would give fo & <C,

which is false [l
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