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Forces for the Navier—Stokes equations and the
Koch and Tataru theorem.

Pierre Gilles Lemarié-Rieusset™®

Abstract

We consider the Cauchy problem for the incompressible Navier—
Stokes equations on the whole space R3, with initial value @y € BMO™!
(as in Koch and Tataru’s theorem) and with force f = divF with
F € L' F~'L' (as in Lei and Lin’s theorem). If iy and F are small
enough, we show the existence of a global mild solution.

Keywords : Navier—Stokes equations, critical spaces, mild solutions.

AMS classification : 35K55, 35Q30, 76D05.

Introduction

In this paper, we consider global mild solutions of the Cauchy problem for
the incompressible Navier-Stokes equations on the whole space R3. When
looking for assumptions that respect the symmetries of the Navier-Stokes
equations (with respect to spatial translation or to dilations), one is lead to
consider the initial data to be in BMO~! (this is the famous Koch and Tataru
theorem [Koc01]) but there is no natural choice for the forcing term. We are
going to consider forces that are known to lead to global mild solutions (if
they are small enough) in the absence of initial value, but the interaction
between those forces and an initial value in BMO™! or between forces in
different functional spaces has not been discussed in the literature.

Forces that we shall consider will be written in divergence form ( f =
div F) where the tensor F will be a sum of tensors Fy + Fy + F3 4+ F, where:

*LaMME, Univ Evry, CNRS, Université Paris-Saclay, 91025, Evry, France; e-mail :
pierregilles.lemarierieusset @Quniv-evry.fr



e T, belongs to a Serrin class LP/%>((0, +00), L%%>*(R3)) with 2 < p <
+oo and 242 =1 [the case of the Serrin class LP/?((0, +-00), L*(R?))

corresponds to the solutions of Fabes, Jones and Riviere [Fab72] in
LPLA]

e T, belongs to L>((0,400), L¥%°°(R?)) (this corresponds to the end-
point p = +o0 of the Serrin class and to the solutions of Kozono [Ko0z96]
and Meyer [Mey99] in L*°L3>)

e 3 belongs to L'((0, +00), A(R?)) where A is the inverse Fourier trans-
form of L' (this corresponds to the endpoint p = 2 of the Serrin class
and to the solutions of Lei and Lin [Leill] in L?A)

e [, belongs to a variant of the Koch and Tataru space. The Koch and
Tataru space Zxr is defined by

_3
IFllz, = sup ¢ 2[|Fll 10,6 x Blao,vi) < T0©

t>0,z0€R3

and
sup t||F(¢, )] co < +00.
>0

We shall define, for 2 < r < 400, the space Zxr, by

_3
IFllz, = sup 7 2(|Fll 10,6 x Blao,vE) < T0©
t>0,20€R3
and

_5
sup t! THFHLTN((t/Q,t)xB(mo,\/i)) < oo
t>0,z0€R3

Notice that Zxr = Zx7r00 C Zr7,. We shall assume that F, belongs
to Zkr, for some r such that 5 < r < 4o0.

This allows us to consider many forces, due to the following remarks:

e Assume that F belongs to a time-weighted Serrin class:
t**F € LP/*7((0, +00), L7*7(R?))

With3<q<+oo,2<p§—|—oo,0§oz,1§p,0§+ooand2a+%+
2 =1 [if p = 400, LP/*# is to be replaced with L>] (this corresponds to
the solutions considered by Cannone and Planchon [Can99] or Kozono
and Yamazaki [Koz94] and more recently by Farwig, Giga and Shu
[Far16] and Kozono and Shimizu [Koz18]). Then F is of the form
F =T € />[92 with L =a+ L and 2+ 2 =1.
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e Assume that F is a sum F = Gy + G, where G; belongs to a Serrin
class L¥i/%>((0, +00), L%/>>(R?)) with 2 < p; < +oo and 2 + 2 =1
If ¢1 < g2, define

a1 _ 3
e(t) = Gt M ay oo IG1 | ot zmme oy 200

then define G5 = 1\G1(t,z)|<e(t)G1 and G4 = ]I\Gl(t,x)ge(t)Gl- We have
“GQSHLPQ/?»OOL%/? S CHGlan/?,OOqu/?»OO

and

1Gallpoe sz < CllGallpor/200 par s,
thus, I is of the form F = F; + Fy with F; = Gy + G5 € Lr2/2:°0[22/2:2
and Fy = G, € L®L3/?>,

e Assume that F is a sum F = G; + Gy where G; belongs to Zgr,, for
some 7; such that 5 < r; < 4o00. If 1 < ry, then F is of the form
F=F,€ Zkry,-

Our main result is then the following one:

Theorem 1.
Let 3 < g < 400, 2<pwz'th%+§:1, 5 < r < +o0o. Then there exists a

positive constant ¢ (which depends on p, q, r) such that if iy € BMO™' is a
divergence free vector field, , Fy € LP/>°[4/2 T, ¢ L®[3%>> F; e L'A,
Fy € ZKT,'/’ with

[tollemo-1 + 1F1ll Lrr2ce parzce + [|F2ll Lo p3r2ee + [[Fsllzra + [|Fall 2z, <€
then the Navier—Stokes problem

{&ﬁzAﬁJrIPdiv(Fl+F2+F3+F4—ﬁ®ﬁ) "

’J(O, ) - ﬁo
has a mald solution @ such that
@€ LP®LY™® + L¥L* + L*A + Vier,

where the space Ykt is defined by

— _3 —
lilly, = sup 744l 20,0 x Bao,vi)) < TOO
t>0,20€R3
and .
sup 1272 ||| o1 20 x Bao ) < OO

t>0,x0C€R3



1 Mild solutions of the Navier—Stokes equa-
tions

Recall that we consider global mild solutions of the Cauchy problem for the
Navier-Stokes equations on the whole space R3:

Oyt + @ - Vi = At — Vp+ divF
divi =0 (2)

We shall look for minimal regularity assumptions for . It is therefore better
to write the non-linear term @ - Vi as div(d ® i) (the two vector fields are
equal when # is a regular divergence free vector field):

Oyl = Al — Vp + div(F — 7 ® @)
divi =0 (3)
6(0, ) - ’ZZO
Taking the divergence of the first equation, we get
Ap=(VaV) (F-i®d)
and thus . L,
AszV((V@V)-(IF—ﬁ@ﬁ)). (4)

Assuming that ﬁp is equal to 0 at infinity, equation (4) defines p as a func-
tion of F and w. More precisely, if F — & ® @ is assumed to belong to
LL ((0,+00), L' (+-421)), then [Fer21] shows that the solution Vp of equation

loc 1+|z|4

(4) which is equal to 0 at infinity is given by the formula

6]?:%6((6@6)-(]17—17@[[))

where, writing
1

- 47 |x|

G(x)
for the fundamental solution of —A
(—=AG = 6 so that, for f € D(R?, f = G x (—Af))

and choosing a function ¢ € D(R? which is equal to 1 on a neighbourhood
of 0, %&0]0;3 is defined as
1

Aaiajakf = —0;0;0, (VG) * f) — (0:0;0k((1 — ¥)G)) * [.
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Thus, we have an equation with one unknown # and two data wy and F.
Defining (formally) the Leray projection operator P as

1~
P=1d-Vdiv,

the Navier—Stokes equations then become

()

1_[(0, ) = ’l_[(), div 60 =0

{aa:A5+P&wF—a®m

This is viewed as a non-linear heat equation and is transformed into the
Duhamel formula

t
i = ey + / e IAPdiv(F — 4 ® @) ds (6)
0

where e'® is the convolution operator with the heat kernel: e!®f = W, * f
with
1 22

W, = Wei 4t
The formalism of global mild solutions of the Cauchy problem for the

Navier—Stokes equations is then described by the following definition and
theorem :

Definition 1.

An adapted triplet of Banach spaces is a triplet of Banach spaces (X,), Z)
such that X is a space of tempered vector distributions on R®, Y is a space
of time-dependent vector fields which are locally integrable on (0,4o00) x R?
and 7 is a space of time-dependent functors which are locally integrable on
(0, +00) x R* and such that

e the operator

170 — S(ﬁg) = etA'L_l:()

1s a bounded linear operator from X to ):
15 (do)lly < Ctlltiol|x;
e the operator
FHQE:/EOMMMF@
1$ a bounded linear operator fromOZ to Y:

IL(F)ly < Co|[F| 2

b}



e the operator

s a bounded bilinear operator from Y x Y to Y:

1B(4,9) |y < Calldly|| 7]y

Remark: Obviously, if the operator S is a bounded linear operator from X
to ), the operator £ is bounded from Z to ) and the operator (i, ¥) — 4 ®v
is a bounded bilinear operator from ) x Y to Z, then (X, ), Z) is an adapted
triplet of Banach spaces.

The following theorem is then easy to check (through the Banach con-
traction principle):

Theorem 2.
Let (X,Y,Z) be an adapted triplet of Banach spaces (with associated con-
stants C, Cy, C3). If Uy and F are small enough:

ACs(Chl ol x + Cof[F2) <1,
then the Navier—Stokes problem (6) has a global solution @ with
[dlly < 2(Cdollx + Co|F[2).
Thus, Theorem 1 will be proved by establishing the following theorem:

Theorem 3.

Let X = BMO™!, Y = LPLe® 4 [ [3° 4+ [2 A4 YVier, (with2 < p < +00,
243 =1 and5 <1 < 400) and Z = [P L2204 [ L3 L LA+ Zyer,.
Then, (X,Y, Z) is an adapted triplet of Banach spaces.

2 The classical Koch and Tataru theorem.

Navier—Stokes equations have symmetries. In particular, we have the two
following properties: if 4 is a solution of the Navier-Stokes problem (6) with
data g and F, then

e [space translation] @(t, z—x) is a solution of the Navier—Stokes problem
(6) with data uy(x — o) and F(t, 2 — x),
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e [space dilation] if A > 0, M\i@(\%*t, A\x) is a solution of the Navier—Stokes
problem (6) with data Aip(Az) and A*F(\%t, A\z).

In particular, we shall look for critical spaces X', ) and Z, meaning that
we have invariance of the norms under space translations and space dilations:
for every 2o € R® and A > 0

[[do(z = o)l = [[to]|x, At (Az)[|x = (|0l x,
[a(t, z = xo)lly = l[lly, It Az) |y = [l
[F(t, & = zo)l|z = |[F|2, INF(A*t,A2) ]|z = [|F||2-

Finally, in order to give sense to the formula

¢ t
ﬁ(t,.):ﬁo—I—A/ ﬁ(s,.)ds—i—]P)div(/ F—d®ids),
0 0

d
we require the continuous embeddings ) C ﬂ L*((0,T), L*( ° )) and
1+ |z4
>0
ZC ﬂ LY((0,7), Ll(d—$)) [Due to the invariance through space trans-
1+ |z4

T>0
lations or space dilations, it is equivalent to ask that @ ~— Lo 1)xpo,1)U is

bounded from Y to L*((0,1) x B(0,1)) and similarly that F — 19 1)xp(0,1)F
is bounded from Z to L'((0,1) x B(0,1)).]
In particular, we have

YcW={i/ suwp i@l 00xB@ovi <+
t>0,x0€R3

Thus, ), is maximal in the class of Banach spaces ) that satisfy the condi-
tions [|i(t,x — zo)[ly = [|@]ly, AN, Az)|ly = |||y and

1
sup// |i(s,y)|* ds dy < +oo0.
lally<tJo JB(0,1)

Similarly, let

2, ={F/ sup t_3/2||]FHL1((O,t)><B(J:0,\/Z)) < +oo}
t>0,270€R3

and, for 1 < p < 400, Obviously, the bilinear operator (u,?) — @ ® ¥ is
bounded from ), x )5 to Z;. However, the operator L fails to be bounded
from Z; to YVs:

Proposition 1.
The operator F +— fot e =)AP div F ds is not bounded from Zy to V.
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Proof. Due to the invariance of the norm of Z; through translations and
dilations, the operator £ would be bounded from Z; to ), if and only if
there would exist a constant Cyy such that, for every F € Z;,

/ /[11]3 F)[2 dt de < Co|[F|,.

We then take

0 _wn(ajlaxQ) 0
Fn - ¢n($1,I2) 0 0
0 0 0

with ¢, € L*(R?). We have, for T > 0 and z € R3,

T
/ / |IB‘n| dt dz < 2321, |1 T3>
B(zo,VT

Thus, F,, € Z,. Moreover, since fR a +82 = }2
1 1 19 f]R2 wn(ﬂh — Y1, T2 _yQ)ny% dy
_APdJV]F - _APdJV]F 64 _fR2 ¢n<x1 — 1,22 _QQ)ﬁdﬁy

0

and

1
L(F,) = (Id —etA)IIP’ divIF,,.

From 25 € L'(R?) + L>(R?), we find

ly|?

(. 1
'8 =X PdivF,| < Cllulli(1+ 7)

and thus

1
1
/ / |6tA—APdiVFn|2 dt dz < 9C?|| v, ||3.
/2 J=1153

In particular,

/ / —PdivF,[*dtdz < (8Cp +9C?) vl
1/2 1,13 =

Thus, if v, is an approximation of the Dirac mass with v, = 1, we find that
the vector field

Wy (71, 72) = ( 1/Jn(951—y1,$2—y2>y_22 dy, — ¢n($1—y1,$2—y2)y—12 dy)
R2 |l R2 Y

is bounded in L*((—1,1)?); but it converges in D'((—1,1)?) to (27, — %)
1 2 1 2

which is not square-integrable on (—1,1)%. Thus, £ is not bounded from Z;

to yg. ]



The Koch and Tataru theorem deals with a subspace of )J,. We define
the subspace Vi as:

Yr={ue€d,/ Stu(l)) \/2_f||ﬁ(t, Moo < o0}
>

Vi is normed with ||@]|y,, = ||y, + sup,=o VE||i@(t, )] e, Where
3
tlly, = sup t 72U :
|| ||y2 150 20 CR? ||L2((07t)><B(a:0,\/i))

Similarly, let

ch%Fea/m%WWUWm<+w}
t>

Zgr is normed with |||z, = [|F||z, + sup,so t||F(%,.)||ec, where

_3
|Fl|z, = sup tQHF‘Ll((O,t)xB(mO,\/Z))'
t>0,x9€R3

Koch and Tataru’s theorem is then the following one [Koc01, Lem02]:

Theorem 4.
A) For iy a divergence-free vector field in S', the following assertions are
equivalent:

(Z) etA'JO € yZ;
(ii) etAﬁg c )/KT;
(iii) e®iy € BMO™! = F2_olo (i.e., there exists vy in BMO such that ty =
V A Ty).
B) The operator F fg e =)APdivF ds is a bounded linear operator from
Zgr to Yir. In particular, the operator B defined as
t
(i, 7) — B(i,7) = / eIAP div(d @ 7) ds
0

1 a bounded bilinear operator from Y1 X Vir to YVir.

C) (BMO™, Yir, Zxr) is an adapted triplet of Banach spaces. Thus, there
exists a positive constant €y such that, if ||| v,y + |F|| zxr < €0, then the
Navier—Stokes problem (6) has a global mild solution @ € V.



Proof. We sketch the proof given by Koch and Tataru in [Koc01], and try
to highlight the obstructing term for proving the boundedness of B on ).
The proof works for more general operators than B. More precisely, let
o(D) be a Fourier multiplier associated to a function o which is smooth
on R?\ {0} and positively homogeneous of order 0 (o(Xf) = o(&) for ev-
ery A > 0) and let B,(u,v) = fg et=920(D)y/—A(uv) ds. Then Koch
and Tataru’s theorem states that B, is bounded on the scalar version Yir
of Yxr. (Similarly, we write Y5 for the scalar version of YVo: |lully, =

_3
SUP;0,0ckr3 T 4 HUHLQ((O,t)xB(xO,\/Z))')
The control of B, in L*™ norm is easy: writing

Bt <€, [ [ e (o)l dy s

we check that

t/2 1
/0 [ et e dyds < il

|u(s, y)lv(s, y)| 1
dyds < C'—=sup v/s||u(s, .)||s sup v/s|lu(s, )| so-
//2/ (Vims-+la— gl %S O Vel leosup Voluts,

The difficult point is the control of B, in Y. Koch and Tataru proved
more precisely that B, is bounded from Yxr x Y5 to Ys. We need to estimate,
for every T' > 0 and = € R®, ||1¢,, By (u, v)|| 212 where

Qro={(ty) /0 <t <T, |-yl <VT}.
Koch and Tataru split w = B, (u,v) in three parts:

o wy = By(u, (1-1gq,,.,)v) : we easily check that 1, |wi| < C\/LTHUHYQHUHYQ
and thus
Mo, willzere < CT*lully, [[v]ly-

o wy(t,y) = o(D)y/—Ae? fot 19,y uv ds. The main lemma in Koch and

Tataru’s proof states that the operator Q(u, v) = v/—Ae!? fot 1g,or uvds
maps Y; X Y3 to L?L? with a norm of order 7°%/* and thus

or,wollzere < Jhwallrere < CT*fully, [[v]ly,-

10



o wy(t,y) = o(D) [7(el)A — )/ =A(1g,y,.uv) ds. They rewrite w;
es® —1d

as
t
wsg = o(D ULy —— |
3 ( )/0 m ( Q1072

and use the maximal regularity of the heat kernel in L?L? to write

uv) ds

e —1d
[ws[ 2> < CHﬁ(]lQmT,mW)||L2L2 < 'Vt guer, uv] 2.

Thus,

1Lor, wsllr2re < [lwsllrzre < ClVEU|l ool Lguor, vl z2re < CT*|lullyier v]]s-

Thus, the obstruction for the boundedness of B, on Y3 lies in ws. O

An easy consequence of the Koch and Tataru theorem is the following
simplified version of Theorem 3:

Proposition 2.

Let X = BMO™!, Y = LP®L9® 4 L®L3° + YVer (with 2 < p < +00,
2+i=1)and 2 = LP/200[,4/2.00 1 [ [3/200 4 Zyn Then, (X,Y, Z) is an
adapted triplet of Banach spaces.

Proof. The boundedness of B on Ygr is given by the Koch and Tataru
theorem and the boundedness of B on L®L** is given by the results of
Kozono and Meyer. Moreover, B is obviously bounded from Yy x L L3>
and L®L3* x Vi to L®L3°:

ds

1B(@, 0) (L, )| s < C/O Vslti(s, )lloollT(s, )l oo N

(with a similar inequality for || B(¥, @)(t, .)||L3.)-
Finally, if 1 <r; < 400, 1 <1y <713 < +00, we have

2rg 2713

t
1
JL(E) s < C / TorE el ds
— S

so that £ is bounded from L™ L7 to L™ [ with
1 3 1 3

1
27’3 1 2T2 5

< % < % — % + % Thus we get the following results:

S =
Wl

11



e B is bounded on LP>®° L% (take r = p/2, r9 = q/2, r3 = q and ry = p)

e B is bounded from Vg7 x LP>* L% and LP>*° LY X Vi1 to LP° LD
(write Vgr C L**L>® and take r; = %, ry =q, 3 =q and ry = p)

e B is bounded from L®L3® x [P®L3® and [P>®[9®° x [*[3> to

L2Po0 [ ats ™ (take 1 = p, 1o = %, r3 = q% and ry = 2p) hence to
LoOL3 4 [P0 [4:0,
Thus, B is bounded on LP>®°L%>® 4+ [ [3% 4 Vi, O

We may notice as well that B is bounded from L L3 x L?>*L> and
6.

L2 x [®[3 to [2P°[ai5:™® (take ry = 2,7y = 3,13 = —qif% and 4 = 2p)
hence to L®L3* + [P L[4,

3 Proof of Theorem 1

To prove Theorem 1, we only need to prove that B is bounded on ) =
[P L8 - [°]3%° 4+ [2A+ Vier,.

We already know that B is bounded on LP**°L%> and that B is bounded
from L®L>® x [P>®L[9>® and LPR®L9® x [RL3® to L®L3® 4 [P35
We have seen as well (since L2A C L*»*L>) that B is bounded from L?A X
LPR[3% and LPRL9® x [2A to LP*®° L% and is bounded from L> L3> x
L?A and L?A x L®L>* to L®L>* + LP>°L[%°°  Moreover, Lei and Lin’s
theorem states that B is bounded on L?A.

Thus, the difficult part lies in the interaction with Vg7 ,. We cannot take
ViT00 = Vit as we cannot prove that B is bounded from Yr x L?A to L*A
or YVir. Replacing Vi with the larger space Vg, will solve the problem:

Proposition 3.

A) If 5 < r < +o0, B is bounded from Yo X Yir, and from Vir, X Vs to
V.

B) Let Y = LP® L0 4 L¥L3® 4 [2A+ YVer, (with2 <p < 400, 243 =1
and 5 < r < +00). Then B is bounded from Y x Yir, and from Vgr, X Y
to Vi,

Proof. Recall that
Qro ={(t,y) /0 <t <T,Je —y| < VT)

and define
Rpo={(t,y) | T/2 <t <T,|z —y| < VT}

12



and
Sr.={(t,y) /] T/A<t<T,|x—y|l <VI0T}.
Y, is defined by

GeVy e sup T3 1g, il < 400
T>0,0€R3 ’

and Vg7, is defined by

. . 15 .
€ Vrry & U €Yyand sup T2 2 |[lg, Ul < 400
T>0,z€R3

Again, we consider the scalar versions Y5, Yg7, and Y of Vs, Vkr, and Y
and replace B with B,.
Following Koch and Tataru, we split w = B, (u,v) in three parts:

o wy = By(u, (1 —1q,,,)v) : we saw that

or, willzere < CTfully, [[v]lys-

o wy(t,y) = o(D)y/—Act? fot 1g,or,uv ds. We saw that

Lo, wallzere < Jwsllzere < CTully,|[vllye.

o ws(t,y) = o(D) fot(e(t_s)A — e")V=A(1g,, uv) ds. We are going to

prove below (Theorem 5 in next section) that

t
[ / (92— V= A(wv) ds||p2r2 < C sup T3 5| Lpy ull prirlfol] e,
0

T>0,z€R3

Thus,
Mor, wsllzre < Jwsllrzre < Cllullyier, Maur.vllzzee < CTJullyier., [[0]lya-

Hence, w € Y5.

If v €Y, we write w = wy + ws with wy = Bo(u, (1 — 1g,,)v) and
ws = By(u,1g, v). We easily check that 1g,  |wy| < C\/LTHUHYZHUHYZ and
thus

I Lrp wiall e < CT™2 02 fully, 0]lys.-

Now, if v = v + vy +v3 + vy € LPLY® + L®°L3° + LA + Yir,, we write
Ws = Bo(]lST’zua Ul) + Ba(]lSTyzua U2) + BO’(]]'ST’Q;u7 U3) + BO’(]IST’Iqu ]]-ST,IU4)

with 1g, u € L"L" and we get:

13



(

3
+34)

k\J\»—\

o |B,(1s, u,01)|, <C f) —lﬁﬂ]lsmuﬂ ||v1|| Lo ds. Since t~ =
%% € L3 7™ and since H]IST,quruvl”quoo € Lwa", we find

L
1Bo (L, 010) | rir < Ol sy tllprir 0] oo pace < C'T™ 272 ullysey, 01 || e paco

e We have ||[1g,, u(s,.)va(s, .)HLT+3 » < Of[1s,  ullrlJva]| 3., hence F(]lgﬂuv) €
L"L". We then write

t 1
B, (1 L Ug) = — (t=)A A (— 1 ) d
( St U UQ) /(; € m( ST,mu/U) S

and use the L"L" maximal regularity of the heat kernel to get
-
1Bo (Lsytt02) e < CllLsyullirie sl s € CTHF ullyy, Jall oo
o 1Ba(is,u i)l < € i s, ull Josle ds. Since +- € 12
and since H]lST’qurvaHoo € Lr+2 , we find

_145
o\ LS, W, U3)||LrLr > S UIILTLT||V3|| 124 > U Yrer, - IUB]L2A-
1B (1 Merer < CllLsy ullirrr [sll2a < CT7272 Jullyyeq,, flos]]

o We have || B (Ls,,,u, Ls,,,va)ll, < C oz Wsroullr | Lsp,vall- ds.

Hence,

T
1 1
ks, Bo(Lsy, s Lsy )l Lrir < C(/ = ) sruller i sy, vl
0 s'ze)e=

N

and thus
1Ry, Bo(Lsytty gy )| ror < CT 77375 | Lsy ul|rpr [ Dy vall e
and finally

_1,5
||]1RT,(L‘BO-(]]-ST,IU7 ]lST,zU‘l)”LTLT < C < T 2% or HUHYKT,THU L

” Yir,r-

4 Parabolic dyadic decomposition of the time-
space domain

We decompose (0, +00) x R? as

(0,400) xR =[] {(tx) /1<4t<4,P2-ke[0,1)’}= ] Ry

JEZ,kEZ3 JEZ,kEZ3

14



and (0,16477) x R? as

(0,1647) xR? = | J{(t.2) /0 <4t < 16,22 —k € [0,1)*} = | Q-

keZ3 keZ3

If v € L?L?, then v can be decomposed in an orthogonal series

v = E ﬂRj’kv = g Uik
JEZLkEZ3 JEZLkEZ3
with

0272 = Z ||Uj7k||%2L2'

JEZ,kEZ3

Similarly, if v € Yk, then

U= E IR, u= E Ujk

JELkEZ3 JELkEZ3
with, for every 1 < p < r,

(1—%)|

sup 2/ |wj k|l Lore < 00

JEZ,kEZ3
Theorem 5.
Let v € L*L* and u € Ygr, with 5 < r < +oo. Write v, = 1z, v,

Vj = D peps Viks and ujy = 1g  u. Then
A) For5/2<p<randa=1-2

p’

t
_ 14+
||/ (=98 — ) V=A"" (wvy) ds| r2r2 < Cllvs 2 Sup k|| Loz
0 kez

B) We have
t

||/(e(t_s)A—etA)\/—A(uv)ds||LzL2 < Clvllpere sup T2 2 | Lp, ullprir
0 T>0,2€R3 ’

Proof.

Proof of A).

We first consider 4/t < 16 and estimate W = [ (e(=92—¢tA)y/ —AHa(uvj) ds

in L2((0,16477), L?), then estimate W* = 0164_] (1647 =9)A 164778y /TR (y0);) ds
in L*(R?) and finally we estimate W = fg(e(t*S)A - etA)\/—AHa(uvj) ds in
L*((16477, +00), L?).

15



When t < 16477, we write
t
W=> 1q, / (=92 _ etA)\/_AH"‘(Z uj v kJ) ds
l€Z3 0 k€Z3
which we reorganize as
t
W=> > "1g,.. / (e®=9A — Y /TR (4, v 45) ds = > Wi
meZ kel 0 ez

We have

W lz2(0,164-5),2 < Z [Wenllz2((0,16 49,2

meZ3

t
s 1+« .
= Z (Z H]le,ker/o (e(t 2 _etA)V_A (uj,kv,kj)d5’|%2((0,164—f),L2)

meZ3 \keZ3

1/2

We have
t
s 1+a
|/ (e(t A em) N (u%kvj’k) d3| < CZa(uj,kvM).
0

where

t 1
Zotw) = [ =yl dyds.

As -1 <a<, W € L4+%’°°((O,+oo) x R3), hence

1 Za(winvin)llez, < Cllujrvjell g0 < Cllujpll s llvjellez,
’ Lt,:c Lt,ac ’

and thus
H(]lt>o;) *t0 (Wi ki) |r2r2 < Cllwjnllpere vl p2rz.
(Vi + [a])t+e
Thus,
[Winllzer: < C sup [Jugil[zore vl zore-

kez3
Moreover, if |m| > 20 and |mg| = 10, we have, for 0 < s < t < 16477,
Y€ Qjks T € Qjpim and 2 € Qjkrmy,

1 1 9(4+a)j 1

< <C <’
e e L TN e R P
16




so that, for 0 <t < 16477,

10, jm (#) Za(uj k1) (L, @)
C

S e L@, (7 — (M — m0)277) Za(uj i) (t, © — (m —mo)277))

and

1
[Wonll 220,16 4-9),22) < Ot sup lwjkllorellvsllzore.
Thus, we have proved that

||WHL2((O,164*J'),L2) < Csup Huj,kHLPLPHUj||L2L2-
keZ3

We now estimate W* = fO1647J (16477 =9)A 164778y /A" () ds. First,
as v; is supported in 477 <t < 4 477, we write

4477

wW* _/ ( (16477 —s)A el647 JA)\/_Aa(uUj) ds
4477

/ / (e16477 =508y /— AT “(uv;) dO ds

so that

447]. s 1
W* <O 9 AGE d d@d
W)l < / // m+|x_y|)5+a|U<s y)v;(s,y)| dy db ds
/4 / 2- J+|I~_y|)5+o¢| (S,y)vj(s,y)|dyds,

If 12477 < 7 < 16477, we have

44—
\/4 / 2-7 4+ |$ y|)5+a ’u(s’ y>vj(87 y)| dy ds
2-J

< [ | =t

Thus,

lu(s, y)vi(s,y)|dyds = CZ’jZa(T, ).

i _ 1 1647 C
IW=(@)ll2 < €27 = NZa( 2 dr < Sl Zallrxza-1064-9),02).
1247

This gives
Wl < C sup [[w;kllLore ||vs] 2Lz
kez3
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Finally, we estimate W = fg(e(t*S)A—em)\/ —AHa(uvj) dsin L*((16477, +00), L?).
For ¢t > 16477, we have

1647 |
W = / (e(t_s)A . etA)\/IHa(uvj) ds = Me(t_lﬁ‘l_’)ﬁw*
0
and thus

1
IWllz20,164-5),12) < —= W2 < C sup [lujllzere vl z2r2-
NG sup it j

Proof of B).
Let U = fg(e(t_S)A — )W =Aw)ds, U =Y., U; with

¢
U; = / (e=92 — e/ —A(uv;) ds.
0

L}ft y=1-2and % =2—1 Thenl-— % = —~. From point A), we know
that

; 1_5
1Ujll 2 < Cllgllz sup [lujellrer < C277ujlla sup T2 2 |[1g, ulprrr-
keZ3 T>0,z€R3

and

i 1_5
1Uill2r— < Cllvillz sup [wjkllore < C277 vl sup T2 20 || Tgp ullorpe
kez3 T>0,z€R3

We then have
400 “+00
/ /|U(t,x)|2da:dt:Z/ /|Uj(t,a:)\2d:cdt
0 jez 0

#2305 [ A U A i ) d

JET kET k<]

1_5 —~(—
<O( swp T | Upg ullrir)*Q NoslFeze +2) - Y 2779 oyl perelfollcer2)

3
T>0,2€R jez JEL kEZLk<]

1_5
<C'( sup T2 | Ap, ullprrr)?(|v]|72
T>0,z€R3

The theorem is proved. O
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5 Morrey spaces
For 1 < p < ¢ < +00, the Morrey space M4 is defined by

(R?) and  sup R%_%H]IB(:C,R)qu < +o00.
R>0,z€R

uwe MR} e uell

loc

We have, if p < ¢, M99 = L9 C Lt C M4, In Theorem 1, we can easily
replace L?*° with the larger space M*? with 2 < p < ¢ (at least, when there
is no forcing term Fy in L>L3/%>):

Theorem 6.
Let3<q<+oo,2<pwz’thl%+§:1,2<p<q,5<7“<—|—oo.
Then there exists a positive constant € (which depends on p, q, r and p) such
that if @y € BMO™ is a divergence free vector field, , Fy € LP/%%)NP/2a/2,
Fs; € LlA, F, € ZKT,T with

tollpao—1 + 11l pos2ioo proszare + [[Fsllpra + [[Fall zr, <€

then the Navier—Stokes problem

{atﬁ: AT +Pdiv(F, +Fy + Fs +F, — 7 ® @)

6(0, ) - 1,_[0
has a mild solution @ such that
@ € LP°MP9 + L*A+ YV,

Proof. We need to prove that B is bounded on ) = Lo NP4 4 [Po]300 4
L?A+Ykr,. We already know that B is bounded on L2A+ Yk, on L>®L>*>
and from L®L** x Y7, and from Vgr, x L*L>*® to Ykr,. Moreover,
since L C M4, B is bounded from L®L3* x L2A and L2A x L>®L¥>
to L®°L¥>® 4+ [P )r4, Thus, we only have to study the behavior of B on
Y x LPoo NP9 and on [P MNP x V.

Again, we consider B, on LP®M"4 x Y.

o if u € LP®MPY and v € LP°MP4 then uv € LP°MP4: we have

|/0t/a(D)e<ts>Am(uv) ds < c/ot( ! —Juv(s, y) dsdy.

t—s)'75 |z -y

1

3

As (—A)"2 maps M*/249/% to M*9, we find that
| By (wv) | oo s < Cllwel| oo yroa 101 poce nroua-
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o if u € LP°MP9 and v € L2A C L2L>™ then uv € LP*®°M?9: we have

—s 1
lo(D)e!" ™92V =A(wv)| 2.4 SC\/t—_—SHuHMp,qHUHoo-

As ||u| ypql|v]| 0 belongs to L7 and \/% belongs to L we find that
fot \/%—SHuHMp,qHUHOO ds belongs to LP*° and thus that
| Bo (uv)l| .o ygoa < Cllull oo ypoall vl 2
o ifu e LP°MP4 and v € Ygr, then uv € Ygr,: we already know that

1Bs (u; 0) |y, < Cllullvalvllvier, < C'llullpoenroallvllvicr, -
Further, we we use Olsen’s inequality [Ols95] that states that pointwise
3

multiplication with M?79 maps H) to L™ if 1 < r, < p, thus v —
3

(—A)72¢(uwv) is bounded from L™ to L™ for r, = ;5. in particular

for ro > 2 as p > 2. This shows that

t
1
Bl L 0l <€ [y ol s
0 (t_5)2 2q
Thus, we get
_1,5
1By (1, Lsy )| Lrpr < CT 7220 [0llyeq ull poce ygona- O
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