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Forces for the Navier–Stokes equations and the
Koch and Tataru theorem.

Pierre Gilles Lemarié-Rieusset∗

Abstract

We consider the Cauchy problem for the incompressible Navier–
Stokes equations on the whole space R3, with initial value ~u0 ∈ BMO−1

(as in Koch and Tataru’s theorem) and with force ~f = divF where
smallness of F ensures existence of a mild solution in absence of initial
value. We study the interaction of the two solutions and discuss the
existence of global solution for the complete problem (i.e. in presence
of initial value and forcing term) under smallness assumptions. In par-
ticular, we discuss the interaction between Koch and Tataru solutions
and Lei-Lin’s solutions (in L2F−1L1) or solutions in the multiplier

space M(Ḣ
1/2,1
t,x 7→ L2

t,x).

Keywords : Navier–Stokes equations, critical spaces, parabolic Sobolev
spaces, parabolic Morrey spaces, mild solutions.

AMS classification : 35K55, 35Q30, 76D05.
In this paper, we consider global mild solutions of the Cauchy problem for

the incompressible Navier–Stokes equations on the whole space R3. When
looking for assumptions that respect the symmetries of the Navier–Stokes
equations (with respect to spatial translation or to dilations), one is lead to
consider the initial data to be in BMO−1 (this is the famous Koch and Tataru
theorem [Koc01]) but there is no natural choice for the forcing term. We are
going to consider forces that are known to lead to global mild solutions (if
they are small enough) in the absence of initial value, but the interaction
between those forces and an initial value in BMO−1 or between forces in
different functional spaces has not been discussed in the literature.
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1 Navier–Stokes equations with a forcing term

and the Koch and Tataru theorem

Let us give a short description of mild solutions in critical spaces for the
Navier–Stokes equations. We shall look for minimal regularity assumptions
for thhe solution ~u. It is therefore better to write the non-linear term ~u · ~∇~u
in the Navier–Stokes equations as div(~u⊗ ~u) (the two vector fields are equal
when ~u is a regular divergence free vector field). The Navier–Stokes equations
we study are then 

∂t~u = ∆~u− ~∇p+ div(F− ~u⊗ ~u)

div ~u = 0

~u(0, .) = ~u0

(1)

Taking the divergence of the first equation, we get

∆p = (~∇⊗ ~∇) · (F− ~u⊗ ~u)

and thus
∆~∇p = ~∇

(
(~∇⊗ ~∇) · (F− ~u⊗ ~u)

)
. (2)

Assuming that ~∇p is equal to 0 at infinity, equation (2) defines p as a func-
tion of F and ~u. More precisely, if F − ~u ⊗ ~u is assumed to belong to
L1

loc((0,+∞), L1( dx
1+|x|4 )), then [Fer21] shows that the solution ~∇p of equation

(2) which is equal to 0 at infinity is given by the formula

~∇p =
1

∆
~∇
(

(~∇⊗ ~∇) · (F− ~u⊗ ~u)
)

where, writing

G(x) =
1

4π|x|
for the fundamental solution of −∆

(−∆G = δ so that, for f ∈ D(R3, f = G ∗ (−∆f))

and choosing a function ψ ∈ D(R3 which is equal to 1 on a neighbourhood
of 0, 1

∆
∂i∂j∂k is defined as

1

∆
∂i∂j∂kf = −∂i∂j∂k ((ψG) ∗ f)− (∂i∂j∂k((1− ψ)G)) ∗ f.

Thus, we have an equation with one unknown ~u and two data ~u0 and F.
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Defining (formally) the Leray projection operator P as

P = Id− 1

∆
~∇ div,

the Navier–Stokes equations then become{
∂t~u = ∆~u+ P div(F− ~u⊗ ~u)

~u(0, .) = ~u0, div ~u0 = 0
(3)

This is viewed as a non-linear heat equation and is transformed into the
Duhamel formula

~u = et∆~u0 +

∫ t

0

e(t−s)∆P div(F− ~u⊗ ~u) ds (4)

where et∆ is the convolution operator with the heat kernel: et∆f = Wt ∗ f
with

Wt =
1

(4πt)3/2
e−

x2

4t .

We rewrite (4) as

~u = et∆~u0 + L(F)−B(~u,~v) (5)

where

L(F) =

∫ t

0

e(t−s)∆P divF ds

and

B(~u,~v) =

∫ t

0

e(t−s)∆P div(~u⊗ ~v) ds.

[Remark that we defined P divF for regular enough tensors F, i.e. F ∈
L1

loc((0,+∞), L1( dx
1+|x|4 )), but we may also consider more singular data F, as

long as we are able to give a sense to L(F).]
To have lighter computations and notations, it is better to forget the

vectorial setting of the problem and to look at the bilinear operator B as
a family of scalar operators acting on scalar functions: if ~w = B(~u,~v) then
wi =

∑
1≤j,k≤3Bi,j,k(uj, vk) with

Bi,j,k(u, v) =

∫ t

0

et−s)∆(δi,k∂j −
1

∆
∂i∂j∂k)(uv) ds.
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More generally, we define S1 as the space of smooth functions σ on R3 which
are positively homogeneous of degree 1 (σ(λξ) = λσ(ξ) for λ > 0). To
σ ∈ S1, we associate the Fourier multiplier σ(D) and the operator

Bσ(u, v) =

∫ t

0

et−s)∆σ(D)(uv) ds.

The formalism of global mild solutions of the Cauchy problem for the
Navier–Stokes equations is then described by the following definition and
proposition:

Definition 1.
An adapted Banach space is a Banach space Y of locally integrable functions
on (0,+∞) × R3 such that, for every σ ∈ S1, the bilinear operator Bσ is
bounded on Y:

‖Bσ(u, v))‖Y ≤ Cσ‖u‖Y‖v‖Y .

For vector fields ~u with coordinates in Y , we shall write ~u ∈ Y instead of
~u ∈ Y3. The following theorem is then easy to check (through the Banach
contraction principle):

Proposition 1.
Let Y be an adapted Banach space. If ~u0 is a (divergence free) vector fields
of tempered distribution on R3 such et∆~u0 ∈ Y, L(F) ∈ Y and if ~u0 and F
are small enough:

4C0(‖et∆~u0‖Y + ‖L(F)‖Y) < 1,

where C0 is the norm of the bilinear operator B on Y3, then the Navier–Stokes
problem (4) has a global solution ~u with

‖~u‖Y ≤ 2(‖et∆~u0‖Y + ‖L(F)‖Y).

Navier–Stokes equations have symmetries. In particular, we have the two
following properties: if ~u is a solution of the Navier–Stokes problem (4) with
data ~u0 and F, then

• [space translation] ~u(t, x−x0) is a solution of the Navier–Stokes problem
(4) with data ~u0(x− x0) and F(t, x− x0),

• [space dilation] if λ > 0, λ~u(λ2t, λx) is a solution of the Navier–Stokes
problem (4) with data λ~u0(λx) and λ2F(λ2t, λx).
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In particular, we shall look for critical spaces Y , meaning that we have
invariance of the norms under space translations and space dilations: for
every x0 ∈ R3 and λ > 0

‖u(t, x− x0)‖Y = ‖u‖Y , ‖λu(λ2t, λx)‖Y = ‖u‖Y .

Finally, in order to give sense to the formula

~u(t, .) = ~u0 + ∆

∫ t

0

~u(s, .) ds+ P div(

∫ t

0

F− ~u⊗ ~u ds),

we require the continuous embedding Y ⊂
⋂
T>0

L2((0, T ), L2(
dx

1 + |x|4
)) [Due

to the invariance through space translations or space dilations, it is equivalent
to ask that u 7→ 1(0,1)×B(0,1)u is bounded from Y to L2((0, 1)×B(0, 1)).]

In particular, we have

Y ⊂ Y2 = {u / sup
t>0,x0∈R3

t−3/4‖u‖L2((0,t)×B(x0,
√
t)) < +∞}.

Thus, Y2 is maximal in the class of Banach spaces Y that satisfy the condi-
tions ‖u(t, x− x0)‖Y = ‖u‖Y , ‖λu(λ2t, λx)‖Y = ‖u‖Y and

sup
‖u‖Y≤1

∫ 1

0

∫
B(0,1)

|u(s, y)|2 ds dy < +∞.

Koch and Tataru [Koc01] identified the space X such that u0 ∈ X implies
S(u0) ∈ Y2:

Proposition 2.
For a tempered distribution u0, the following assertions are equivalent:

(i) et∆u0 ∈ Y2;

(ii) u0 ∈ BMO−1 = Ḟ−1
2,∞ (i.e., there exists ~v0 in BMO3 such that u0 =

div~v0).

However, Y2 is not an adapted Banach space (see a counter-example in
Proposition 5 in the Appendix). The Koch and Tataru theorem deals with
a subspace of Y2. We define the space

Z0 = {u ∈ L1
loc((0,+∞)× R3 / sup

t>0

√
t‖u(t, .)‖∞ < +∞}.

The Koch and Tataru space YKT is then defined as:

YKT = Y2 ∩ Z0.
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YKT is normed with ‖u‖YKT = ‖u‖Y2 + supt>0

√
t‖u(t, .)‖∞, where

‖u‖Y2 = sup
t>0,x0∈R3

t−
3
4‖u‖L2((0,t)×B(x0,

√
t)).

Koch and Tataru’s theorem is then the following one [Koc01, Lem02]:

Theorem 1.
A) For every σ ∈ S1, the bilinear operator Bσ is a bounded bilinear operator
from YKT ×Y2 to Y2. It is also a bounded bilinear operator from YKT ×YKT
to YKT .
B) The following assertions are equivalent:

(i) et∆u0 ∈ YKT ;

(ii) u0 ∈ BMO−1;

C) YKT is an adapted Banach space. Thus, there exists a positive constant ε0
such that, if ‖et∆~u0‖YKT + ‖L(F)‖YKT < ε0, then the Navier–Stokes problem
(4) has a global mild solution ~u ∈ YKT .

Proof. We sketch the proof given by Koch and Tataru in [Koc01], and try to
highlight the obstructing term for proving the boundedness of Bσ on Y2. A
simple but key estimate is the following control:

|e(t−s)∆σ(D)(u(s, .)v(s, .))| ≤ Cσ

∫
1

(
√
t− s+ |x− y|)4

|u(s, y)| |v(s, y)| dy.

We need to estimate, for every T > 0 and x ∈ R3, ‖1QT,xBσ(u, v)‖L2L2 where

QT,x = {(t, y) / 0 < t < T, |x− y| ≤
√
T}.

Koch and Tataru split w = Bσ(u, v) in three parts:

• w1 = Bσ(u, (1−1Q10T,x
)v) : we easily check that 1QT,x |w1| ≤ C 1√

T
‖u‖Y2‖v‖Y2

and thus
‖1QT,xw1‖L2L2 ≤ CT 3/4‖u‖Y2‖v‖Y2 .

• w2(t, y) = σ(D)et∆
∫ t

0
1Q10T,x

uv ds. The main lemma in Koch and

Tataru’s proof states that the operatorQ(u, v) =
√
−∆et∆

∫ t
0
1Q10T,x

uv ds

maps Y2 × Y2 to L2L2 with a norm of order T 3/4 and thus

‖1QT,xw2‖L2L2 ≤ ‖w2‖L2L2 ≤ CT 3/4‖u‖Y2‖v‖Y2 .
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• w3(t, y) = σ(D)
∫ t

0
(e(t−s)∆ − et∆)

√
−∆(1Q10T,x

uv) ds. They rewrite w3

as

w3 =
σ(D)√
−∆

∫ t

0

e(t−s)∆∆
es∆ − Id√
−∆

(1Q10T,x
uv) ds

and use the maximal regularity of the heat kernel in L2L2 to write

‖w3‖L2L2 ≤ C‖e
t∆ − Id√
−∆

(1Q10T,x
uv)‖L2L2 ≤ C ′‖

√
t1Q10T,x

uv‖L2L2 .

Thus,

‖1QT,xw3‖L2L2 ≤ ‖w3‖L2L2 ≤ C‖
√
tu‖∞‖1Q10T,x

v‖L2L2 ≤ CT 3/4‖u‖YKT ‖v‖Y2 .

Thus, the obstruction for the boundedness of Bσ on Y2 lies in w3.
To finish the proof, we need to establish the control of Bσ in L∞ norm.

Writing

|Bσ(u, v)(t, x)| ≤ Cσ

∫ t

0

∫
1

(
√
t− s+ |x− y|)4

|u(s, y)| |v(s, y)| dy ds,

we check that∫ t/2

0

∫
1

(
√
t− s+ |x− y|)4

|u(s, y)| |v(s, y)| dy ds ≤ C
1√
t
‖u‖Y2‖v‖Y2

and∫ t

t/2

∫
|u(s, y)| |v(s, y)|

(
√
t− s+ |x− y|)4

dy ds ≤ C√
t

sup
s>0

√
s‖u(s, .)‖∞ sup

s>0

√
s‖v(s, .)‖∞.

The proof in Theorem 1 is assumed to satisfy L(F) ∈ YKT , but one may
consider another forcing term; We have the obvious result:

Proposition 3.
Let Y be an adapted Banach space such that, for every σ ∈ S1, the bilinear
operator Bσ is a bounded bilinear operator from Y × L2,∞L∞ to Y. Then,
there exists a positive constant ε0 such that, if ‖~u0‖BMO−1 + ‖L(F)‖Y < ε0,
then the Navier–Stokes problem (4) has a global mild solution ~u ∈ YKT + Y.

Let us notice that many adapted spaces studied in the literature satisfy
the assumption of Proposition 3. Here are some examples:

a) the Serrin class Y = Lp((0,+∞), Lq(R3)) with 2 < p < +∞ and
2
p

+ 3
q

= 1 [this corresponds to the solutions of Fabes, Jones and Rivière

[Fab72]);
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b) direct generalizations of the Serrin class such that Y = Lp,ρ((0,+∞),
Y = Lq,σ(R3)) or Y = Lp,s((0,+∞), Ṁ r,q(R3)) with 2 < p < +∞,
2
p

+ 3
q

= 1, 1 ≤ ρ, σ ≤ +∞ and 1 < r ≤ q;

c) the time-weighted Serrin class:

Y = {u / tαu ∈ Lp,ρ((0,+∞), Lq,σ(R3))}

with 3 < q < +∞, 2 < p ≤ +∞, 0 ≤ α, 1 ≤ ρ, σ ≤ +∞ and 2α + 2
p

+
3
q

= 1 [if p = +∞, Lp,ρ is to be replaced with L∞] (this corresponds to

the solutions considered by Cannone and Planchon [Can99] or Kozono
and Yamazaki [Koz94] and more recently by Farwig, Giga and Shu
[Far16] and Kozono and Shimizu [Koz18]);

d) the case Y = L∞((0,+∞), L3,∞(R3)), which is the endpoint of the
Serrin class LpLq with p = +∞ and corresponds to the solutions of
Kozono [Koz96] and Meyer [Mey99];

e) the case of the Lorentz space L5,ρ
t,x = L5,ρ((0,+∞)× R3) with 1 ≤ ρ ≤

+∞ seems to be new but is easy: to check that L5,ρ
t,x is an adapted

Banach space, just notice that 1

(
√
|t|+|x|)4

∈ L5/4,∞
t,x and use convolution

inequalities in Lorentz spaces; to check that Bσ is bounded from L5,ρ
t,x ×

L2,∞L∞ to L5,ρ
t,x , just notice that it is bounded from LptL

p
x×L2,∞L∞ to

LptL
p
x for 2 < p < +∞ and conclude by interpolation.

All those examples are embedded into larger classes of adapted spaces,
namely the parabolic Morrey spaces Ṁp,5

2 where 2 < p ≤ 5:

sup
r>0,t∈R,x∈R3

1

r
5
p
−1

(∫∫
(t−r2,t+r2)×B(x,r),s>0

|u(s, y)|p dy ds
)1/p

< +∞.

We have LpLq ⊂ Ṁmin(p,q),5
2 [case a)], Lp,s((0,+∞), Ṁ r,q(R3)) ⊂ Ṁσ,5

2 with
2 < σ < min(p, r) [case b)], tαu ∈ Lp,ρ((0,+∞), Lq,σ(R3)) =⇒ u ∈ Ṁδ,5

2

with 2 < δ < min 1
1+2αp

p, q) [case c)], L∞L3,∞ ⊂ Ṁr,5
2 for 2 < r < 3 [case

d)], L5,ρ
t,x ⊂ Ṁ

r,5
2 for 2 < r < 5 [case e)]. We have the easy result on parabolic

Morrey spaces:

Proposition 4.
For 2 < p ≤ 5, the parabolic Morrey spaces Ṁp,5

2 is an adapted Banach space
and, for every σ ∈ S1, the bilinear operator Bσ is a bounded bilinear operator
from Ṁp,5

2 ×L2,∞L∞ to Ṁp,5
2 . Thus, there exists a positive constant ε0 such

that, if ‖~u0‖BMO−1 + ‖L(F)‖Ṁp,5
2

< ε0, then the Navier–Stokes problem (4)

has a global mild solution ~u ∈ YKT + Ṁp,5
2 .
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Proof. The fact that Ṁp,5
2 is an adapted Banach space is proved in [Lem16,

Lem18]. One writes that, for σ ∈ S1,

|Bσ(u, v))| ≤ Cσ

∫ t

0

∫
1

(
√
t− s+ |x− y|)4

|u(s, y)| |v(s, y)| dy ds.

Thus, Bσ(u, v) is controlled by the parabolic Riesz potential of |uv|; as |uv| ∈
Ṁp/2,5/2

2 if u and v belong to Ṁp,5
2 , we conclude by Hedberg’s inequality for

Riesz potentals and Morrey spaces that Bσ(u, v) is controlled in Ṁp,5
2 .

Now, let us consider u ∈ Ṁp,5
2 and v ∈ L2,∞L∞. Since p > 2, we have

v ∈ Ṁ
p
p−1

,5

2 , hence uv ∈ Ṁ1,5/2
2 . For r > 0, t ∈ R and x ∈ R3, we want to

estimate the LpLp norm of Bσ(u, v) on Qr(t, x) = (t−r2, t+r2)×B(x, r). Let
ρ(t−s, x−y) =

√
t− s+|x−y| be the parabolic distance. Let (s, y) ∈ Qr(t, x)

and (σ, z) be such that 8 2kr ≤ ρ(t− σ, x− z) ≤ 16 2kr with k ∈ N; then

1

(
√
σ − s+ |z − y|)4

≤ C
1

(2kr)4

and thus∫∫
8 2kr≤ρ(t−σ,x−z)≤16 2kr

1

(
√
σ − s+ |z − y|)4

|u(σ, z)v(σ, z)| dσ dz

≤C 1

(2kr)4

∫∫
Q

16 2kr
(t,x)

|u(σ, z)v(σ, z)| dσ dz

≤C ′ 1

2kr
‖uv‖Ṁ1,5/2

2

so that∫∫
Qr(t,x)

∣∣∣∣∫∫
8r≤ρ(t−σ,x−z))

1

(
√
σ − s+ |z − y|)4

|u(σ, z)v(σ, z)| dσ dz
∣∣∣∣p ds dy

≤C
∫∫

Qr(t,x)

∣∣∣∣∣
+∞∑
k=0

1

2kr
‖uv‖Ṁ1,5/2

2

∣∣∣∣∣
p

ds dy

≤C ′r5−p‖u‖p
Ṁp,5

2

‖v‖pL2,∞L∞ .

On the other hand, we have

1Q8r(t,x)u ∈ LpLp

so that

w(s, y) =

∫∫
ρ(t−σ,x−z)<8r

1

(
√
σ − s+ |z − y|)4

|u(σ, z)v(σ, z)|
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satisfies

‖w‖Lp(dy) ≤ C

∫
1√
|s− σ|

‖1Q8r(t,x)u(s, z)‖Lp(dz)‖v(s, z)‖L∞(dz) ds

and

‖w‖LpLp ≤ C ′‖1Q8r(t,x)u‖LpLp‖v‖L2,∞L∞ ≤ C ′′r1− p
5‖u‖Ṁp,5

2
‖v‖L2,∞L∞ .

Thus, Bσ(u, v) belongs to Ṁp,5
2 .

However, for some adapted spaces Y , assumptions in Proposition 3 are
not satisfied and we cannot use Proposition 4 as they are not included in Ṁp,5

2

for any p > 2. For instance, let us consider Y = L2((0,+∞),A(R3)) where A
is the inverse Fourier transform of L1 (this corresponds to the endpoint p = 2
of the Serrin class and to the solutions of Lei and Lin [Lei11] in L2A). Then,
obviously, L2A is included in Ṁ2,5

2 but not in Ṁp,5
2 for p > 2. Moreover, it is

easy to check that, for σ0(ξ) = |ξ|, Bσ0 is not bounded from L2A× L2,∞L∞

to L2A, and even from L2A×YKT to L2A nor to YKT (see counter-examples
in Proposition 6 in the Appendix).

Another adapted space for which we don’t know whether we may apply
Proposition 3 is the space of singular multipliers M(Ḣ

1/2,1
t,x 7→ L2

t,x). This
space has been introduced by Lemarié-Rieusset [Lem16, Lem18] and inde-
pendently by Dao and Nguyen [Dao17]. Notice that, for 2 < p ≤ 5, we have
the embeddings

Ṁp,5
2 ⊂M(Ḣ

1/2,1
t,x 7→ L2

t,x) ⊂ Ṁ
2,5
2

so that M(Ḣ
1/2,1
t,x 7→ L2

t,x) may be viewed as an endpoint of the scale of

adapted spaces Ṁp,5
2 with p > 2. Remark that L2A is not included in

M(Ḣ
1/2,1
t,x 7→ L2

t,x) (see a counter-example in Proposition 7 in the Appendix).
Thus, we need to find a new adapted space if we want to consider the

Cauchy problem with an initial value in BMO−1 and a forcing term divF
leading (in absence of initial value) to a solution in L2A or in M(Ḣ

1/2,1
t,x 7→

L2
t,x). This will be done in the next section by modifying the space YKT of

Koch and Tataru.

2 A variation on the Koch and Tataru theo-

rem

Recall that the Koch and Tataru space YKT is defined as

YKT = {u ∈ Y2 / sup
t>0

√
t‖u(t, .)‖∞ < +∞}.
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It has been designed to grant that, for every σ ∈ S1, the bilinear operator
Bσ is a bounded bilinear operator from YKT ×Y2 to Y2. Bσ is also a bounded
bilinear operator from YKT × YKT to YKT .

Let us remark that we may easily check that YKT ⊂ Ṁ2,5
2 ⊂ Y2. We are

going to describe new spaces YKT,q with 5 < q < +∞ so that

YKT ⊂ YKT,q ⊂ Ṁ2,5
2

and, for every σ ∈ S1, the bilinear operator Bσ is a bounded bilinear operator
from YKT,q×Ṁ2,5

2 to YKT,q. In particular, YKT,q is an adapted space and, for
every adapted space Y such that Y ⊂ Ṁ2,5

2 , YKT,q + Y is an adapted space.
Recall that

QT,x = {(t, y) / 0 < t < T, |x− y| ≤
√
T}

and define
RT,x = {(t, y) / T/2 < t < T, |x− y| ≤

√
T}.

If u ∈ YKT , then 1QT,xu ∈ L2
t,x and ‖1QT,xu‖L2

t,x
≤ ‖u‖Y2T 3/4. Moreover,

1RT,xu ∈ L∞t,x and ‖1RT,xu‖L∞t,x ≤ ‖u‖Z0

√
2√
T

. Thus, we have, for 5 ≤ q ≤ +∞,

‖1RT,xu‖Ṁ
2q
5 ,q

2

≤ C‖1RT,xu‖Lqt,x ≤ C ′‖u‖YKTT
5
2q
− 1

2 .

Definition 2.
The modified Koch and Tataru space YKT,q for 5 < q < +∞ is defined as the
space of functions u on (0,+∞)× R3 such that

sup
T>0,x∈R3

T−3/4‖1QT,xu‖L2
t,x
< +∞

and
sup

T>0,x∈R3

T−
5
2q

+ 1
2‖1RT,xu‖Ṁ

2q
5 ,q

2

< +∞

where

‖f‖
Ṁ

2q
5 ,q

2

= sup
r>0,t∈R,x∈R3

r−
15
2q

(∫∫
(t−r2,t+r2)×B(x,r)

|f(s, y)|
2q
5 ds dy

) 5
2q

.

We first remark that YKT,q ⊂ Ṁ2,5
2 : if we want to estimate the L2

t,x norm
of u on (t − r2, t + r2) × B(x, r), we may assume that t ≥ r2 (otherwise,
we control the norm of u on (t − r2, t + r2) × B(x, r) by the norm of u on
(−r2, r2)×B(x, r)); if r2 ≤ t ≤ 4r2, we have (t−r2, t+r2)×B(x, r) ⊂ Q5r2,x,
so we have a control of the L2

t,x norm of u on (t − r2, t + r2) × B(x, r)

11



by ‖u‖Y2r3/2; if t > 4r2, we have (t − r2, t + r2) × B(x, r) ⊂ R 3
2
t,x, so

we have a control of the L2
t,x norm of u on (t − r2, t + r2) × B(x, r) by

r5( 1
2
− 1
q

)‖1R 3
2 t,x
u‖
Ṁ

2q
5 ,q

2

, hence in r3/2
(
r2

t

) 1
2
− 5

2q
t
1
2
− 5

2q ‖1R 3
2 t,x
u‖
Ṁ

2q
5 ,q

2

.

We may now state our main result:

Theorem 2. Let 5 < q < +∞; then:
A) For every σ ∈ S1, the bilinear operator Bσ is a bounded bilinear operator
from YKT,q × Ṁ2,5

2 to YKT,q.
B) The following assertions are equivalent:

(i) et∆u0 ∈ Y2;

(i) et∆u0 ∈ YKT,q;

(ii) u0 ∈ BMO−1.

C) YKT,q is an adapted Banach space. Thus, there exists a positive constant ε0
such that, if ‖~u0‖BMO−1 + ‖L(F)‖YKT,q < ε0, then the Navier–Stokes problem
(4) has a global mild solution ~u ∈ YKT,q.
D) More generally, if Y is an adapted space such that Y ⊂ Ṁ2,5

2 , there exists a
positive constant ε1 such that, if F = F1 +F2 and ‖~u0‖BMO−1 +‖L(F1)‖YKT,q +
‖L(F2)‖Y < ε1, then the Navier–Stokes problem (4) has a global mild solution
~u ∈ YKT,q + Y.

Proof. We only need to prove point A), i.e. to estimate Bσ(u, v) in L2
t,x(QT,x)

and in Ṁ
2q
5
,q

2 (RT,x) for u ∈ YKT,q and v ∈ Ṁ2,5
2 .

In order to estimate Bσ(u, v) in L2
t,x(QT,x), we follow the proof of Theorem

1 given by Koch and Tataru and we split w = Bσ(u, v) in three parts:

• w1 = Bσ(u, (1− 1Q10T,x
)v) : we saw that

‖1QT,xw1‖L2L2 ≤ CT 3/4‖u‖Y2‖v‖Y2 .

• w2(t, y) = σ(D)
√
−∆et∆

∫ t
0
1Q10T,x

uv ds. We saw that

‖1QT,xw2‖L2L2 ≤ ‖w2‖L2L2 ≤ CT 3/4‖u‖Y2‖v‖Y2 .

• w3(t, y) = σ(D)
∫ t

0
(e(t−s)∆ − et∆)

√
−∆(1Q10T,x

uv) ds. We are going to
prove below (Theorem 3 in next section) that, more generally,

‖
∫ t

0

(e(t−s)∆−et∆)
√
−∆(uv) ds‖L2L2 ≤ C sup

T>0,x∈R3

T
1
2
− 5

2q ‖1RT,xu‖Ṁ
2q
5 ,q

2

‖v‖L2L2 .

Thus,

‖1QT,xw3‖L2L2 ≤ ‖w3‖L2L2 ≤ C‖u‖YKT,q‖1Q10T,x
v‖L2L2 ≤ CT 3/4‖u‖YKT,q‖v‖Y2 .

12



Hence, w ∈ Y2.

In order to estimate Bσ(u, v) in Ṁ
2q
5
,q

2 , we write w = w4 + w5 with
w4 = Bσ((1− 1ST,x)u, v) and w5 = Bσ(1ST,xu, v), where

ST,x = {(t, y) / T/4 < t < T, |x− y| ≤
√

10T}.

We easily check that 1RT,x |w4| ≤ C 1√
T
‖uv‖Ṁ1,5/2

2
(see the proof of Proposition

4) and thus

‖1RT,xw4‖
Ṁ

2q
5 ,q

2

≤ C‖1RT,xw4‖LqLq ≤ C ′T−
1
2

+ 5
2q ‖u‖Ṁ2,5

2
‖v‖Ṁ2,5

2
.

On the other hand, we have

|w5(t, z)| ≤ Cσ

∫ t

0

∫
1

(
√
t− s+ |z − y|)4

1ST,x(s, y)|u(s, y)| |v(s, y)| dy ds.

Thus, w5 is controlled by the parabolic Riesz potential of |1ST,xuv|; as |1ST,xuv| ∈

Ṁ
2
5

5q
5+q

, 5q
5+q

2 (since 1ST,xu ∈ Ṁ
2q
5
,q

2 and v ∈ Ṁ2,5
2 ), we conclude by Hedberg’s

inequality for Riesz potentals and Morrey spaces that w5 is controlled in

Ṁ
2q
5
,q

2 :

‖w5‖
Ṁ

2q
5 ,q

2

≤ C‖1ST,xu‖Ṁ
2q
5 ,q

2

‖v‖Ṁ2,5
2
≤ C ′T

5
2q
− 1

2‖u‖YKT,q‖v‖Ṁ2,5
2
.

Corollary 1.
a) There exists a positive constant ε0 such that, if F = F1+F2 and ‖~u0‖BMO−1+
‖L(F1)‖YKT,q + ‖L(F2)‖M(Ḣ

1/2,1
t,x 7→L2

t,x)
< ε0, then the Navier–Stokes problem

(4) has a global mild solution ~u ∈ YKT,q +M(Ḣ
1/2,1
t,x 7→ L2

t,x).
b) For 5 < p < +∞, there exists a positive constant εp such that, if F =
F1 + F2 + F3 and

‖~u0‖BMO−1 + ‖L(F1)‖YKT,q + ‖L(F2)‖Ṁp,5
2

+ ‖L(F3)‖L2A < εp,

then the Navier–Stokes problem (4) has a global mild solution ~u ∈ YKT,q +
Ṁp,5

2 + L2A.

Proof. a) is direct consequence of Theorem 2, as M(Ḣ
1/2,1
t,x 7→ L2

t,x) is an

adapted Banach space contained in Ṁ2,5
2 [Lem16, Lem18, Dao17]. Similarly,

Ṁp,5
2 is an adapted Banach space contained in Ṁ2,5

2 [Lem16], L2A is an
adapted Banach space contained in Ṁ2,5

2 [Lei11], and, and, for every σ ∈ S1,
the bilinear operator Bσ is a bounded bilinear operator from Ṁp,5

2 × L2A to
Ṁp,5

2 , by Proposition 4 since L2A ⊂ L2,∞L∞.
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3 Parabolic dyadic decomposition of the time-

space domain

We decompose (0,+∞)× R3 as

(0,+∞)×R3 =
⋃

j∈Z,k∈Z3

{(t, x) / 1 ≤ 4jt < 4, 2jx− k ∈ [0, 1)3} =
⋃

j∈Z,k∈Z3

Rj,k

and (0, 16 4−j)× R3 as

(0, 16 4−j)× R3 =
⋃
k∈Z3

{(t, x) /0 < 4jt < 16, 2jx− k ∈ [0, 1)3} =
⋃
k∈Z3

Qj,k.

If v ∈ L2L2, then v can be decomposed in an orthogonal series

v =
∑

j∈Z,k∈Z3

1Rj,kv =
∑

j∈Z,k∈Z3

vj,k

with
‖v‖2

L2L2 =
∑

j∈Z,k∈Z3

‖vj,k‖2
L2L2 .

Similarly, if u ∈ YKT,q, then

u =
∑

j∈Z,k∈Z3

1Rj,ku =
∑

j∈Z,k∈Z3

uj,k

with, for every 5/2 ≤ ρ ≤ q,

sup
j∈Z,k∈Z3

2j(1−
5
ρ

)‖uj,k‖
Ṁ

2
5 ρ,ρ

2

< +∞.

Theorem 3.
Let v ∈ L2L2 and u ∈ YKT,q with 5 < q < +∞. Write vj,k = 1Rj,kv,
vj =

∑
k∈Z3 vj,k, and uj,k = 1Rj,ku. Then

A) For 5/2 < ρ ≤ q and α = 1− 5
ρ
,

‖
∫ t

0

(e(t−s)∆ − et∆)
√
−∆

1+α
(uvj) ds‖L2L2 ≤ C‖vj‖2 sup

k∈Z3

‖uj,k‖
Ṁ

2
5 ρ,ρ

2

.

B) We have

‖
∫ t

0

(e(t−s)∆−et∆)
√
−∆(uv) ds‖L2L2 ≤ C‖v‖L2L2 sup

T>0,x∈R3

T
1
2
− 5

2q ‖1RT,xu‖Ṁ 2
5 q,q

2

.
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Proof.

Proof of A).

We first consider 4jt ≤ 16 and estimateW =
∫ t

0
(e(t−s)∆−et∆)

√
−∆

1+α
(uvj) ds

in L2((0, 16 4−j), L2), then estimateW ∗ =
∫ 16 4−j

0
(e(16 4−j−s)∆−e16 4−j∆)

√
−∆

α
(uvj) ds

in L2(R3) and finally we estimate W =
∫ t

0
(e(t−s)∆ − et∆)

√
−∆

1+α
(uvj) ds in

L2((16 4−j,+∞), L2).
When t < 16 4−j, we write

W =
∑
l∈Z3

1Qj,l

∫ t

0

(e(t−s)∆ − et∆)
√
−∆

1+α
(
∑
k∈Z3

uj,kv,kj) ds

which we reorganize as

W =
∑
m∈Z3

∑
k∈Z3

1Qj,k+m

∫ t

0

(e(t−s)∆ − et∆)
√
−∆

1+α
(uj,kv,kj) ds =

∑
m∈Z3

Wm.

We have

‖W‖L2((0,16 4−j),L2 ≤
∑
m∈Z3

‖Wm‖L2((0,16 4−j),L2

=
∑
m∈Z3

(∑
k∈Z3

‖1Qj,k+m
∫ t

0

(e(t−s)∆ − et∆)
√
−∆

1+α
(uj,kv,kj) ds‖2

L2((0,16 4−j),L2

)1/2

We have

|
∫ t

0

(e(t−s)∆ − et∆)
√
−∆

1+α
(uj,kvj,k) ds| ≤ CZα(uj,kvj,k).

where

Zα(w) =

∫ t

0

∫
1

(
√
t− s+ |x− y|)4+α

|w(s, y)| dy ds.

Zα is a parabolic Riesz potential and we have the following equivalent of the
Fefferman-Phong inequality [Fef83] for the parabolic Riesz potentials and the
parabolic Morrey spaces [Lem16]: if 0 < β < 5

2
and 2 < p < 5

β
, then

‖
∫ t

0

∫
1

(
√
t− s+ |x− y|)5−β |f(s, y)g(s, y)| dy ds‖L2L2 ≤ Cp,β‖f‖L2L2‖g‖

Ṁ
p, 5
β

2

.

As 4 + α = 5− 5
ρ
, we get

‖Zα(uj,kvj,k)‖L2
t,x
≤ C‖uj,k‖

Ṁ
2
5 ρ,ρ

2

‖vj,k‖L2L2 .
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Thus,
‖Wm‖L2L2 ≤ C sup

k∈Z3

‖uj,k‖
Ṁ

2
5 ρ,ρ

2

‖vj‖L2L2 .

Moreover, if |m| ≥ 20 and |m0| = 10, we have, for 0 ≤ s ≤ t ≤ 16 4−j,
y ∈ Qj,k, x ∈ Qj,k+m and z ∈ Qj,k+m0 ,

1

(
√
t− s+ |x− y|)4+α

≤ 1

|x− y|4+α
≤ C

2(4+α)j

m4+α
≤ C ′

1

m4+α(
√
t− s+ |z − y|)4+α

so that, for 0 < t ≤ 16 4−j,

1Qj,k+m(x)Zα(uj,kvj,k)(t, x)

≤ C

m4+α
1Qj,k+m0

(x− (m−m0)2−j)Zα(uj,kvj,k)(t, x− (m−m0)2−j))

and

‖Wm‖L2((0,16 4−j),L2) ≤ C
1

m4+α
sup
k∈Z3

‖uj,k‖
Ṁ

2
5 ρ,ρ

2

‖vj‖L2L2 .

Thus, we have proved that

‖W‖L2((0,16 4−j),L2) ≤ C sup
k∈Z3

‖uj,k‖
Ṁ

2
5 ρ,ρ

2

‖vj‖L2L2 .

We now estimateW ∗ =
∫ 16 4−j

0
(e(16 4−j−s)∆−e16 4−j∆)

√
−∆

α
(uvj) ds. First,

as vj is supported in 4−j < t < 4 4−j, we write

W ∗ =

∫ 4 4−j

4−j
(e(16 4−j−s)∆ − e16 4−j∆)

√
−∆

α
(uvj) ds

=

∫ 4 4−j

4−j

∫ s

0

(e(16 4−j−s+θ)∆)
√
−∆

2+α
(uvj) dθ ds

so that

|W ∗(x)| ≤C
∫ 4 4−j

4−j

∫ s

0

∫
1

(
√

16 4−j − s+ θ + |x− y|)5+α
|u(s, y)vj(s, y)| dy dθ ds

≤C ′
∫ 4 4−j

4−j

∫
4−j

(2−j + |x− y|)5+α
|u(s, y)vj(s, y)| dy ds.

If 12 4−j ≤ τ ≤ 16 4−j, we have∫ 4 4−j

4−j

∫
4−j

(2−j + |x− y|)5+α
|u(s, y)vj(s, y)| dy ds

≤C
∫ τ

0

∫
2−j

(
√
τ − s+ |x− y|)4+α

|u(s, y)vj(s, y)| dy ds = C2−jZα(τ, x).
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Thus,

‖W ∗(x)‖2 ≤ C2−j
1

4 4−j

∫ 164−j

12 4−j
‖Zα(τ, .)‖2 dτ ≤

C

2
‖Zα‖L2((12 4−j ,16 4−j),L2).

This gives
‖W ∗‖2 ≤ C sup

k∈Z3

‖uj,k‖
Ṁ

2
5 ρ,ρ

2

‖vj‖L2L2 .

Finally, we estimateW =
∫ t

0
(e(t−s)∆−et∆)

√
−∆

1+α
(uvj) ds in L2((16 4−j,+∞), L2).

For t > 16 4−j, we have

W =

∫ 16 4−j

0

(e(t−s)∆ − et∆)
√
−∆

1+α
(uvj) ds =

√
−∆e(t−16 4−j)∆W ∗

and thus

‖W‖L2((16 4−j ,+∞),L2) ≤
1√
2
‖W ∗‖2 ≤ C sup

k∈Z3

‖uj,k‖
Ṁ

2
5 ρ,ρ

2

‖vj‖L2L2 .

Proof of B).
Let U =

∫ t
0
(e(t−s)∆ − et∆)

√
−∆(uv) ds, U =

∑
j∈Z Uj with

Uj =

∫ t

0

(e(t−s)∆ − et∆)
√
−∆(uvj) ds.

Let γ = 1 − 5
q

and 1
ρ

= 2
5
− 1

q
. Then 1 − 5

ρ
= −γ. From point A), we know

that

‖Uj‖L2Ḣγ ≤ C‖vj‖2 sup
k∈Z3

‖uj,k‖
Ṁ

2
5 q,q

2

≤ C ′2jγ‖vj‖2 sup
T>0,x∈R3

T
1
2
− 5

2q ‖1RT,xu‖Ṁ 2
5 q,q

2

.

and

‖Uj‖L2Ḣ−γ ≤ C‖vj‖2 sup
k∈Z3

‖uj,k‖
Ṁ

2
5 ρ,ρ

2

≤ C ′2−jγ‖vj‖2 sup
T>0,x∈R3

T
1
2
− 5

2q ‖1RT,xu‖Ṁ 2
5 q,q

2

.

We then have∫ +∞

0

∫
|U(t, x)|2 dx dt =

∑
j∈Z

∫ +∞

0

∫
|Uj(t, x)|2 dx dt

+ 2
∑
j∈Z

∑
k∈Z,k<j

∫ +∞

0

〈(−∆)−γUj(t, .)|(−∆)γUk(t, .)〉 dt

≤ C( sup
T>0,x∈R3

T
1
2
− 5

2q ‖1RT,xu‖Ṁ 2
5 q,q

2

)2(
∑
j∈Z

‖vj‖2
L2L2 + 2

∑
j∈Z

∑
k∈Z,k<j

2−γ(j−k)‖vj‖L2L2‖vk‖L2L2)

≤C ′( sup
T>0,x∈R3

T
1
2
− 5

2q ‖1RT,xu‖Ṁ 2
5 q,q

2

)2‖v‖2
L2L2 .

The theorem is proved.
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Appendix: counter-examples.

Proposition 5.
Let σ0(ξ) = |ξ|. Then σ0 ∈ S1 and Bσ0 is not bounded on Y2. It is not
bounded as well from M2,5

2 ×M
2,5
2 to Y2.

Proof. Due to the invariance of the norms of Y2 a:nd M2,5
2 through transla-

tions and dilations, the operator Bσ0 would be bounded from M2,5
2 ×M

2,5
2

to Y2. if and only if there would exist a constant C0 such that, for every
u, v ∈M2,5

2 , ∫ 1

0

∫
[−1,1]3

|Bσ0(u, v)|2 dt dx ≤ C0‖u‖2
M2,5

2
‖v‖2

M2,5
2
.

We then take un(t, x) = vn(t, x) = ψn(x1, x2) with ψn ∈ L2(R2). We have,
for T > 0,, t0 > 0 and x0 ∈ R3,∫ t0+T

t0

∫
B(x0,

√
T )

|un(t, x)|2 dt dx ≤ 2‖ψn‖2
2T

3/2.

Thus, un ∈M2,5
2 .

Moreover, for wn(x) = un(t, x)2 and φn = ψ2
n, we have the Fourier trans-

forms
F(e(t−s)∆σ0(D)wn) = e−(t−s)|ξ|2|ξ|(φ̂n(ξ1, ξ2)⊗ δ(ξ3))

hence

F(e(t−s)∆σ0(D)wn) =
(
e−(t−s)|(ξ1,ξ2)|2|(ξ1, ξ2)|φ̂n(ξ1, ξ2)

)
⊗ δ(ξ3).

Hence, writing ∆2 for the laplacian operator on R2, we get

Bσ0(un, un) =

∫ t

0

e(t−s)∆2
√
−∆2φn ds = (Id−et∆2)

1√
−∆2

φn.

From 1
|(y1,y2)| ∈ L

1(R2) + L∞(R2), we find

|et∆2
1√
−∆2

φn| ≤ C‖φn‖1(1 +
1

t
)

and thus ∫ 1

1/2

∫
[−1,1]3

|et∆2
1√
−∆2

φn|2 dt dx ≤ 36C2‖φn‖2
1.
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In particular,∫ 1

1/2

∫
[−1,1]3

| 1√
−∆2

φn|2 dt dx ≤ 8(8C0 + 36C2)‖φn‖2
1.

Thus, if φn is an approximation of the Dirac mass with ‖φn‖1 = 1, we find
that the function 1√

−∆2
φn is bounded in L2((−1, 1)2); but it converges in

D′((−1, 1)2) to
√

2π
|y| which is not square-integrable on (−1, 1)2. Thus, Bσ0 is

not bounded from M2,5
2 ×M

2,5
2 to Y2.

Proposition 6.
Let σ0(ξ) = |ξ|. Then σ0 ∈ S1 and Bσ0 is not bounded from YKT × L2A to
L2A nor to YKT .

Proof. Let u(t, x) = 1(0,2)(t)
x1
|x1| and v(t, x) = 1(0,2)(t)φ(x1)ψ(x2, x3) where

the Fourier transforms of φ and ψ are integrable (over R and over R2 re-
spectively) and the support of the Fourier transform of ψ is contained in the
corona 1 < ξ2

2 + ξ2
3 < 4. Then u ∈ YKT and v ∈ L2A.

For t ∈ (0, 2), we have

F(Bσ0(u, v)) = 2π

∫ t

0

e−(t−s)|ξ|2|ξ|H(φ̂)(ξ1)ψ̂(ξ2, ξ3) ds = 2π
1− e−t|ξ|2

|ξ|
H(φ̂)(ξ1)ψ̂(ξ2, ξ3)

where H is the Hilbert transform. For 1 < t < 2, we have∫
|F(Bσ0(u, v)) dξ| ≥ π(1− e−1)

∫ 1

−1

|H(φ̂)(ξ1)| dξ1

∫∫
|ψ̂(ξ2, ξ3)|
|(ξ2, ξ3)|

dξ2 dξ3

and thus ∫ 1

−1

|H(φ̂)(ξ1)| dξ1 ≤ C‖Bσ0(u, v)‖L2A

whereas
‖u‖YKT ‖v‖L2A ≤ C‖φ̂‖1.

Assuming that Bσ0 is bounded from YKT × L2A to L2A, we obtain that, for
φ ∈ L1(R), ∫ 1

−1

|H(φ̂)(ξ1)| dξ1 ≤ C‖φ̂‖1.

Applying this to φR = φ( x
R

), we have∫ R

−R
|H(φ̂)(ξ1)| dξ1 =

∫ 1

−1

|H(φ̂R)(ξ1)| dξ1 ≤ C‖φ̂R‖1 = C‖φ̂‖1.
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Letting R go to +∞, we find that the Hilbert transform is bounded on L1,
which is false. Thus, Bσ0 cannot be bounded from YKT × L2A to L2A.

Now, consider a function φ whose Fourier transform φ̂ ∈ D(R3) is non-
negative, supported in B(0, 1) and with ‖φ̂‖1 = 1. Similarly, consider a
function ψ whose Fourier transform φ̂ ∈ D(R3) is non-negative, supported in
B(0, 4) \B(0, 2) and with ‖ψ̂‖1 = 1. Writing, for a function f on R3 and for
ε > 0, fε(x) = f(x

ε
), we define

u(t, x) = 1(0,1)(t)φ√1−t(x) and v(t, x) = 1(0,1)(t)
1√

1− t| ln(2− 2t)|3/4
ψ√1−t(x).

Let us assume that Bσ0 is bounded from YKT × L2A to YKT . As u ∈ YKT
and v ∈ L2A, we should have supt>0

√
t‖Bσ0(u, v)(t, .)‖∞ < +∞, where

the supremum bound holds for every t > 0 by weak-* continuity of t >
0 7→ Bσ0(u, v)(t, .) ∈ L∞. In particular, Bσ0(u, v)(1, .) ∈ L∞. The Fourier
transform Bσ0(u, v)(1, .) is non-negative, as

F(Bσ0(u, v)(1, .)) =

∫ 1

0

e−(1−s)|ξ|2|ξ| 1√
1− s| ln(2− 2s)|3/4

F(φ√1−sψ
√

1−s)(ξ) ds,

and thus

‖Bσ0(u, v)(1, .)‖∞ =
1

(2π)3

∫
F(Bσ0(u, v)(1, .))(ξ) dξ.

The support of F(φ√1−sψ
√

1−s)(ξ) is contained in {ξ / 1√
1−s ≤ |ξ| ≤

5√
1−s}

and thus, for a constant γ > 0,∫
F(Bσ0(u, v)(1, .))(ξ) dξ ≥ γ

∫ 1

0

∫
1

(t− s)| ln(2− 2s)|3/4
F(φ√1−sψ

√
1−s)(ξ) ds dξ

and thus∫
F(Bσ0(u, v)(1, .))(ξ) dξ ≥ γ‖φ̂‖1‖ψ̂‖1

∫ 1

0

1

(t− s)| ln(2− 2s)|3/4
ds = +∞.

Thus, Bσ0 cannot be bounded from YKT × L2A to YKT .

Proposition 7.
The space L2A is not included in M(Ḣ

1/2,1
t,x 7→ L2

t,x).

Proof. If L2A ⊂ M(Ḣ
1/2,1
t,x 7→ L2

t,x), then the embedding would be continu-
ous (by Baire’s theorem, since convergence of a sequence in L2A implies con-

vergence almost everywhere of a subsequence and since M(Ḣ
1/2,1
t,x 7→ L2

t,x)
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has the Fatou property that an almost everywhere converging sequence of
bounded functions in M(Ḣ

1/2,1
t,x 7→ L2

t,x) remains in M(Ḣ
1/2,1
t,x 7→ L2

t,x) with
the same bound).

Since the operator T defined by

T (u, v)(t, x) =

∫ t

0

∫
1

(
√
t− s+ |x− y|)4

u(s, y)v(s, y) ds dy

is bounded on M(Ḣ
1/2,1
t,x 7→ L2

t,x) and since M(Ḣ
1/2,1
t,x 7→ L2

t,x) ⊂ Ṁ
2,5
2 , we

would have the inequality∫ 1

0

∫
B(0,1)

|T (u, u)(t, x)| dt dx ≤ C‖u‖2
L2A.

Let uR(t, x) = ω(t)e−
|x|2
R . By monotonous convergence, we have pointwise

convergence of T (uR, uR)(t, x) to∫ t

0

∫
1

(
√
t− s+ |x− y|)4

ω2(s), ds dy = C

∫ t

0

1√
t− s

ω2(s) ds.

Thus, we would have∫ 1

0

(∫ t

0

1√
t− s

ω2(s) ds

)2

dt ≤ C‖ω‖4
2.

For ωε(t) = 1√
ε
θ(x

ε
) with θ ∈ D and ‖θ‖2 = 1, we have pointwise convergence

(when ε→ 0) of
∫ t

0
1√
t−sω

2
ε (s) ds to 1√

t
; Fatou’s lemma would give

∫ 1

0
dt
t
≤ C,

which is false.
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