Elliptic Hamilton-Jacobi systems and Lane-Emden Hardy-Hénon equations - Archive ouverte HAL Access content directly
Journal Articles Nonlinear Analysis: Theory, Methods and Applications Year : 2023

Elliptic Hamilton-Jacobi systems and Lane-Emden Hardy-Hénon equations

Abstract

Here we study the solutions of any sign of the system −∆u 1 = |∇u 2 | p , −∆u 2 = |∇u 1 | q , in a domain of R N , N 3 and p, q > 0, pq > 1.. We show their relation with Lane-Emden Hardy-Hénon equations −∆ N p w= εr σ w q , ε = ±1, where u → ∆ N p u (p > 1) is the p-Laplacian in dimension N, q > p − 1 and σ ∈ R. This leads us to explore these equations in not often tackled ranges of the parameters N, p, σ. We make a complete description of the radial solutions of the system and of the Hardy-Henon equations and give nonradial a priori estimates and Liouville type results.
Fichier principal
Vignette du fichier
BH-Systeme-gradient-png-17-02-23.pdf (554.25 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03783459 , version 1 (22-09-2022)
hal-03783459 , version 2 (18-02-2023)

Identifiers

Cite

Marie-Françoise Bidaut-Véron, Marta Garcia Huidobro. Elliptic Hamilton-Jacobi systems and Lane-Emden Hardy-Hénon equations. Nonlinear Analysis: Theory, Methods and Applications, In press. ⟨hal-03783459v2⟩
44 View
34 Download

Altmetric

Share

Gmail Facebook X LinkedIn More