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Forces for the Navier–Stokes equations and the
Koch and Tataru theorem.

Pierre Gilles Lemarié-Rieusset∗

Abstract

We consider the Cauchy problem for the incompressible Navier–
Stokes equations on the whole space R3, with initial value ~u0 ∈ BMO−1

(as in Koch and Tataru’s theorem) and with force ~f = divF with
F ∈ L1F−1L1 (as in Lei and Lin’s theorem). If ~u0 and F are small
enough, we show the existence of a global mild solution.

Keywords : Navier–Stokes equations, critical spaces, mild solutions.

AMS classification : 35K55, 35Q30, 76D05.

Introduction

In this paper, we consider global mild solutions of the Cauchy problem for
the incompressible Navier–Stokes equations on the whole space R3. When
looking for assumptions that respect the symmetries of the Navier–Stokes
equations (with respect to spatial translation or to dilations), one is lead to
consider the initial data to be in BMO−1 (this is the famous Koch and Tataru
theorem [Koc01]) but there is no natural choice for the forcing term. We are
going to consider forces that are known to lead to global mild solutions (if
they are small enough) in the absence of initial value, but the interaction
between those forces and an initial value in BMO−1 or between forces in
different functional spaces has not been discussed in the literature.

Forces that we shall consider will be written in divergence form (~f =
divF) where the tensor F will be a sum of tensors F1 + F2 + F3 + F4 where:
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• F1 belongs to a Serrin class Lp/2,∞((0,+∞), Lq/2,∞(R3)) with 2 < p <
+∞ and 2

p
+ 3

q
= 1 [the case of the Serrin class Lp/2((0,+∞), Lq/2(R3))

corresponds to the solutions of Fabes, Jones and Rivière [Fab72] in
LpLq]

• F2 belongs to L∞((0,+∞), L3/2,∞(R3)) (this corresponds to the end-
point p = +∞ of the Serrin class and to the solutions of Kozono [Koz96]
and Meyer [Mey99] in L∞L3,∞)

• F3 belongs to L1((0,+∞), A(R3)) where A is the inverse Fourier trans-
form of L1 (this corresponds to the endpoint p = 2 of the Serrin class
and to the solutions of Lei and Lin [Lei11] in L2A)

• F4 belongs to a variant of the Koch and Tataru space. The Koch and
Tataru space ZKT is defined by

‖F‖Z1 = sup
t>0,x0∈R3

t−
3
2‖F‖L1((0,t)×B(x0,

√
t)) < +∞

and
sup
t>0

t‖F(t, .)‖∞ < +∞.

We shall define, for 2 ≤ r ≤ +∞, the space ZKT,r by

‖F‖Z1 = sup
t>0,x0∈R3

t−
3
2‖F‖L1((0,t)×B(x0,

√
t)) < +∞

and
sup

t>0,x0∈R3

t1−
5
r ‖F‖Lr/2((t/2,t)×B(x0,

√
t)) < +∞.

Notice that ZKT = ZKT,∞ ⊂ ZKT,r. We shall assume that F4 belongs
to ZKT,r for some r such that 5 < r < +∞.

This allows us to consider many forces, due to the following remarks:

• Assume that F belongs to a time-weighted Serrin class:

t2αF ∈ Lp/2,ρ((0,+∞), Lq/2,σ(R3))

with 3 < q < +∞, 2 < p ≤ +∞, 0 ≤ α, 1 ≤ ρ, σ ≤ +∞ and 2α + 2
p

+
3
q

= 1 [if p = +∞, Lp/2,ρ is to be replaced with L∞] (this corresponds to

the solutions considered by Cannone and Planchon [Can99] or Kozono
and Yamazaki [Koz94] and more recently by Farwig, Giga and Shu
[Far16] and Kozono and Shimizu [Koz18]). Then F is of the form
F = F1 ∈ Lp0/2,∞Lq/2,∞ with 1

p0
= α + 1

p
and 2

p0
+ 3

q
= 1.
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• Assume that F is a sum F = G1 + G2 where Gi belongs to a Serrin
class Lpi/2,∞((0,+∞), Lqi/2,∞(R3)) with 2 < pi < +∞ and 2

pi
+ 3

qi
= 1.

If q1 < q2, define

ε(t) = ‖G1(t, .)‖
q1
q1−3

Lq1/2,∞
‖G1‖

− 3
q1−3

Lp1/2,∞Lq1/2,∞
;

then define G3 = 1|G1(t,x)|<ε(t)G1 and G4 = 1|G1(t,x)|≥ε(t)G1. We have

‖G3‖Lp2/2,∞Lq2/2 ≤ C‖G1‖Lp1/2,∞Lq1/2,∞

and
‖G4‖L∞L3/2 ≤ C‖G1‖Lp1/2,∞Lq1/2,∞ , ,

thus, F is of the form F = F1 + F2 with F1 = G2 + G3 ∈ Lp2/2,∞Lq2/2,∞
and F2 = G4 ∈ L∞L3/2,∞.

• Assume that F is a sum F = G1 + G2 where Gi belongs to ZKT,ri for
some ri such that 5 < ri < +∞. If r1 < r2, then F is of the form
F = F4 ∈ ZKT,r1 .

Our main result is then the following one:

Theorem 1.
Let 3 < q < +∞, 2 < p with 2

p
+ 3

q
= 1, 5 < r < +∞. Then there exists a

positive constant ε (which depends on p, q, r) such that if ~u0 ∈ BMO−1 is a
divergence free vector field, , F1 ∈ Lp/2,∞Lq/2,∞, F2 ∈ L∞L3/2,∞, F3 ∈ L1A,
F4 ∈ ZKT,r with

‖~u0‖BMO−1 + ‖F1‖Lp/2,∞Lq/2,∞ + ‖F2‖L∞L3/2,∞ + ‖F3‖L1A + ‖F4‖ZKT,r < ε

then the Navier—Stokes problem{
∂t~u = ∆~u+ P div(F1 + F2 + F3 + F4 − ~u⊗ ~u)

~u(0, .) = ~u0

(1)

has a mild solution ~u such that

~u ∈ Lp,∞Lq,∞ + L∞L3,∞ + L2A+ YKT,r

where the space YKT,r is defined by

‖~u‖Y2 = sup
t>0,x0∈R3

t−
3
4‖~u|L2((0,t)×B(x0,

√
t)) < +∞

and
sup

t>0,x0∈R3

t
1
2
− 5

2r ‖~u‖Lr((t/2,t)×B(x0,
√
t)) < +∞.
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1 Mild solutions of the Navier–Stokes equa-

tions

Recall that we consider global mild solutions of the Cauchy problem for the
Navier–Stokes equations on the whole space R3:

∂t~u+ ~u · ~∇~u = ∆~u− ~∇p+ divF
div ~u = 0

~u(0, .) = ~u0

(2)

We shall look for minimal regularity assumptions for ~u. It is therefore better
to write the non-linear term ~u · ~∇~u as div(~u ⊗ ~u) (the two vector fields are
equal when ~u is a regular divergence free vector field):

∂t~u = ∆~u− ~∇p+ div(F− ~u⊗ ~u)

div ~u = 0

~u(0, .) = ~u0

(3)

Taking the divergence of the first equation, we get

∆p = (~∇⊗ ~∇) · (F− ~u⊗ ~u)

and thus
∆~∇p = ~∇

(
(~∇⊗ ~∇) · (F− ~u⊗ ~u)

)
. (4)

Assuming that ~∇p is equal to 0 at infinity, equation (4) defines p as a func-
tion of F and ~u. More precisely, if F − ~u ⊗ ~u is assumed to belong to
L1

loc((0,+∞), L1( dx
1+|x|4 )), then [Fer21] shows that the solution ~∇p of equation

(4) which is equal to 0 at infinity is given by the formula

~∇p =
1

∆
~∇
(

(~∇⊗ ~∇) · (F− ~u⊗ ~u)
)

where, writing

G(x) =
1

4π|x|
for the fundamental solution of −∆

(−∆G = δ so that, for f ∈ D(R3, f = G ∗ (−∆f))

and choosing a function ψ ∈ D(R3 which is equal to 1 on a neighbourhood
of 0, 1

∆
∂i∂j∂k is defined as

1

∆
∂i∂j∂kf = −∂i∂j∂k ((ψG) ∗ f)− (∂i∂j∂k((1− ψ)G)) ∗ f.
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Thus, we have an equation with one unknown ~u and two data ~u0 and F.
Defining (formally) the Leray projection operator P as

P = Id− 1

∆
~∇ div,

the Navier–Stokes equations then become{
∂t~u = ∆~u+ P div(F− ~u⊗ ~u)

~u(0, .) = ~u0, div ~u0 = 0
(5)

This is viewed as a non-linear heat equation and is transformed into the
Duhamel formula

~u = et∆~u0 +

∫ t

0

e(t−s)∆P div(F− ~u⊗ ~u) ds (6)

where et∆ is the convolution operator with the heat kernel: et∆f = Wt ∗ f
with

Wt =
1

(4πt)3/2
e−

x2

4t .

The formalism of global mild solutions of the Cauchy problem for the
Navier–Stokes equations is then described by the following definition and
theorem :

Definition 1.
An adapted triplet of Banach spaces is a triplet of Banach spaces (X ,Y ,Z)
such that X is a space of tempered vector distributions on R3, Y is a space
of time-dependent vector fields which are locally integrable on (0,+∞) × R3

and Z is a space of time-dependent functors which are locally integrable on
(0,+∞)× R3 and such that

• the operator
~u0 7→ S(~u0) = et∆~u0

is a bounded linear operator from X to Y:

‖S(~u0)‖Y ≤ C1‖~u0‖X ;

• the operator

F 7→ L(F) =

∫ t

0

e(t−s)∆P divF ds

is a bounded linear operator from Z to Y:

‖L(F)‖Y ≤ C2‖F‖Z ;
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• the operator

(~u,~v) 7→ B(~u,~v) =

∫ t

0

e(t−s)∆P div(~u⊗ ~v) ds

is a bounded bilinear operator from Y × Y to Y:

‖B(~u,~v)‖Y ≤ C3‖~u‖Y‖~v‖Y .

Remark: Obviously, if the operator S is a bounded linear operator from X
to Y , the operator L is bounded from Z to Y and the operator (~u,~v) 7→ ~u⊗~v
is a bounded bilinear operator from Y×Y to Z, then (X ,Y ,Z) is an adapted
triplet of Banach spaces.

The following theorem is then easy to check (through the Banach con-
traction principle):

Theorem 2.
Let (X ,Y ,Z) be an adapted triplet of Banach spaces (with associated con-
stants C1, C2, C3). If ~u0 and F are small enough:

4C3(C1‖~u0‖X + C2‖F‖Z) < 1,

then the Navier–Stokes problem (6) has a global solution ~u with

‖~u‖Y ≤ 2(C1‖~u0‖X + C2‖F‖Z).

Thus, Theorem 1 will be proved by establishing the following theorem:

Theorem 3.
Let X = BMO−1, Y = Lp,∞Lq,∞+L∞L3,∞+L2A+YKT,r (with 2 < p < +∞,
2
p
+ 3

q
= 1 and 5 < r < +∞) and Z = Lp/2,∞Lq/2,∞+L∞L3/2,∞+L1A+ZKT,r.

Then, (X ,Y ,Z) is an adapted triplet of Banach spaces.

.

2 The classical Koch and Tataru theorem.

Navier–Stokes equations have symmetries. In particular, we have the two
following properties: if ~u is a solution of the Navier–Stokes problem (6) with
data ~u0 and F, then

• [space translation] ~u(t, x−x0) is a solution of the Navier–Stokes problem
(6) with data ~u0(x− x0) and F(t, x− x0),
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• [space dilation] if λ > 0, λ~u(λ2t, λx) is a solution of the Navier–Stokes
problem (6) with data λ~u0(λx) and λ2F(λ2t, λx).

In particular, we shall look for critical spaces X , Y and Z, meaning that
we have invariance of the norms under space translations and space dilations:
for every x0 ∈ R3 and λ > 0

‖~u0(x− x0)‖X = ‖~u0‖X , ‖λ~u0(λx)‖X = ‖~u0‖X ,
‖~u(t, x− x0)‖Y = ‖~u‖Y , ‖λ~u(λ2t, λx)‖Y = ‖~u‖Y ,
‖F(t, x− x0)‖Z = ‖F‖Z , ‖λ2F(λ2t, λx)‖Z = ‖F‖Z .

Finally, in order to give sense to the formula

~u(t, .) = ~u0 + ∆

∫ t

0

~u(s, .) ds+ P div(

∫ t

0

F− ~u⊗ ~u ds),

we require the continuous embeddings Y ⊂
⋂
T>0

L2((0, T ), L2(
dx

1 + |x|4
)) and

Z ⊂
⋂
T>0

L1((0, T ), L1(
dx

1 + |x|4
)). [Due to the invariance through space trans-

lations or space dilations, it is equivalent to ask that ~u 7→ 1(0,1)×B(0,1)~u is
bounded from Y to L2((0, 1)×B(0, 1)) and similarly that F 7→ 1(0,1)×B(0,1)F
is bounded from Z to L1((0, 1)×B(0, 1)).]

In particular, we have

Y ⊂ Y2 = {~u / sup
t>0,x0∈R3

t−3/4‖~u‖L2((0,t)×B(x0,
√
t)) < +∞}.

Thus, Y2 is maximal in the class of Banach spaces Y that satisfy the condi-
tions ‖~u(t, x− x0)‖Y = ‖~u‖Y , ‖λ~u(λ2t, λx)‖Y = ‖~u‖Y and

sup
‖~u‖Y≤1

∫ 1

0

∫
B(0,1)

|~u(s, y)|2 ds dy < +∞.

Similarly, let

Z1 = {F / sup
t>0,x0∈R3

t−3/2‖F‖L1((0,t)×B(x0,
√
t)) < +∞}

and, for 1 ≤ p ≤ +∞, Obviously, the bilinear operator (~u,~v) 7→ ~u ⊗ ~v is
bounded from Y2 × Y2 to Z1. However, the operator L fails to be bounded
from Z1 to Y2:

Proposition 1.
The operator F 7→

∫ t
0
e(t−s)∆P divF ds is not bounded from Z1 to Y2.

7



Proof. Due to the invariance of the norm of Z1 through translations and
dilations, the operator L would be bounded from Z1 to Y2 if and only if
there would exist a constant C0 such that, for every F ∈ Z1,∫ 1

0

∫
[−1,1]3

|L(F)|2 dt dx ≤ C0‖F‖2
Z1
.

We then take

Fn =

 0 −ψn(x1, x2) 0
ψn(x1, x2) 0 0

0 0 0


with ψn ∈ L1(R2). We have, for T > 0 and x0 ∈ R3,∫ T

0

∫
B(x0,

√
T )

|Fn| dt dx ≤ 2
√

2‖ψn‖1T
3/2.

Thus, Fn ∈ Z1. Moreover, since
∫
R

ds
(1+s2)3

= 19
16
π,

1

−∆
P divFn =

1

−∆
P divFn =

19

64


∫
R2 ψn(x1 − y1, x2 − y2) y2

|y|2 dy

−
∫
R2 ψn(x1 − y1, x2 − y2) y1

|y|2 dy

0


and

L(Fn) = (Id−et∆)
1

−∆
P divFn.

From yi
|y|2 ∈ L

1(R2) + L∞(R2), we find

|et∆ 1

−∆
P divFn| ≤ C‖ψn‖1(1 +

1

t
)

and thus ∫ 1

1/2

∫
[−1,1]3

|et∆ 1

−∆
P divFn|2 dt dx ≤ 9C2‖ψn‖2

1.

In particular,∫ 1

1/2

∫
[−1,1]3

| 1

−∆
P divFn|2 dt dx ≤ (8C0 + 9C2)‖ψn‖2

1.

Thus, if ψn is an approximation of the Dirac mass with ψn = 1, we find that
the vector field

~wn(x1, x2) = (

∫
R2

ψn(x1−y1, x2−y2)
y2

|y|2
dy,−

∫
R2

ψn(x1−y1, x2−y2)
y1

|y|2
dy)

is bounded in L2((−1, 1)2); but it converges in D′((−1, 1)2) to ( x2
x21+x22

,− x1
x21+x22

)

which is not square-integrable on (−1, 1)2. Thus, L is not bounded from Z1

to Y2.
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The Koch and Tataru theorem deals with a subspace of Y2. We define
the subspace YKT as:

YKT = {~u ∈ Y2 / sup
t>0

√
t‖~u(t, .)‖∞ < +∞}.

YKT is normed with ‖~u‖YKT = ‖~u‖Y2 + supt>0

√
t‖~u(t, .)‖∞, where

‖~u‖Y2 = sup
t>0,x0∈R3

t−
3
4 ~u‖L2((0,t)×B(x0,

√
t)).

Similarly, let

ZKT = {F ∈ Z1 / sup
t>0

t‖F(t, .)‖∞ < +∞}.

ZKT is normed with ‖F‖ZKT = ‖F‖Z1 + supt>0 t‖F(t, .)‖∞, where

‖F‖Z1 = sup
t>0,x0∈R3

t−
3
2‖F|L1((0,t)×B(x0,

√
t)).

Koch and Tataru’s theorem is then the following one [Koc01, Lem02]:

Theorem 4.
A) For ~u0 a divergence-free vector field in S ′, the following assertions are
equivalent:

(i) et∆~u0 ∈ Y2;

(ii) et∆~u0 ∈ YKT ;

(iii) et∆~u0 ∈ BMO−1 = Ḟ−1
2,∞ (i.e., there exists ~v0 in BMO such that ~u0 =

~∇∧ ~v0).

B) The operator F 7→
∫ t

0
e(t−s)∆P divF ds is a bounded linear operator from

ZKT to YKT . In particular, the operator B defined as

(~u,~v) 7→ B(~u,~v) =

∫ t

0

e(t−s)∆P div(~u⊗ ~v) ds

is a bounded bilinear operator from YKT × YKT to YKT .
C) (BMO−1,YKT ,ZKT ) is an adapted triplet of Banach spaces. Thus, there
exists a positive constant ε0 such that, if ‖et∆~u0‖YKT +‖F‖ZKT < ε0, then the
Navier–Stokes problem (6) has a global mild solution ~u ∈ YKT .
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Proof. We sketch the proof given by Koch and Tataru in [Koc01], and try
to highlight the obstructing term for proving the boundedness of B on Y2.
The proof works for more general operators than B. More precisely, let
σ(D) be a Fourier multiplier associated to a function σ which is smooth
on R3 \ {0} and positively homogeneous of order 0 (σ(λξ) = σ(ξ) for ev-
ery λ > 0) and let Bσ(u, v) =

∫ t
0
e(t−s)∆σ(D)

√
−∆(uv) ds. Then Koch

and Tataru’s theorem states that Bσ is bounded on the scalar version YKT
of YKT . (Similarly, we write Y2 for the scalar version of Y2: ‖u‖Y2 =

supt>0,x0∈R3 t−
3
4‖u‖L2((0,t)×B(x0,

√
t)).)

The control of Bσ in L∞ norm is easy: writing

|Bσ(u, v)(t, x)| ≤ Cσ

∫ t

0

∫
1

(
√
t− s+ |x− y|)4

|u(s, y)| |v(s, y)| dy ds,

we check that∫ t/2

0

∫
1

(
√
t− s+ |x− y|)4

|u(s, y)| |v(s, y)| dy ds ≤ C
1√
t
‖u‖Y2‖v‖Y2

and∫ t

t/2

∫
|u(s, y)| |v(s, y)|

(
√
t− s+ |x− y|)4

dy ds ≤ C
1√
t

sup
s>0

√
s‖u(s, .)‖∞ sup

s>0

√
s‖u(s, .)‖∞.

The difficult point is the control of Bσ in Y2. Koch and Tataru proved
more precisely that Bσ is bounded from YKT×Y2 to Y2. We need to estimate,
for every T > 0 and x ∈ R3, ‖1QT,xBσ(u, v)‖L2L2 where

QT,x = {(t, y) / 0 < t < T, |x− y| ≤
√
T}.

Koch and Tataru split w = Bσ(u, v) in three parts:

• w1 = Bσ(u, (1−1Q10T,x
)v) : we easily check that 1QT,x |w1| ≤ C 1√

T
‖u‖Y2‖v‖Y2

and thus
‖1QT,xw1‖L2L2 ≤ CT 3/4‖u‖Y2‖v‖Y2 .

• w2(t, y) = σ(D)
√
−∆et∆

∫ t
0
1Q10T,x

uv ds. The main lemma in Koch and

Tataru’s proof states that the operatorQ(u, v) =
√
−∆et∆

∫ t
0
1Q10T,x

uv ds

maps Y2 × Y2 to L2L2 with a norm of order T 3/4 and thus

‖1QT,xw2‖L2L2 ≤ ‖w2‖L2L2 ≤ CT 3/4‖u‖Y2‖v‖Y2 .
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• w3(t, y) = σ(D)
∫ t

0
(e(t−s)∆ − et∆)

√
−∆(1Q10T,x

uv) ds. They rewrite w3

as

w3 = σ(D)

∫ t

0

e(t−s)∆∆
es∆ − Id√
−∆

(1Q10T,x
uv) ds

and use the maximal regularity of the heat kernel in L2L2 to write

‖w3‖L2L2 ≤ C‖e
t∆ − Id√
−∆

(1Q10T,x
uv)‖L2L2 ≤ C ′‖

√
t1Q10T,x

uv‖L2L2 .

Thus,

‖1QT,xw3‖L2L2 ≤ ‖w3‖L2L2 ≤ C‖
√
tu‖∞‖1Q10T,x

v‖L2L2 ≤ CT 3/4‖u‖YKT ‖v‖Y2 .

Thus, the obstruction for the boundedness of Bσ on Y2 lies in w3.

An easy consequence of the Koch and Tataru theorem is the following
simplified version of Theorem 3:

Proposition 2.
Let X = BMO−1, Y = Lp,∞Lq,∞ + L∞L3,∞ + YKT (with 2 < p < +∞,
2
p

+ 3
q

= 1) and Z = Lp/2,∞Lq/2,∞ +L∞L3/2,∞ +ZKT . Then, (X ,Y ,Z) is an
adapted triplet of Banach spaces.

Proof. The boundedness of B on YKT is given by the Koch and Tataru
theorem and the boundedness of B on L∞L3,∞ is given by the results of
Kozono and Meyer. Moreover, B is obviously bounded from YKT × L∞L3,∞

and L∞L3,∞ × YKT to L∞L3,∞:

‖B(~u,~v)(t, .)‖L3,∞ ≤ C

∫ t

0

√
s‖~u(s, .)‖∞‖~v(s, .)‖L3,∞

ds√
t− s

√
s

(with a similar inequality for ‖B(~v, ~u)(t, .)‖L3,∞).
Finally, if 1 < r1 < +∞, 1 < r2 ≤ r3 < +∞, we have

‖L(F)‖Lr3,∞ ≤ C

∫ t

0

1

(t− s)
1
2

+ 3
2r2
− 3

2r3

‖F(s, .)‖Lr2,∞ ds

so that L is bounded from Lr1,∞Lr2,∞ to Lr4,∞Lr3,∞ with

1

r4

+
3

2r3

=
1

r1

+
3

2r2

− 1

2

if 1
r2
− 1

3
< 1

r3
< 1

r2
− 1

3
+ 2

3r1
. Thus we get the following results:

11



• B is bounded on Lp,∞Lq,∞ (take r1 = p/2, r2 = q/2, r3 = q and r4 = p)

• B is bounded from YKT × Lp,∞Lq,∞ and Lp,∞Lq,∞ ×YKT to Lp,∞Lq,∞

(write YKT ⊂ L2,∞L∞ and take r1 = 2p
p+2

, r2 = q, r3 = q and r4 = p)

• B is bounded from L∞L3,∞ × Lp,∞Lq,∞ and Lp,∞Lq,∞ × L∞L3,∞ to
L2p,∞L

6q
q+3

,∞ (take r1 = p, r2 = 3q
q+3

, r3 = 6q
q+3

and r4 = 2p) hence to

L∞L3,∞ + Lp,∞Lq,∞.

Thus, B is bounded on Lp,∞Lq,∞ + L∞L3,∞ + YKT .

We may notice as well that B is bounded from L∞L3,∞ × L2,∞L∞ and

L2,∞L∞×L∞L3,∞ to L2p,∞L
6q
q+3

,∞ (take r1 = 2, r2 = 3, r3 = 6q
q+3

and r4 = 2p)

hence to L∞L3,∞ + Lp,∞Lq,∞.

3 Proof of Theorem 1

To prove Theorem 1, we only need to prove that B is bounded on Y =
Lp,∞Lq,∞ + L∞L3,∞ + L2A+ YKT,r.

We already know that B is bounded on Lp,∞Lq,∞ and that B is bounded
from L∞L3,∞ × Lp,∞Lq,∞ and Lp,∞Lq,∞ × L∞L3,∞ to L∞L3,∞ + Lp,∞Lq,∞.
We have seen as well (since L2A ⊂ L2,∞L∞) that B is bounded from L2A×
Lp,∞Lq,∞ and Lp,∞Lq,∞ × L2A to Lp,∞Lq,∞ and is bounded from L∞L3,∞ ×
L2A and L2A × L∞L3,∞ to L∞L3,∞ + Lp,∞Lq,∞. Moreover, Lei and Lin’s
theorem states that B is bounded on L2A.

Thus, the difficult part lies in the interaction with YKT,r. We cannot take
YKT,∞ = YKT as we cannot prove that B is bounded from YKT ×L2A to L2A
or YKT . Replacing YKT with the larger space YKT,r will solve the problem:

Proposition 3.
A) If 5 < r ≤ +∞, B is bounded from Y2 × YKT,r and from YKT,r × Y2 to
Y2.
B) Let Y = Lp,∞Lq,∞+L∞L3,∞+L2A+YKT,r (with 2 < p < +∞, 2

p
+ 3

q
= 1

and 5 < r < +∞). Then B is bounded from Y × YKT,r and from YKT,r × Y
to YKT,r.

Proof. Recall that

QT,x = {(t, y) / 0 < t < T, |x− y| ≤
√
T}

and define
RT,x = {(t, y) / T/2 < t < T, |x− y| ≤

√
T}

12



and
ST,x = {(t, y) / T/4 < t < T, |x− y| ≤

√
10T}.

Y2 is defined by

~u ∈ Y2 ⇔ sup
T>0,x∈R3

T−3/4‖1QT,x~u‖L2L2 < +∞

and YKT,r is defined by

~u ∈ YKT,r ⇔ ~u ∈ Y2 and sup
T>0,x∈R3

T
1
2
− 5

2r ‖1RT,x~u‖LrLr < +∞

Again, we consider the scalar versions Y2, YKT,r and Y of Y2, YKT,r and Y
and replace B with Bσ.

Following Koch and Tataru, we split w = Bσ(u, v) in three parts:

• w1 = Bσ(u, (1− 1Q10T,x
)v) : we saw that

‖1QT,xw1‖L2L2 ≤ CT 3/4‖u‖Y2‖v‖Y2 .

• w2(t, y) = σ(D)
√
−∆et∆

∫ t
0
1Q10T,x

uv ds. We saw that

‖1QT,xw2‖L2L2 ≤ ‖w2‖L2L2 ≤ CT 3/4‖u‖Y2‖v‖Y2 .

• w3(t, y) = σ(D)
∫ t

0
(e(t−s)∆ − et∆)

√
−∆(1Q10T,x

uv) ds. We are going to
prove below (Theorem 5 in next section) that

‖
∫ t

0

(e(t−s)∆−et∆)
√
−∆(uv) ds‖L2L2 ≤ C sup

T>0,x∈R3

T
1
2
− 5

2r ‖1RT,xu‖LrLr‖v‖L2L2 .

Thus,

‖1QT,xw3‖L2L2 ≤ ‖w3‖L2L2 ≤ C‖u‖YKT,r‖1Q10T,x
v‖L2L2 ≤ CT 3/4‖u‖YKT,r‖v‖Y2 .

Hence, w ∈ Y2.

If v ∈ Y , we write w = w4 + w5 with w4 = Bσ(u, (1 − 1ST,x)v) and
w5 = Bσ(u,1ST,xv). We easily check that 1RT,x |w4| ≤ C 1√

T
‖u‖Y2‖v‖Y2 and

thus
‖1RT,xw4‖LrLr ≤ CT−

1
2

+ 5
2r ‖u‖Y2‖v‖Y2 .

Now, if v = v1 + v2 + v3 + v4 ∈ Lp,∞Lq,∞ + L∞L3,∞ + L2A+ YKT,r, we write

w5 = Bσ(1ST,xu, v1) +Bσ(1ST,xu, v2) +Bσ(1ST,xu, v3) +Bσ(1ST,xu,1ST,xv4)

with 1ST,xu ∈ LrLr and we get:
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• ‖Bσ(1ST,xu, v1)‖r ≤ C
∫ t

0
1

(t−s)
1
2+ 3

2q
‖1ST,xu‖r‖v1‖Lq,∞ ds. Since t−( 1

2
+ 3

2q
) =

t−1+ 1
p ∈ L

p
p−1

,∞ and since ‖1ST,xu‖r‖v1‖Lq,∞ ∈ L
rq
r+q

,r, we find

‖Bσ(1ST,xu, v1)‖LrLr ≤ C‖1ST,xu‖LrLr‖v1‖Lp,∞Lq,∞ ≤ C ′T−
1
2

+ 5
2r ‖u‖YKT,r‖v1‖Lp,∞Lq,∞

• We have ‖1ST,xu(s, .)v2(s, .)‖
L

3r
r+3 ,r

≤ C‖1ST,xu‖r‖v2‖L3,∞ , hence 1√
−∆

(1ST,xuv) ∈
LrLr. We then write

Bσ(1ST,xu, v2) = −
∫ t

0

e(t−s)∆∆

(
1√
−∆

(1ST,xuv)

)
ds

and use the LrLr maximal regularity of the heat kernel to get

‖Bσ(1ST,xu, v2)‖LrLr ≤ C‖1ST,xu‖LrLr‖v2‖L∞L3,∞ ≤ C ′T−
1
2

+ 5
2r ‖u‖YKT,r‖v2‖L∞L3,∞

• ‖Bσ(1ST,xu, v3)‖r ≤ C
∫ t

0
1

(t−s)
1
2
‖1ST,xu‖r‖v3‖∞ ds. Since t−( 1

2 ∈ L2,∞

and since ‖1ST,xu‖r‖v3‖∞ ∈ L
2r
r+2

,r, we find

‖Bσ(1ST,xu, v3)‖LrLr ≤ C‖1ST,xu‖LrLr‖v3‖L2A ≤ C ′T−
1
2

+ 5
2r ‖u‖YKT,r‖v3‖L2A.

• We have ‖Bσ(1ST,xu,1ST,xv4)‖r ≤ C
∫ t

0
1

(t−s)
1
2+ 3

2r
‖1ST,xu‖r‖1ST,xv4‖r ds.

Hence,

‖1RT,xBσ(1ST,xu,1ST,xv4)‖LrLr ≤ C(

∫ T

0

1

s( 1
2

+ 3
2r

) r
r−1

ds)1− 1
r ‖1ST,xu‖LrLr‖1ST,xv4‖LrLr

and thus

‖1RT,xBσ(1ST,xu,1ST,xv4)‖LrLr ≤ CT 1− 1
r
− 1

2
− 3

2r ‖1ST,xu‖LrLr‖1ST,xv4‖LrLr

and finally

‖1RT,xBσ(1ST,xu,1ST,xv4)‖LrLr ≤ C ≤ T−
1
2

+ 5
2r ‖u‖YKT,r‖v‖YKT,r .

4 Parabolic dyadic decomposition of the time-

space domain

We decompose (0,+∞)× R3 as

(0,+∞)×R3 =
⋃

j∈Z,k∈Z3

{(t, x) / 1 ≤ 4jt < 4, 2jx− k ∈ [0, 1)3} =
⋃

j∈Z,k∈Z3

Rj,k
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and (0, 16 4−j)× R3 as

(0, 16 4−j)× R3 =
⋃
k∈Z3

{(t, x) /0 < 4jt < 16, 2jx− k ∈ [0, 1)3} =
⋃
k∈Z3

Qj,k.

If v ∈ L2L2, then v can be decomposed in an orthogonal series

v =
∑

j∈Z,k∈Z3

1Rj,kv =
∑

j∈Z,k∈Z3

vj,k

with
‖v‖2

L2L2 =
∑

j∈Z,k∈Z3

‖vj,k‖2
L2L2 .

Similarly, if u ∈ YKT,r, then

u =
∑

j∈Z,k∈Z3

1Rj,ku =
∑

j∈Z,k∈Z3

uj,k

with, for every 1 ≤ ρ < r,

sup
j∈Z,k∈Z3

2j(1−
5
ρ

)‖uj,k‖LρLρ < +∞.

Theorem 5.
Let v ∈ L2L2 and u ∈ YKT,r with 5 < r < +∞. Write vj,k = 1Rj,kv,
vj =

∑
k∈Z3 vj,k, and uj,k = 1Rj,ku. Then

A) For 5/2 < ρ ≤ r and α = 1− 5
ρ
,

‖
∫ t

0

(e(t−s)∆ − et∆)
√
−∆

1+α
(uvj) ds‖L2L2 ≤ C‖vj‖2 sup

k∈Z3

‖uj,k‖LρLρ .

B) We have

‖
∫ t

0

(e(t−s)∆−et∆)
√
−∆(uv) ds‖L2L2 ≤ C‖v‖L2L2 sup

T>0,x∈R3

T
1
2
− 5

2r ‖1RT,xu‖LrLr .

Proof.

Proof of A).

We first consider 4jt ≤ 16 and estimateW =
∫ t

0
(e(t−s)∆−et∆)

√
−∆

1+α
(uvj) ds

in L2((0, 16 4−j), L2), then estimateW ∗ =
∫ 16 4−j

0
(e(16 4−j−s)∆−e16 4−j∆)

√
−∆

α
(uvj) ds

in L2(R3) and finally we estimate W =
∫ t

0
(e(t−s)∆ − et∆)

√
−∆

1+α
(uvj) ds in

L2((16 4−j,+∞), L2).
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When t < 16 4−j, we write

W =
∑
l∈Z3

1Qj,l

∫ t

0

(e(t−s)∆ − et∆)
√
−∆

1+α
(
∑
k∈Z3

uj,kv,kj) ds

which we reorganize as

W =
∑
m∈Z3

∑
k∈Z3

1Qj,k+m

∫ t

0

(e(t−s)∆ − et∆)
√
−∆

1+α
(uj,kv,kj) ds =

∑
m∈Z3

Wm.

We have

‖W‖L2((0,16 4−j),L2 ≤
∑
m∈Z3

‖Wm‖L2((0,16 4−j),L2

=
∑
m∈Z3

(∑
k∈Z3

‖1Qj,k+m
∫ t

0

(e(t−s)∆ − et∆)
√
−∆

1+α
(uj,kv,kj) ds‖2

L2((0,16 4−j),L2

)1/2

We have

|
∫ t

0

(e(t−s)∆ − et∆)
√
−∆

1+α
(uj,kvj,k) ds| ≤ CZα(uj,kvj,k).

where

Zα(w) =

∫ t

0

∫
1

(
√
t− s+ |x− y|)4+α

|w(s, y)| dy ds.

As −1 < α < 1, 1
(
√
t+|x|)4+α ∈ L

5
4+α

,∞((0,+∞)× R3), hence

‖Zα(uj,kvj,k)‖L2
t,x
≤ C‖uj,kvj,k‖

L
10

7−2α ,2

t,x

≤ C ′‖uj,k‖
L

5
1−α ,∞
t,x

‖vj,k‖L2
t,x

and thus

‖(1t>0
1

(
√
t+ |x|)4+α

) ∗t,x (uj,kvj,k)‖L2L2 ≤ C‖uj,k‖LρLρ‖vj,k‖L2L2 .

Thus,
‖Wm‖L2L2 ≤ C sup

k∈Z3

‖uj,k‖LρLρ‖vj‖L2L2 .

Moreover, if |m| ≥ 20 and |m0| = 10, we have, for 0 ≤ s ≤ t ≤ 16 4−j,
y ∈ Qj,k, x ∈ Qj,k+m and z ∈ Qj,k+m0 ,

1

(
√
t− s+ |x− y|)4+α

≤ 1

|x− y|4+α
≤ C

2(4+α)j

m4+α
≤ C ′

1

m4+α(
√
t− s+ |z − y|)4+α
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so that, for 0 < t ≤ 16 4−j,

1Qj,k+m(x)Zα(uj,kvj,k)(t, x)

≤ C

m4+α
1Qj,k+m0

(x− (m−m0)2−j)Zα(uj,kvj,k)(t, x− (m−m0)2−j))

and

‖Wm‖L2((0,16 4−j),L2) ≤ C
1

m4+α
sup
k∈Z3

‖uj,k‖LρLρ‖vj‖L2L2 .

Thus, we have proved that

‖W‖L2((0,16 4−j),L2) ≤ C sup
k∈Z3

‖uj,k‖LρLρ‖vj‖L2L2 .

We now estimateW ∗ =
∫ 16 4−j

0
(e(16 4−j−s)∆−e16 4−j∆)

√
−∆

α
(uvj) ds. First,

as vj is supported in 4−j < t < 4 4−j, we write

W ∗ =

∫ 4 4−j

4−j
(e(16 4−j−s)∆ − e16 4−j∆)

√
−∆

α
(uvj) ds

=

∫ 4 4−j

4−j

∫ s

0

(e(16 4−j−s+θ)∆)
√
−∆

2+α
(uvj) dθ ds

so that

|W ∗(x)| ≤C
∫ 4 4−j

4−j

∫ s

0

∫
1

(
√

16 4−j − s+ θ + |x− y|)5+α
|u(s, y)vj(s, y)| dy dθ ds

≤C ′
∫ 4 4−j

4−j

∫
4−j

(2−j + |x− y|)5+α
|u(s, y)vj(s, y)| dy ds.

If 12 4−j ≤ τ ≤ 16 4−j, we have∫ 4 4−j

4−j

∫
4−j

(2−j + |x− y|)5+α
|u(s, y)vj(s, y)| dy ds

≤C
∫ τ

0

∫
2−j

(
√
τ − s+ |x− y|)4+α

|u(s, y)vj(s, y)| dy ds = C2−jZα(τ, x).

Thus,

‖W ∗(x)‖2 ≤ C2−j
1

4 4−j

∫ 164−j

12 4−j
‖Zα(τ, .)‖2 dτ ≤

C

2
‖Zα‖L2((12 4−j ,16 4−j),L2).

This gives
‖W ∗‖2 ≤ C sup

k∈Z3

‖uj,k‖LρLρ‖vj‖L2L2 .
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Finally, we estimateW =
∫ t

0
(e(t−s)∆−et∆)

√
−∆

1+α
(uvj) ds in L2((16 4−j,+∞), L2).

For t > 16 4−j, we have

W =

∫ 16 4−j

0

(e(t−s)∆ − et∆)
√
−∆

1+α
(uvj) ds =

√
−∆e(t−16 4−j)∆W ∗

and thus

‖W‖L2((0,16 4−j),L2) ≤
1√
2
‖W ∗‖2 ≤ C sup

k∈Z3

‖uj,k‖LρLρ‖vj‖L2L2 .

Proof of B).
Let U =

∫ t
0
(e(t−s)∆ − et∆)

√
−∆(uv) ds, U =

∑
j∈Z Uj with

Uj =

∫ t

0

(e(t−s)∆ − et∆)
√
−∆(uvj) ds.

Let γ = 1 − 5
r

and 1
ρ

= 2
5
− 1

r
. Then 1 − 5

ρ
= −γ. From point A), we know

that

‖Uj‖L2Ḣγ ≤ C‖vj‖2 sup
k∈Z3

‖uj,k‖LrLr ≤ C ′2jγ‖vj‖2 sup
T>0,x∈R3

T
1
2
− 5

2r ‖1RT,xu‖LrLr .

and

‖Uj‖L2Ḣ−γ ≤ C‖vj‖2 sup
k∈Z3

‖uj,k‖LρLρ ≤ C ′2−jγ‖vj‖2 sup
T>0,x∈R3

T
1
2
− 5

2r ‖1RT,xu‖LrLr .

We then have∫ +∞

0

∫
|U(t, x)|2 dx dt =

∑
j∈Z

∫ +∞

0

∫
|Uj(t, x)|2 dx dt

+ 2
∑
j∈Z

∑
k∈Z,k<j

∫ +∞

0

〈(−∆)−γUj(t, .)|(−∆)γUk(t, .)〉 dt

≤ C( sup
T>0,x∈R3

T
1
2
− 5

2r ‖1RT,xu‖LrLr)2(
∑
j∈Z

‖vj‖2
L2L2 + 2

∑
j∈Z

∑
k∈Z,k<j

2−γ(j−k)‖vj‖L2L2‖vk‖L2L2)

≤C ′( sup
T>0,x∈R3

T
1
2
− 5

2r ‖1RT,xu‖LrLr)2‖v‖2
L2L2 .

The theorem is proved.
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5 Morrey spaces

For 1 < ρ ≤ q < +∞, the Morrey space Ṁρ,q is defined by

u ∈ Ṁρ,q(R3)⇔ u ∈ Lρloc(R
3) and sup

R>0,x∈R
R

3
q
− 3
ρ‖1B(x,R)u‖ρ < +∞.

We have, if ρ < q, Ṁ q,q = Lq ⊂ Lq,∞ ⊂ Ṁρ,q. In Theorem 1, we can easily
replace Lq,∞ with the larger space Ṁρ,q with 2 < ρ < q (at least, when there
is no forcing term F2 in L∞L3/2,∞):

Theorem 6.
Let 3 < q < +∞, 2 < p with 2

p
+ 3

q
= 1, 2 < ρ < q, 5 < r < +∞.

Then there exists a positive constant ε (which depends on p, q, r and ρ) such
that if ~u0 ∈ BMO−1 is a divergence free vector field, , F1 ∈ Lp/2,∞Ṁρ/2,q/2,
F3 ∈ L1A, F4 ∈ ZKT,r with

‖~u0‖BMO−1 + ‖F1‖Lp/2,∞Ṁρ/2,q/2 + ‖F3‖L1A + ‖F4‖ZKT,r < ε

then the Navier—Stokes problem{
∂t~u = ∆~u+ P div(F1 + F2 + F3 + F4 − ~u⊗ ~u)

~u(0, .) = ~u0

(7)

has a mild solution ~u such that

~u ∈ Lp,∞Ṁρ,q + L2A+ YKT,r.

Proof. We need to prove that B is bounded on Y = Lp,∞Ṁρ,q + L∞L3,∞ +
L2A+YKT,r. We already know that B is bounded on L2A+YKT,r, on L∞L3,∞

and from L∞L3,∞ × YKT,r and from YKT,r × L∞L3,∞ to YKT,r. Moreover,
since Lq,∞ ⊂ Ṁρ,q, B is bounded from L∞L3,∞ × L2A and L2A × L∞L3,∞

to L∞L3,∞ + Lp,∞Ṁρ,q. Thus, we only have to study the behavior of B on
Y × Lp,∞Ṁρ,q and on Lp,∞Ṁρ,q × Y .

Again, we consider Bσ on Lp,∞Ṁρ,q × Y .

• if u ∈ Lp,∞Ṁρ,q and v ∈ Lp,∞Ṁρ,q then uv ∈ Lp,∞Ṁρ,q: we have

|
∫ t

0

∫
σ(D)e(t−s)∆√−∆(uv) ds ≤ C

∫ t

0

1

(t− s)1− 1
p

1

|x− y|3−
3
q

|uv(s, y)| ds dy.

As (−∆)−
3
2q maps Ṁρ/2,q/2 to Ṁρ,q, we find that

‖Bσ(uv)‖Lp,∞Ṁρ,q ≤ C‖u‖Lp,∞Ṁρ,q‖v‖Lp,∞Ṁρ,q .
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• if u ∈ Lp,∞Ṁρ,q and v ∈ L2A ⊂ L2L∞ then uv ∈ Lp,∞Ṁρ,q: we have

‖σ(D)e(t−s)∆√−∆(uv)‖Ṁp,q ≤ C
1√
t− s

‖u‖Ṁρ,q‖v‖∞.

As ‖u‖Ṁρ,q‖v‖∞ belongs to L
2p
2+p

,∞ and 1√
t

belongs to L2,∞ we find that∫ t
0

1√
t−s‖u‖Ṁp,q‖v‖∞ ds belongs to Lp,∞ and thus that

‖Bσ(uv)‖Lp,∞Ṁρ,q ≤ C‖u‖Lp,∞Ṁρ,q‖v‖L2A.

• if u ∈ Lp,∞Ṁρ,q and v ∈ YKT,r then uv ∈ YKT,r: we already know that

‖Bσ(u, v)‖Y2 ≤ C‖u‖Y2‖v‖YKT,r ≤ C ′‖u‖Lp,∞Ṁρ,q‖v‖YKT,r .

Further, we we use Olsen’s inequality [Ols95] that states that pointwise

multiplication with Ṁρ,q maps Ḣ
3
q
r1 to Lr1 if 1 < r1 < ρ, thus v 7→

(−∆)−
3
2q (uv) is bounded from Lr2 to Lr2 for r2 = r1

r1−1
, in particular

for r2 > 2 as ρ > 2. This shows that

‖Bσ(u,1ST,xv)‖r ≤ C

∫ t

0

1

(t− s)
1
2

+ 3
2q

‖1ST,xv‖r‖u‖Ṁρ,q ds.

Thus, we get

‖Bσ(u,1ST,xv)‖LrLr ≤ CT−
1
2

+ 5
2r ‖v‖YKT,r‖u‖Lp,∞Ṁρ,q .

References

[Can99] M. Cannone and F. Planchon, On the nonstationary Navier–Stokes
equations with an external force, Adv. Differential Equations 4 (1999),
697–730.

[Fab72] E. Fabes, B.F. Jones and N. Rivière, The initial value problem
for theNavier—Stokes equations with data in Lp, Arch. Ration. Mech.
Anal. 45 (1972), 222–240.

[Far16] R. Farwig, Y. Giga, and P.-Y. Shu, Initial values for the
Navier–Stokes equations in spaces with weights in time, Funkcial. Ek-
vac. 59 (2016), 199–216.

[Fer21] P.G. Fernández-Dalgo and P.G. Lemarié-Rieusset, Characterisation
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