Forces for the Navier-Stokes equations and the Koch and Tataru theorem - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Forces for the Navier-Stokes equations and the Koch and Tataru theorem

Résumé

We consider the Cauchy problem for the incompressible Navier-Stokes equations on the whole space R 3 , with initial value u 0 ∈ BMO −1 (as in Koch and Tataru's theorem) and with force f = div F with F ∈ L 1 F −1 L 1 (as in Lei and Lin's theorem). If u 0 and F are small enough, we show the existence of a global mild solution.
Fichier principal
Vignette du fichier
forces.pdf (285.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03787489 , version 1 (25-09-2022)
hal-03787489 , version 2 (18-10-2022)
hal-03787489 , version 3 (16-04-2023)

Identifiants

  • HAL Id : hal-03787489 , version 1

Citer

Pierre Gilles Lemarié-Rieusset. Forces for the Navier-Stokes equations and the Koch and Tataru theorem. 2022. ⟨hal-03787489v1⟩
75 Consultations
91 Téléchargements

Partager

More