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Here we study the solutions of any sign of the system

in a domain of R N ; N = 3 and p; q > 0; pq > 1:: We show their relation with Lane-Emden Hardy-Hénon equations N p w= "r w q ; " = 1;

where u 7 ! N p u (p > 1) is the p-Laplacian in dimension N; q > p 1 and 2 R: This leads us to explore these equations in not often tackled ranges of the parameters N; p; . We make a complete description of the radial solutions of the system and of the Hardy-Henon equations and give nonradial a priori estimates and Liouville type results for the system.

Introduction

Here we study the solutions of any sign of the Hamilton-Jacobi type system u 1 = jru 2 j p ; u 2 = jru 1 j q ;

(1.1) in a domain of R N ; N = 3, and p; q > 0; pq > 1; and we can assume p q; so that p > 1: Our purpose is to describe the behaviour and the existence of solutions when = B r 0 n f0g ; R N n f0g ; R N nB r 0 or R N : Note that if (u 1 ; u 2 ) is a solution, then (u 1 + C 1 ; u 2 + C 2 ) is a solution, in particular the constants are solutions. The study of the radial solutions is fundamental for the understanding of the system. As shown below, it appears that they are governed by the solutions of Lane-Emden Hardy-Hénon equations N p w= "r w q ; " = 1;

(1.2) where u 7 ! N p u (p > 1) is the p-Laplacian in dimension N; q > p 1 and 2 R: This justi…es to make the point on the actual knowledge of these equations, and give a complete study in any range of the parameters N; p; . In the last decades, a great number of elliptic systems deal with positive solutions of semilinear or quasilinear, with source terms in the right hand side, involving powers of the solutions. Our study is motivated by the well known Lane-Emden system u 1 = jxj a u p 2 ; u 2 = jxj b u q 1 ;

(1.3) which has developed an extremely rich literature, starting from the conjecture of nonexistence of solutions in R N for a = b = 0 when

1 p + 1 + 1 q + 1 > N 2 N ;
…rst proved in the radial case for any N 3 in [START_REF] Mitidieri | A Rellich type identity and applications[END_REF], obtained in of [START_REF] Serrin | Nonexistence of positive solutions of Lane-Emden systems[END_REF] for N = 3; extended to N = 4 in [START_REF] Souplet | The proof of the Lane-Emden conjecture in four space dimensions[END_REF], and still open for N 5: The existence of solutions in R N n f0g of such elliptic systems with a possible singularity at the origin, or in an exterior domain R N nB r 0 ; and the question of a priori estimates has been developed in many works, with extensions to quasilinear operators, with possible weight functions, or to analogous problems on manifolds, and it is impossible to quote all of them. Let us also mention a signi…cant amount of results of non existence of supersolutions in R N , started in [START_REF] Mitidieri | Absence of positive solutions for quasilinear elliptic problems in RN. (Russian)[END_REF], [START_REF] Bidaut-Véron | Nonexistence results and estimates for some nonlinear elliptic problems[END_REF].

In contrast, only few results are available in the literature for elliptic systems with gradient terms. A general study of nonexistence of positive supersolutions of systems with source terms is given in [START_REF] Filippucci | Quasilinear elliptic systems in R N with multipower forcing terms depending on the gradient[END_REF]. We can also mention some works on more speci…c systems in [START_REF] Filippucci | Coercive elliptic systems with gradient terms[END_REF], [START_REF] Ghergu | Global and blow-up radial solutions for quasilinear elliptic systems arising in the study of viscous, heat conducting ‡uids[END_REF], [START_REF] Bachir | Asymptotic behavior of blowing-up radial solutions forquasilinear elliptic systems arising in the study of viscous, heat conducting ‡uids[END_REF], [START_REF] Burgos-Perez | Liouville theorems for elliptic systems with nonlinear gradient terms[END_REF], and [START_REF] Diaz | Large solutions for a system of elliptic equations arising from ‡uid dynamics[END_REF], [START_REF] Attar | Existence of postive solutions to nonlinear elliptic systems involving gradient term and reaction potential[END_REF], [START_REF] Abdellaoui | On the existence of positive solutions to semilinear elliptic systems involving gradient terms[END_REF], [START_REF] Singh | Classi…cation of the radial solutions for semilnear elliptic systems with gradient terms[END_REF]. Up to our knowledge the study system (1.1) began very recently, with the publication of [START_REF] Cowan | Singular solutions of a Lane-Emden system[END_REF], where the existence of positive singular solutions of the Dirichlet problem in n f0g was proved when is a small perturbation of a ball of center 0; and the work of [START_REF] Attar | Nonlinear elliptic systems with coupled gradient terms[END_REF], where existence and non existence results are given for the system with forcing terms.

In the sequel, we distinguish three types of solutions: the positive ones, solutions of (1.1), with source type gradient terms u 1 = jru 2 j p ; u 2 = jru 1 j q ; u 1 ; u 2 0;

(1.4) the negative ones, equivalently, setting e u 1 = u 1 ; e u 2 = u 2 ; the solutions of a system with absorption terms e u 1 + jre u 2 j p = 0; e u 2 + jre u 1 j q = 0; e u 1 ; e u 2 0; (1.5) and the mixed ones, equivalently setting c u 1 = u 1 ; c u 2 = u 2 ; the solutions of the mixed type system

c u 1 = jrc u 2 j p ; c u 2 = jrc u 1 j q ; c u 1 ; c u 2 0: (1.6)
In Section 2 we study the existence of particular solutions of system (1.1). We brie ‡y mention the main results concerning the scalar case of the well known Hamilton-Jacobi equation u = jruj q ;

(1.7)

where q > 1: The existence of particular positive or negative radial solutions u (r) = A r q 2 q 1 ; r = jxj ; for q 6 = 2; where A has the sign of (2 q)((N 1)q N ); puts in evidence two critical values q = N N 1 and q = 2: Concerning system (1.1), these two critical values are replaced by four critical conditions linking the parameters, namely q = q i = q i (p), i = 1; 2; 3; 4; de…ned by the relations (N 1)pq 1 = N + q 1 ; (N 1)pq 2 = N + p; q 3 (p 1) = 2; p(q 4 1) = 2:

(1.8)

In the problem, moreover another value is involved, de…ned by the relation

(N 1)pq = N + p + q 2 ;
(1.9) corresponding to the Sobolev exponent relative to equation (1.2).

In Section 3 we study the radial signed solutions of system (1.1). We show that they can be completely described. Indeed the system is invariant by the scaling transformation T `; `> 0; de…ned by T `[(u 1 ; u 2 )] (x) = (l p(q 1) 2 pq 1 u 1 (`x); l q(p 1) 2 pq 1 u 2 (`x));

and thus the radial case reduces to an autonomous system of order 4. Due to the particular form of system (1.1), which involves only the gradients of the functions, we can reduce to a system of order 2. The radial study o¤ers a double interest:

The radial system reduces to a quadratic Lotka-Volterra type system: S t = S(N (N 1)p + S + pZ); Z t = Z(N (N 1)q qS Z):

where

S = r ju 0 2 j p u 0 1 = r (r N 1 u 0 1 ) 0 r N 1 u 0 1 ; Z = r ju 0 1 j q u 0 2 = r (r N 1 u 0 2 ) 0 r N 1 u 0 2 ;
t = ln r:

Moreover system (1.1) is governed by the Hardy-Hénon equations (1.2)in the following way:

For any radial solution (u 1 ; u 2 ) of system (1.1), the function w = r N 1 ju 0 1 j satis…es equation (1.2) with the speci…c values N = 1 + (N 1)(p 1) p ; p = 1 + 1 p ; q = q; = (N 1) 1 pq p ; " = sign(u 0 1 u 0 2 ):

As an unexpected and remarkable fact, the system (1.4), which presents two source terms jru 2 j p ; jru 1 j q ; is not linked with a Hardy-Hénon equation with a source term (" = 1) but an equation with an absorption term (" = 1), see Remark 3.11.

Section 4 is devoted to a complete study of the radial local and global positive solutions of the Hardy-Henon equations (1.2) for " = 1. They are well known in the case N > p > ; and we cannot quote the inmense literature on the subject, starting from the works of [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF] and [START_REF] Ca¤arelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF]. The main purposes of the articles are the obtention of Liouville type results, symmetry properties and a priori estimates for the equation with source (" = 1), and the study of large solutions for the equation with absorption (" = 1),. The other ranges of the parameters N; p; ; such as p > N or < p; < N seem to be less considered. We …rst mention the remarkable work of [START_REF] Serrin | Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities[END_REF] valid for = 0 and any N; p: Let us also quote the nonexistence of possibly nonradial solutions, even in a very weak sense, proved in the pioneer paper [START_REF] Brézis | Some simple nonlinear PDE's without solutions[END_REF] for " = 1; N 3; p = 2; 2; and recent interesting symmetry results of [START_REF] Avila | A uni…ed approach to symmetry for semilinear equation associated to the Laplacian in R N[END_REF] in the case p = 2: see also [START_REF] Galakhov | Some nonexistence results for quasilinear elliptic problems[END_REF] for an extension to any extension to any p > 1, max(N; p) under some regularity assumptions.

Here we treat all the cases of distinct N; p; at Theorems 4.9, 4.12, 4.13, 4.14, 4.15, 4.16. The limit cases = p; = N; p = N; where logarithmic type solutions appear, are described at Theorems 4. 18,4.19, 4.20, and the critical case p = N = at Theorem 4.21. Independently of their application to system (1.1), they o¤er a remarkable diversity of types of behaviour. We hope that they constitute a solid basis for a future nonradial analysis.

Our study is based on the analysis of the phase plane of the associated quadratic Lotka-Volterra system, (

s t = s( p N p 1 + s + z p 1 ); z t = z(N + qs z);
where s = r w 0 w and z = "r 1+ w q jw 0 j p w 0 ; already started in [START_REF] Bidaut-Véron | A new dynamical approach of Emden-Fowler equations and systems[END_REF]. We observe that this system is neither competitive, nor cooperative as soon as (p 1)q > 0. Note also that our study gives local existence results without involving …xed point methods, and global ones without introducing energy functions. Among all the results, let us mention a few striking examples: It is well known that for N > p > there exist explicit solutions in C 0 (R N ) \ C 2 (R N n f0g); often called ground states, when q is the critical Sobolev exponent q S = N(p 1)+p+p For " = 1; = p(N 1) p 1 ; in particular when p = N = ; there also exists a family of explicit solutions, see Proposition 4.17.

For convenience the proofs of the main results of Section 4, using various techniques of dynamical systems, are given in the Appendix.

In Section 5 we describe the behaviour of the radial solutions of system (1.1), from the results of Section 4. Because of the great diversity of the possible solutions, we concentrate our study on constant sign solutions in B r 0 n f0g or R N nB r 0 ; and above all on global solutions in R N n f0g :

Comparing to the scalar case, the situation is much more intricated: even in the case p = q; where we show that the system can be completely integrated, there exists an in…nity of solutions such that u 1 6 = u 2 . In the general case p q we give all the local and global nonconstant solutions of systems (1.4), (1.5) and (1.6). It appears that the components u 1 ; u 2 of a solution in (0; 1) can admit di¤erent kinds of singularties near 0: either lim r !0 ju i j = 1; and we say that u i is 1-singular, or if lim r !0 u i = c 2 R and lim r !0 ju 0 i j = 1; and we say that u i is a cusp-solution, see Remark 2.3. Concerning (1.4), we get the following, from Theorems 5.9, 5.12 and 5.15: Theorem 1.1 Let pq > 1; p q; and let q 1 ; q 2 ; q 3 ; q 4 be de…ned in (1.8). Consider the system (1.4).

(1) Local solutions near 0: There exists radial solutions in B r 0 n f0g such that

u 1 = jru 2 j p + C 1 0 ; u 2 = jru 1 j q + C 2 0 ; with C 1 ; C 2 > 0 when p < N N 1 ; with C 1 = 0; C 2 > 0 when q < q 1 ; with C 1 > 0; C 2 = 0 when q < q 2 :
(2) Global solutions: up to additive constants, For q 2 < q < q 3 ; there exists a 1-singular solution (u 1 ; u 2 ) = (A 1 r p(q 1) 2 pq 1

; A 2 r q(p 1) 2 pq 1

); with A 1 ; A 2 > 0; and also solutions such that

(u 1 ; u 2 ) r!0 (u 1 ; u 2 ); lim r!1 r N 2 u 1 = c 1 > 0; lim r!1 r (N 1)q 2 u 2 = c(c 1 ) > 0; if q < N N 1 ; lim r!1 r N 2 u 1 = c 1 > 0; lim r!1 r N 2 u 2 = c 2 > 0;
if q > N N 1 : For q > q 4 ; there exist cusp-solutions (u 1 ; u 2 ) such that

(u 1 ; u 2 ) r!0 (jA 1 j r p(q 1) 2 pq 1 ; jA 2 j r q(p 1) 2 pq 1 
); lim

r!1 u 1 = c 1 > 0; lim r!1 u 2 = c 2 > 0;
and there is no other global solution.

We also give the existence of solutions of (1.4) in R N nB r 0 at Theorem 5.10.

The cases of system (1.5) and (1.6), treated at Theorems 5.9, 5.13, 5.14 when q < q 4 are even richer. Note the existence of a family of explicit solutions of system (1.6) in the case q = q , which corresponds to the critical Sobolev exponent for the Hardy-Henon equation, see Theorem 4.9. The case q > q 4 ; treated at Theorem 5.15 is remarkable, since it gives the existence of bounded solutions of any of the three systems (1.4), (1.5) and (1.6).

In Section 6 we extend the study of system (1.1) to the nonradial case. Our main aim is …nding upper estimates, which appears to be a good challenge. Indeed the system is not variational, and does not o¤er monotony or comparison properties which could be used as it was done in [START_REF] Bidaut-Véron | Liouville resuts and asymptotics of solutions of a quaslinear elliptic equation with supercritical source gradient term[END_REF], [START_REF] Souplet | The proof of the Lane-Emden conjecture in four space dimensions[END_REF]. Moreover the Bernstein technique, developped in [START_REF] Gidas | Global and local behavior of positive solutions of nonlinear elliptic equations[END_REF], [START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF], [START_REF] Serrin | Cauchy-Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities[END_REF] for semilinear or quasilinear equations, appears not to be e¢ cient for systems, as in the case of system (1.3), except in special cases, as in [START_REF] Bidaut-Véron | Asymptotics of solutions of some nonlinear elliptic systems[END_REF]. Finally we cannot use the very performant methods of moving planes or moving spheres, see the pioneer results of [START_REF] Ca¤arelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], [START_REF] Reichel | Nonexistence results for semilinear cooperative elliptic systems via moving spheres[END_REF], even with boundedness assumptions on the gradients, because in R N there aways exist constant nontrivial solutions. Here we give a …rst estimate, and in the same way a nonexistence result, see Theorem 6.2, Proposition 6.5 and Theorem 6.6:

Theorem 1.2 Let pq > 1; p q 1:
(i) If (N 1)pq < max(N + p; N + q); then any supersolution of system (1.1) in = R N , without condition of sign, is constant.

(ii) Let (u 1 ; u 2 ) be any supersolution of system (1.4) in B r 0 n f0g (resp. in R N nB r 0 ): Then there exists 2 (0; r 0 ) and C > 0, depending on u 1 ; u 2 , such that for any r 2 (0; ) ;

ju 1 (r)j C ( max(1; r 2 p(q 1) pq 1 
) if p(q 1) 6 = 2; jln rj if p(q 1) = 2;

ju 2 (r)j C ( max(1; r 2 q(p 1) pq 1 
) if q(p 1) 6 = 2; jln rj if q(p 1) = 2:

(iii) Let (f u 1 ; f u 2 ) be any positive subsolution of system (1.5) in B r 0 n f0g (resp. in R N nB r 0 ): Then there exists 2 (0; r 0 ) and C > 0, depending on f u 1 ; f u 2 , such that for 0 < jxj < ;

f u 1 (x) C ( max(1; jxj 2 p(q 1) pq 1 
) if p(q 1) 6 = 2; jln jxjj if p(q 1) = 2;

f u 2 (x) C ( max(1; jxj 2 q(p 1) pq 1 
) if q(p 1) 6 = 2; jln jxjj if q(p 1) = 2:

Note that the range (N 1)pq < max(N +p; N +q) in assertation (i) is optimal for supersolutions. Nevertheless we think that the result is much more general concerning solutions:

Conjecture: for any p; q such that pq > 1; all the solutions of system (1.1) in = R N , without condition of sign, are constant.

We end this section by the study of the existence of supersolutions of system (1.4) in an exterior domain, see Theorem 6.7, and the existence of solutions in a domain with measure data, see Theorem 6.9.

In Section 7 we conclude the paper by suggesting some extensions of our results to more general systems.

Critical exponents of the system

We …rst recall some results on the scalar case of equation (1.7), which can be found for example in [START_REF] Bidaut-Véron | Local and global properties of solutions of quasilinear Hamilton-Jacobi equations[END_REF].

On the scalar case

Clearly a function u is a negative solution of (1.7) if and only if e u = u is a positive solution of the equation with absorption e u + jre uj q = 0:

(2.1)

As we mentioned above, two critical values are involved: q = N N 1 ; and q = 2: When q = 2 the equation is equivalent to (e u ) = 0; so all the solutions are decribed; in particular all the solutions in R N n f0g are radial, and given by u = ln(cr 2 N + d); c; d 2 R:

(1) For q 6 = 1; N N 1 ; 2; there exist particular solutions of (1.7) on (0; 1), given by

u (r) = A r q 2 q 1 + c; r = jxj ; c 2 R; (2.2)
with jA j q 2 A = (2 q)((N 1)q N ) j2 qj 1 q jq 1j 2 q : This function is 1-singular for q < 2 : positive for N N 1 < q < 2; such that lim r!0 u = 1; and negative either for 1 < q < N N 1 where lim r!0 u = 1; it is a cusp-solution for q > 2 : lim r!0 u = 0; lim r!0 u 0 = 1:

(2) In the radial case, equation (1.7) only depends on the derivative, and it can be completely integrated: it reduces to W 0 = r (N 1)(1 q) jW j q ; where W = r N 1 u 0 ; hence there exists a union of disjoint intervals ( ; R) where for q 6 = N N 1 setting b = q 1 (N 1)q N ;

u 0 = r 1 N (C + br N (N 1)q ) 1 q 1 < 0; or u 0 = r 1 N (C br N (N 1)q ) 1 q 1 > 0: (2.3)
Then we deduce u by integration. The case C = 0 corresponds to the particular solutions. When q = N N 1 ; there exist negative solutions near 0 with a logarithmic behaviour, given by u 0 (r) = r 1 N ((q 1) jln rj + C)

1 q 1 : (2.4)
From (2.3) we get the existence of other radial solutions in R N n f0g :

for N N 1 < q < 2, for any c 0; k > 0; there exists positive solutions of (1.7) such that lim r!0

r 2 q q 1 (u c) = A ; lim r!1 r N 2 (u c) = k > 0;
for 1 < q < N N 1 , and for any c < 0; k > 0; there exists a negative solution u such that

lim r!0 r N 2 (u c) = k; lim r!1 r 2 q q 1 (u c) = jA j ;
for q > 2; and for any c > d there exist decreasing bounded solutions of (1.7), such that

lim r!0 u = c; lim r!0 r 2 q q 1 (u c) = jA j ; lim r!1 u = d;
and they are either positive for d > 0 or negative for c < 0.

(3) In the nonradial case, the …rst upperestimates are due to [START_REF] Lions | Quelques remarques sur les problèmes elliptiques quasilinéaires de second ordre[END_REF]: if u is any solution (with no condition of sign) in a domain ; then for any q > 1; jru(x)j C N;q dist(x; @ )

1 q 1 :
As a consequence, if = R N ; then u is constant. Note that the result is false if q < 1; since u given at (2.2) still exists and u 2 C 2 (R N ): The estimates have been extended to a quasilinear equation m u = div( jruj m 2 ru) = jruj q ; m > 1 in [START_REF] Bidaut-Véron | Local and global properties of solutions of quasilinear Hamilton-Jacobi equations[END_REF], where one can …nd a complete classi…cation of the negative solutions u 2 C 1 ( n f0g) near 0; and a partial classi…cation of the positive ones. The negative solutions of the equation (1.7) have been studied in [START_REF] Nguyen | Isolated singularities of positive solutions of elliptic equations with weighted gradient term[END_REF]. When q 2; the …rst author gives in [START_REF] Bidaut-Véron | Liouville resuts and asymptotics of solutions of a quaslinear elliptic equation with supercritical source gradient term[END_REF] a detailed behaviour of the positive solutions in B r 0 n f0g or in R N nB r 0 in a more general context of equation m u = u p jruj q ; p 0:

Particular solutions and critical values of the parameters

When searching particular solutions of system (1.1), some critical values of the parameters p; q are involved in the problem, showing the complexity of the system compared to the scalar case :

De…nition 2.1 Let pq > 1; p q: Following (1.8) and (1.9), we de…ne

q 1 = q 1 (p) = N (N 1)p 1 ; q 2 = q 2 (p) = N + p (N 1)p ; q 3 = q 3 (p) = 2 p 1 ; q 4 = q 4 (p) = p + 2 p ; q = q (p) = 2N + p 2(N 1)p 1 :
corresponding to …ve curves in the set f(p; q) : pq > 1; p q > 0g, namely L 1 = fq = q 1 g = fN 1)pq = N + qg ; L 2 = fq = q 2 g = fN 1)pq = N + pg ;

L 3 = fq = q 3 g = fq(p 1) = 2g ; L 4 = fq = q 4 g = fp(q 1) = 2g ; L = fq = q g = (N 1)pq = N + p + q 2 :
Note that L 1 ; L 2 ; L intersect the diagonal fp = qg for p = N N 1 ; and L 3 ; L 4 for p = 2: And L 2 intersect L 3 for p = 2(N 1); L intersects L 3 for p = 2(N 1); see the …gures below in Section 5.

Proposition 2.2 Let pq > 1; p q: Then for q 6 = q 1 ; q 2 ; the system (1.1) admits particular solutions such that

u 0 1 = 1 a 1 r p+1 pq 1 ; u 0 2 = 2 a 2 r q+1 pq 1 ; (2.5)
where a i = a i (N; p; q) > 0 for i = 1; 2; and 1 = sign(q 2 q); 2 = sign(q 1 q): (2.6)

If moreover q 6 = q 3 ; q 4 , it has solutions

u 1 = " 1 A 1 r p(q 1) 2 pq 1 + c 1 = " 1 A 1 r p(q q 4 ) pq 1 + c 1 ; u 2 = " 2 A 2 r q(p 1) 2 pq 1 + c 2 = " 2 A 2 r (p 1)(q q 3 ) pq 1 + c 2 ;
(2.7) where A i = A i (N; p; q) > 0, c i 2 R for i = 1; 2; and " 1 = sign(q 2 q)(q q 4 ); " 2 = sign(q 1 q)(q q 3 ):

Proof. We search particular solutions of the form (u 0

1 ; u 0 2 ) (C 1 r 1 ; C 2 r 2 ). Then C 1 ( 1 N + 1)r 1 1 = r p 2 jC 2 j p ; C 2 ( 2 N + 1)r 2 1 = r q 1 jC 2 j p ;
hence we …nd 1 = p+1 pq 1 ; 2 = q+1 pq 1 ; and setting

1 = 1 N + 1 = N + p (N 1)pq pq 1 ; 2 = 2 N + 1 = N + q (N 1)pq pq 1 ;
we get the results with jC 1 j = (j 1 j j 2 j p )

1 pq 1 ; jC 2 j = (j 2 j j 1 j q )
1 pq 1 : By integration, if the denominator is nonzero, we get in particular the solution (u 1 ; u 2 ); with jA i j = C i (pq 1) p(q 1) 2 ; i = 1; 2:

Remark 2.3 Note that u 1 is 1-singular for q < q 4 and it is a cusp-solution for q > q 4 : And u 2 is 1-singular for q < q 3 and it is a cusp-solution for q > q 3 ; so there exist solutions (u 1 ; u 2 ) of system (1.1) with components of di¤ erent types when q 3 < q < q 4 : Remark 2.4 It is clear that the exponents q 1 ; q 2 ; q 3 ; q 4 ; are strongly involved in the existence of particular solutions. The exponent q corresponds to the Sobolev exponent for equation (1.2), o¤ ering other types of explicit solutions, see Theorem 5.6. Note the relations q q 1 () (N 1)pq N + q; q q 2 () (N 1)pq N + p; q q 3 () q(p 1) 2; q q 4 () p(q 1) 2; q q () (N 1)pq N + p + q 2 ; q 1 min(q 2 ; q 3 ) max(q 2 ; q 3 ) q 4 ;

q 1 N N 1 () q 2 N N 1 () p N N 1 ;
q 2 q 3 () p N; q 1 q q 2 ; q q 3 () p 2(N 1):

When q = p; we …nd again the two critical values of the scalar case:

q 1 = q = q 2 = N N 1 ; q 3 = q 4 = 2:
3 First properties in the radial case

In the radial case, system (1.1) is reduced to

(u 00 1 + N 1 r u 0 1 ) = ju 0 2 j p ; (u 00 2 + N 1 r u 0 2 ) = ju 0 1 j q ; (3.1) 
so it only involves the derivatives. Moreover, setting

w 1 = r N 1 u 0 1 ; w 2 = r N 1 u 0 2 ; (3.2) 
system (3.1) is equivalent to a …rst order system:

w 0 1 = r (N 1)(1 p) jw 2 j p ; w 0 2 = r (N 1)(1 q) jw 1 j q : (3.3)
Consider any solution (u 1 ; u 2 ) 2 C 2 (0; r 0 ); r 0 1: We say that u i is regular if u 0 i has a limit at 0 and lim r !0 u 0 1 = lim r !0 u 0 2 = 0; if u 1 and u 2 are regular, then (u 1 ; u 2 ) extends as a function in C 2 (B r 0 B r 0 ), from the equations. We say that u i is singular if it is not regular. Among the singular solutions we distinguish the 1-singular ones, such that lim r !0 ju i j = 1; and the cusp-solutions u i (lim r !0 u i = c 2 R and lim r !0 ju 0 i j = 1); where the singularity is at the level of the gradient.

Local existence and uniqueness

Proposition 3.1 Let pq > 1; p q: (i) Let r 0 0 and c 1 ; c 2 ; b 1 ; b 2 2 R such that b 2 6 = 0 if q < 1:
Then there exists a unique solution (u 1 ; u 2 ) of system (3.1) in the neighborhood of r 0 ; such that

u 1 (r 0 ) = c 1 ; u 2 (r 0 ) = c 2 ; u 0 1 (r 0 ) = b 1 ; u 0 2 (r 0 ) = b 2 :
(ii) For any R > 0; the only radial solutions

(u 1 ; u 2 ) 2 C 1 (B R B R ) of system (1.1) are the constants.
Proof. (i) First suppose r 0 > 0: Since the system only depends on the derivatives, it is equivalent to consider system (3.3), with initial data (w 01 ; w 0;2 ) 2 R 2 If q > 1; the classical Cauchy-Lipschitz theorem applies. Next suppose q < 1; the theorem still applies if w 01 6 = 0. Consider the case w 01 = 0; w 0;2 6 = 0. In a neighborhood [r 0

; r 0 + ] of r 0 : there holds 0 < C 1 < jw 2 j < C 2 ;

C 3 < w 0 1 < C 4 ; 0 < jw 1 j < C 5 : hence we can take w 1 as a new variable, and consider that r is a function of w 1 : Then we get the system (

dr dw 1 = f (w 1 ; r; w 2 ) = r (N 1)(1 p) jw 2 j p ; dw 2 dw 1 = g(w 1 ; r; w 2 ) = jw 1 j q r (N 1)(2 p q) jw 2 j p ;
for which we can apply the Cauchy-Lipschitz theorem in [0; C 5 ) (r 0 ; r 0 + ) (C 1 ; C 2 ), since f is continuous, and locally Lipschitz with respect to (r; w 2 ):

(ii) Next suppose that b 1 = b 2 = 0; and r 0 0: Then

u 0 1 (r) = r 1 N Z r r 0 s N 1 u 0 2 p ds; u 0 2 (r) = r 1 N Z r r 0 s N 1 u 0 1 q ds; u 0 1 (r) r 1 N Z r r 0 s N 1 u 0 2 p ds r 1 N Z r r 0 s N 1 (s 1 N Z s r 0 N 1 u 0 1 q d ) p )ds ; (3.4) 
First assume r 0 > 0: In a neigborhood [r 0 ; r 0 + ], there holds

u 0 1 (r) C Z r r 0 Z s r 0 u 0 1 q ) p d ds C 0 Z r r 0 Z s r 0 u 0 1 pq d )ds C 00 Z r r 0 u 0 1 pq d : (3.5) 
Let F (r) = Z r r 0 ju 0 1 j pq d : Then F 0 (r) C 00 F pq on (r 0 ; r 0 + ): If u 0 1 is not identically 0 on (r 0 ; r 0 + ); then F > 0 on (r 0 ; r 0 + ) for some small enough, and F 1 pq + cr is nondecreasing, which is contradictory, since F (r 0 ) = 0; thus u 0 1 0 and then u 0 2 0 on (r 0 ; r 0 + ); and similarly on (r 0 ; r 0 ) for small enough. Then u 1 c 1 ; u 2 c 2 in [r 0 ; r 0 + ] :

Next assume r 0 = 0: Then from (3.4), and since p > 1; The result would be false for pq < 1: Indeed in that case there exist solutions of system (1.5):

u 0 1 (r) r 1 N Z r 0 s (N 1)(1 p) ( Z s 0 N 1 u 0 1 q d ) p ds r 1 N Z r 0 s (N 1)(1 p)+(N 1)p ( Z s 0 u 0 1 q d ) p ds Z r 0 ( Z s 0 u 0 1 q d ) p ds Z r 0 s p 1 ( Z s 0 u 0 1 pq d )ds r p Z r 0 u 0 1 pq d C Z r 0 u 0 1 pq d : De…ning F (r) = Z r 0 ju 0 1 j pq d we conclude as above that u 0 1 0; u 0 2 0 on (0; ) for small enough. Finally let (u 1 ; u 2 ) 2 C 1 (B R B R )
f u 1 = A 1 r 2+p(1 q) 1 pq = A 1 r 2+ p(q+1) 1 pq ; f u 2 = A 2 r 2+ q(p+1)
1 pq ;

belonging to C 2 (R N ) which proves the existence of entire nontrivial solutions, and gives a counterexample to uniqueness.

Remark 3.3 Note a consequence of Proposition 3.1: for any r 0 > 0; there exist local radial solutions (u 1 ; u 2 ) such that u 0 1 (r 0 ) = 0; and u 0 2 (r 0 ) = b 6 = 0: This shows the great richness of the solutions of the system: for system (1.4) (resp. (1.5) for example, it means that only one of the functions has a minimum (resp. a maximum) at r 0 : Remark 3.4 From Proposition 3.1, one can divide the maximal existence interval ( ; R) of (u 1 ; u 2 ) in intervals (a; b) where u 0 1 and u 0 2 have a constant sign. Indeed there exists at most one point < s < R where w 1 (s) = 0; w 1 < 0 on ( < s) and w 1 > 0 on (s < R); in the same way, there is at most one point < < R where w 2 ( ) = 0; w 2 < 0 on ( ; ) and w 1 > 0 on ( ; R):

3.2 Upperestimates on the radial supersolutions Proposition 3.5 Let pq > 1; and (u 1 ; u 2 ) be any radial supersolution of system (1.1), de…ned on an interval (0; r 0 ) (resp. (r 0 ; 1) . There exists a constant C = C(N; p; q) > 0 such that for r > 0 small enough (resp. large enough),

u 0 1 (r) Cr p+1 pq 1 ; u 0 2 (r) Cr q+1 pq 1 :
Proof. Consider any supersolution of system (1.1). Equivalently, the functions w 1 ; w 2 de…ned by (3.2) satisfy w 0 1 r (N 1)(1 p) jw 2 j p ; w 0 2 r (N 1)(1 q) jw 1 j q :

As in Remark 3.4, w 1 ; w 2 do not vanish for r small enough (resp. large enough), depending on u 1 ; u 2 : Consider any interval (R 1 ; R 2 ) where w 1 ; w 2 do not vanish. Let r 0 2 (R 1 ; R 2 ) and " 0 2 0; 1 4 such that R 1 < r 0 (1 2" 0 ) < r 0 (1 + 2" 0 ) < R 2 : First assume that w 1 > 0; w 2 > 0: Since w i is nondecreasing, for any " 2 (0; " 0 ] ; we have r 2 (r 0 (1 ") < r 0 (1 + ")) there holds, since w 1 > 0 and " 0 < 1;

with c i = c i (N; p) w 1 (r 0 ) Z r 0 r 0 (1 ") (N 1)(1 p) w p 2 ( )d w p 2 (r 0 (1 ")) Z r 0 r 0 (1 ") (N 1)(1 p) d = c 1 "w p 2 (r 0 (1 "))r N (N 1)p 0 ;
and symmetrically, since w 1 > 0; changing r 0 into r 0 "; w 2 (r 0 ") c 2 "w q 1 (r 0 (1 2"))(r 0 (1 ")) N (N 1)q c 3 "w q 1 (r 0 2")r 

N (N 1)q 0 : Then w 1 (r 0 ) c 4 " p+1 w pq 1 (r 0 (1 2"))r N +p (N
w 1 (r 0 ) = r N 1 0 u 0 1 (r 0 ) c 6 r N +p (N 1)pq) 1 d 0 = c 6 r N +p (N 1)pq pq 1 0 ; equivalently u 0 1 (r 0 ) c 7 r p+1 pq 1 0 :
If w 1 < 0; w 2 < 0; the same conclusion holds by changing 1 + " into 1 ":

Finally if w 2 > 0 > w 1 ; we get w 1 (r 0 ) c 1 "w p 2 (r 0 (1 "))r N (N 1)p 0 ; w 2 (r 0 (1 ") c 2 "w q 1 (r 0 )(r 0 (1 ")) N (N 1)q c 3 "w q 1 (r 0 )r N (N 1)q 0 ; w 1 (r 0 ) c 4 " p+1 w pq 1 (r 0 )r N +p (N 1)pq 0 ;
hence we obtain the same conclusion without using any bootstrap.

Reduction to a quadratic system of order 2 and formulation as a Hardy-Hénon equation

In the sequel we show that system (3.1) can be reduced to a polynomial system order 2, and equivalently to an equation of order 2 relative to w 1 :

Proposition 3.6 Let (u 1 ; u 2 ) be any radial solution of system (1.1). At any point r where u 0

1 (r) 6 = 0; u 0 2 (r) 6 = 0; we de…ne S = r ju 0 2 j p u 0 1 ; Z = r ju 0 1 j q u 0 2 : (3.6)
Then system (3.1) is equivalent to a Lodka-Volterra type system:

S t = S(N (N 1)p + S + pZ); Z t = Z(N (N 1)q qS Z): t = ln r; (3.7)
and we recover u 0 1 and u 0 2 in function of r; S; Z by the formulas

u 0 1 = (r (p+1) jSj jZj p ) 1 pq 1 signS; u 0 2 = (r (q+1) jSj q jZj) 1 pq 1 signZ: (3.8)
Proof. Following the ideas of [START_REF] Bidaut-Véron | A new dynamical approach of Emden-Fowler equations and systems[END_REF], at each point where u 0 1 6 = 0 and u 0 2 6 = 0, we set

X = r u 00 1 u 0 1 ; Y = r u 00 2 u 0 2 ; S = r ju 0 2 j p u 0 1 ; Z = r ju 0 1 j q u 0 2 ; t = ln r; Then X + N 1 = S; Y + N 1 = Z:
Next we di¤erentiate with respect to t: Since X =

(u 0 1 )t u 0 1 : Y = (u 0 2 )t u 0 2
; we obtain

S t S = 1 + p (u 0 2 ) t u 0 2 (u 0 1 ) t u 0 1 = 1 + pY X = N (N 1)p + S + pZ; Z t Z = 1 + q (u 0 1 ) t u 0 1 (u 0 2 ) t u 0 2 = 1 + qX Y = N (N 1)q qS Z:
So we obtain the quadratic system (3.7) valid in any case of sign of the unknown, and deduce (3.8).

Remark 3.7 The …xed points of the system are M 0 = (S 0 ; Z 0 ) = ( (N 1)p(q 2 q) pq 1

; ((N 1)p 1)(q 1 q) pq 1

); (0; 0); N 0 = (0; N (N 1)q); A 0 = ((N 1)p N; 0):

(3.9)
We easily check that the particular solutions (u 0 1 ; u 0 2 ) of system (3.1) given at (2.5) correspond to the …xed point M 0 .

Next we show the precise link with a Hardy-Hénon equation:

When looking at the system (3.7) for pq 6 = 1; and comparing to the systems introduced in [12, Section 3], we observe that the system is exactly linked to the positive solutions w of a radial quasilinear equation of Hardy-Hénon type in dimension N, of the form

N p w = ( w 0 p 2 w 0 ) 0 N 1 r w 0 p 2 w 0 = "r w q ; " = 1; (3.10)
where q > 0; 2 R; p > 1; q 6 = p 1;and N is not necessarily an integer. Indeed in [12, Section 3], this equation is reduced to a system of order 2, valid for " = 1; by setting

s(t) = r w 0 w ; z(t) = "r 1+ w q w 0 p w 0 ; t = ln r; (3.11) 
and obtained the system

( s t = s( p N p 1 + s + z p 1 ); z t = z(N + qs z); (3.12)
and one recovers w by the formula w = r ( s p 1 jzj)

1 q+1 p ; = p + q + 1 p : (3.13)
It is precisely the case, as we show below.

Proposition 3.8 Let (u 1 ; u 2 ) be any radial solution of system (1.1), and let w 1 ; w 2 be de…ned by (3.2). Then the function w = jw 1 j satis…es the equation

N p w = "r w q ; " = sign(u 0 1 u 0 2 ) (3.14)
where N p is the p-Laplace operator in dimension N; for speci…c values of p; and N :

p = 1 + 1 p > 1; q = q; = (N 1) 1 pq p ; N = 1 + (N 1)(p 1) p : (3.15)
Moreover at each point where w 6 = 0;

S(t) = s(t) = r w 0 1 w 1 ; Z(t) = z(t) = r w 0 2 w 2 = sign(u 0 2 ) r 1+ jw 1 j q w 0 1 1 p w 0 1 (3.16)
Proof. Computing w 2 from the …rst equation of (3.3) and reporting in the second one, we get (r

(N 1)(p 1) p (w 0 1 ) 1 
p ) 0 = sign(u 0 2 ) r (N 1)(1 q) jw 1 j q ;
that is in a developed form:

((w 0 1 ) 1 
p ) 0 (N 1)(p 1) pr (w 0 1 ) 1 p = sign(u 0 2 ) r (N 1) 1 pq p jw 1 j q
So we get an equation with the form (where we recall that w 0 1 > 0)

( w 0 1 p 2 w 0 1 ) 0 N 1 r w 0 1 p 2 w 0 1 ) = N p w 1 = sign(u 0 2 ) r jw 1 j q
where p; ; N are de…ned at (3.15); and the fact that w 1 = sign(u 0 1 ) w leads to equation (3.14), and we check easily that s S and z Z: (3.17)

= p + q p + 1 = p + N (N 1)pq pq 1 = (N 1)p(q 2 q) pq 1 (3.18) so N > p () p > N N 1 ; N + > 0 () q < N N 1 ; p + > 0 () q < q 2 : (3.19)
Remark 3.10 For pq > 1; p q; there holds 1 < p < 2; q > p 1; and N > 1: The map (N; p) 2 [1; 1) (1; 1) 7 ! (N; p) 2 (1; 1) (1; 2) is injective, the reciprocal application is (N; p) 7 ! ( N+1 p 2 p ; 1 p 1 ); and then is …xed by the relation = (N 1)(q+1 p) 2 p : Remark 3.11 Equation (3.14) is of source type for " = 1; of absorption type for " = 1: One could think that problem (1.4), where u 1 ; u 2 are positive superharmonic functions, with two source terms jru 2 j p ; jru 1 j q is linked to a Hardy-Hénon equation with source term " = 1: In fact it is not the case: the solutions of system (1.4) on an interval (0; ) correspond to a Hardy-Hénon equation of absorption type. Indeed consider any positive solution of system (1.4). As it is well known, any positive solution

(u 1 ; u 2 ) satis…es u 0 1 ; u 0 2 0 in (0; ): Indeed r N 1 u 0 1 is decreasing; if there is r 0 such that u 0 1 (r 0 ) > 0; then r N 1 u 0 1 C 0 > 0 on (0; r 0 ); thus u 1 + C 0 N 2 r 2 N
is increasing, which is impossible. Then u 0 1 0 on (0; ); moreover if there exists r 1 such that u 0 1 (r 1 ) = 0; then it is unique and r 1 is a maximum point, so that u 0 1 0 on (0; r 1 ) which is contradictory, unless u 1 is constant. Then the nonconstant solutions satisfy u 0 1 ; u 0 2 < 0 in (0; ):

Remark 3.12 Another way to get an autonomous system is more common in the literature: the change of unknown where b 1 = (N 1)pq (p+N ) pq 1

u 0 1 = r p+1 pq 1 x(t); u 0 2 = r
and b 2 = (N 1)pq (q+N ) pq 1 : However this system gives less information on the solutions of system (3.1): it admits at most two …xed points, namely (0; 0); and P 0 = ((jb 1 j jb 2 j p ) 1 pq 1 sign(b 1 ); (jb 2 j jb 1 j q ) 1 pq 1 sign(b 2 )) which corresponds to the particular solutions. Moreover it is singular at (0; 0) whenever q < 1: The quadratic system (3.7) gives a great amount of information, because it is obtained by di¤ erentiation of the equations of (3.1). It has four …xed points, and each of them corresponds to a type of behaviour near 0 or 1.

Solutions of the Hardy-Hénon equations

Here we consider the positive solutions of the radial equation

N p w = d dr ( dw dr p 2 dw dr ) N 1 r dw dr p 2 dw dr = "r w q ; " = 1; (4.1) 
in dimension N; where q > p 1 > 0: In the sequel, N is not necessarily an integer.

General formulation by a quadratic system

0n any interval where w 0 6 = 0; we de…ne s(t) = r w 0 w ; z(t) = "r 1+ w q w 0 p w 0 ; t = ln r; (4.2) and obtain the system, valid for the two equations,

( s t = s( p N p 1 + s + z p 1 ); z t = z(N + qs z): (4.3) 
We recover w by the formula w = r (jsj p 1 jzj)

1 q+1 p ; w 0 = r ( +1) (jzj jsj q ) 1 q+1 p sign( "z); = p + q + 1 p : (4.4)
In the plane (s; z) we de…ne the quadrants

Q 1 = (s; z) 2 R 2 : s > 0; z > 0 ; Q 2 = (s; z) 2 R 2 : s < 0; z > 0 ; Q 3 = Q 1 ; Q 4 == Q 2:
Remark 4.1 Observe that sz has the sign of ": If " > 0 (equation with source), then

(s; z) 2 Q 1 [ Q 3 ; If " < 0 (equation with absorption) then (s; z) 2 Q 2 [ Q 4 : Moreover, if p < N;
and if w is de…ned on an interval (0; ); then it is always decreasing, hence (s; z) 2 Q 1 : Indeed (r N 1 jw 0 j p 2 w 0 ) is decreasing. If there exists r 0 such that w 0 (r 0 ) > 0; then for r < r 0 ,w 0p 1 C 0 r 1 N ; thus w is bounded, which by integration contradicts the assumption p < N. In case p > N; it can happen, as we see in the sequel, that w 0 > 0 near 0:

In this paragraph we exclude the limit cases p = N; = p; = N; which will be studied at paragraph 4.6.

We de…ne two possible critical values

q c = (N + )(p 1) N p ; q S = N(p 1) + p + p N p ; (4.5)
which are the well known Serrin's exponent and Sobolev exponent respectively, in case N > p > . Note that q c < 0 when (N + )(N p) < 0:

We …rst observe that the equation admits particular solutions w = a r ; = p + q + 1 p ; a q p+1 = " j j p 2 (N p (p 1) );

well de…ned for " (N p (p 1) ) > 0 that is q q c has the sign of "(p + )(N p). Then w is 1-singular at 0 if p + > 0; and C 0 -regular if p + < 0.

De…nition 4.2 In the following we say that a positive solution w of equation (4.1) on an interval

(0; ) is C 0 -regular if w 2 C 2 (0; ) \ C 0 [0; ), that means lim r!0 w = c 0: If it exists, such a solution satis…es (r N 1 jw 0 j p 1 ) 0 r !0 r N 1+ c p ; then r N 1 jw 0 j p 1 r !0 Cr N+ c p ; jw 0 j r !0 Cr +1 p 1 ; jw 00 j r !0 Cr +2 p p 1 . Then w 2 C 2 [0; ) if p 2; w 2 C 1 [0; ) if 1;
and w presents a cusp at 0 if < 1: We say that w is a C 0 -ground state if moreover = 1:

Next we divide the study in 6 regions relative to (N; ) 2 R 2 , and we show that we can reduce the study to only 3 regions, for which one of them is well known. This is due to a transformation proved in [START_REF] Bidaut-Véron | A new dynamical approach of Emden-Fowler equations and systems[END_REF]Remark 2.4]: Lemma 4.3 For …xed p > 0; consider the sets de…ned by As a consequence we prove that some upperestimates, which are classical when N > p > ; and still valid for other ranges of the parameters: Lemma 4.4 Let q > p 1 > 0; and N; 2 R: There is a constant C N;p;q > 0 such that any positive solution of (4.1) solution with in (0; r 0 ) (resp in (r 0 ; 1) satis…es w(r) C N;p;q r in (0; r 0 2 ) (resp. in (2r 0 ; 1)).

A = (N; ) 2 R 2 : N > p > ; B = (N; ) 2 R 2 : p > N > ) ; C = (N; ) 2 R 2 : N > > p ; D = (N; ) 2 R 2 : > N > p ; (4.7) E = (N; ) 2 R 2 : p > > N ; F = (N; ) 2 R 2 : > p > N : Let (N; ) 2 R 2 and ( b N; b ) 2 R 2 such that ( b N p)(p + ) = (N p)(p + b ): Set = b N p N p = p + b p + = b N + b N + ; ( 4 
Proof. In case " = 1; this comes the Osserman's property, which is valid in the nonradial case when N is an integer, see a proof in [39, Proposition 5.2], and for any subsolution. In the case " = 1; it also extends to integral estimates in the nonradial case, see [ From now on in this section, the proofs of the lemmas and theorems are given in the Appendix. We …rst analyze the nature of the …xed points of the system: (i) The point M 0 corresponds to the particular solutions de…ned at (4.6).The eigenvalues 1 ; 2 of the linearized system associated to system (4.3) at M 0 are the roots of the equation

T ( ) = 2 (s 0 z 0 ) + q p + 1 p 1 s 0 z 0 = 2 (p +p N) + (p + )(N p)(q q c ) (p 1)(q p + 1) = 0: (4.12)
M 0 is a saddle point when s 0 z 0 < 0: (ii) The eigenvalues at N 0 are l 1 = p+ p 1 and l 2 = (N+ ); and fs = 0g contains nonadmissible trajectories linked to l 2 . N 0 is a saddle point when (p + )(N + ) > 0:

(iii) The eigenvalues at A 0 are 1 = N p p 1 and 2 = N p p 1 (q c q) = N + + q p N p 1 ; and fz = 0g contain nonadmissible trajectories linked to 1 : A 0 is a saddle point when q > q c : (iv) The eigenvalues at (0; 0) are 1 = p N p 1 and 2 = N + ; and fs = 0g and fz = 0g contain nonadmissible trajectories, linked to 1 and 2 : The point (0; 0) is a saddle point when (N p)(N + ) > 0:

Remark 4.6 Recall that any trajectory in the phase plane distinct from the two axis corresponds to an in…nity with one parameter of solutions of equation (4.1). So any saddle-point leads at most to two families of such solutions, and any source or sink leads to an in…nity of solutions with two parameters.

Next we make the link between the convergence to the …xed points and the behaviour of the solutions w near 0 or 1: Lemma 4.7 Let w be any positive solution of (4.1) de…ned near 0 (resp near 1). Then as r ! 0; t ! 1 (resp r ! 1; t ! 1)

(i) lim(s; z) = M 0 =) w w ; w 0 w 0 ; (ii) lim(s; z) = N 0 =) lim w = c > 0; lim r +1 p 1 w 0 = c N+ q p 1 sign( "(N + )); (iii) lim(s; z) = (0; 0) =) lim w = c > 0; lim r!0 r N 1 p 1 w 0 = d 6 = 0; (iv) lim(s; z) = A 0 =) lim r N p p 1 w = k > 0; lim r N 1 p 1 w 0 = k p N p 1 sign( "z):
Lemma 4.8 Let w be any local solution in (0; r 0 ) (resp. in (r 0 ; 1): Then the associated trajectory in the phase plane is bounded as t ! 1 (resp. t ! 1): It converges to one of the …xed points of the system, or has a limit cycle around M 0 (when q = q S ).

Study of regions A and F

We …rst consider region A; where the behaviour of the system (4.3) has been described in [START_REF] Bidaut-Véron | A new dynamical approach of Emden-Fowler equations and systems[END_REF], and we deduce the following: Theorem 4.9 Let N > p > (region A). There exist local (C 0 -regular) solutions: for " = 1 and any w 0 > 0 there exists a unique solution such that lim r !0 w = w 0 > 0; lim r !0 r +1 p 1 w 0 = "c(w 0 ); c(w 0 ) > 0:

(1) Let p 1 < q < q c : For " = 1 and any k > 0; there exists an in…nity of local solutions near 0 such that

lim r!0 r N p p 1 w = k > 0: lim r !0 r N 1 p 1 w 0 = c(k) < 0:
For " = 1; there is no positive solution in (r 0 ; 1); r 0 > 0.

For " = 1; there exists a global particular solution w = a r p+ q+1 p : Moreover there exist solutions such that

lim r!0 r N p p 1 w = k > 0; lim r!1
r w = a :

(2) Let q > q c : For " = 1 and k > 0; there exists a local solution near 1, unique up to a scaling, such that

lim r!1 r N p p 1 w = k > 0; lim r !1 r N 1 p 1 w 0 = c(k) < 0:
For " = 1; all the local solutions near 0 are C 0 -regular (the singularity is called removable), and not global.

For " = 1; there is a particular solution w = a r p+ q+1 p : Moreover (i) either q < q S , there exists no C 0 -ground state and there exist solutions such that (ii) or q > q S and there exist C 0 -ground states, such that lim

r!0 w = w 0 > 0; lim r!1
r w = a :

(iii) or q = q S and there is a family of explicit (well known) C 0 -ground states:

w = c(d + r p+ p 1 ) N p p+ ; d = c q p+1 (N + ) 1 ( N p p 1 ) 1 p : (4.13)
In the case N > p > ; q = q c , a precise local behaviour of logarithmic type was in great part studied for = 0; " = 1 in [START_REF] Aviles | Local behavior of solutions of some elliptic equations[END_REF], [START_REF] Guedda | Local and global properties of solutions of quasilinear elliptic equations[END_REF]Theorem 4.1], and for " = 1 in [START_REF] Véron | Comportement asymptotique des solutions d'équations elliptiques semi-linéaires dans R N[END_REF]; the existence of such solutions was not clear. We give below a complete description: Theorem 4.10 (1) Let N > p > and q = q c : Then For " = 1 and any w 0 > 0 there exist a unique solution such that (p 1)(p+ ) : For " = 1; there is no positive solution in (r 0 ; 1); r 0 > 0. For " = 1; there exist an in…nity of solutions such that 

F (r) = r N ( (p 1) jw 0 j p p + "r w q+1 q + 1 + w jw 0 j p 2 w 0 r ) = r N p w p jsj p 2 s( (p 1)s p + z q + 1
);

either with = N p p or = N+ q+1 ; satisfying respectively

F 0 N p p (r) = r N 1+ ( N + q + 1 N p p )w q+1 ; F 0 N+ q+1 (r) = r N 1 ( N + q + 1 N p p ) w 0 p ;
Other type of functions can be computed as the ones obtained for = 0 in [7, Proposition 2.2], coinciding with the functions above when q = q S : In particular q = q S is the case of constant energy, leading to the existence of the ground states mentioned above at (4.13) when " = 1, and to explicit local solutions on [0; r 0 ) and on [r 0 ; 1) when " = 1:

From Lemma 4.3, we deduce the complete behaviour in region F. It o¤ers a new striking result in case q = q S of existence of explicit C 0 -ground states, increasing and bounded at 1 : Theorem 4.12 Let > p > N (region F). Then all the conclusions of Theorems 4.9 (for q 6 = q c ) and 4.10 (for q = q c ) apply after changing r into 1 r : In particular for " = 1 and any c > 0 there exist a unique local solution near 1 such that

lim r !1 w = C > 0; lim r !1 r +1 p 1 w 0 = "d(C); d(C) > 0:
For " = 1; q = q S there are explicit solutions given by

w = c(d + r p+ p 1 ) p N p+ ; d = c q p+1 (N + ) 1 ( p N p 1 ) 1 p
satisfying lim r!0 w = 0; with w r !0 cr p N p 1 and lim r!1 w = cd p N p+ :

Study of Regions B and D

The case of region B is particularly interesting; indeed we prove the following: For " = 1 they are not global, and there is no solution in (r 0 ; 1). For " = 1 there exists two types of global solutions in (0; 1) :

w (r) = a r p+ q+1 p ; solutions such that lim r!0 w = w 0 > 0; lim r!0 r N 1 p 1 w 0 = c(w 0 ) < 0; w r !1 w :
Note that in the case N = 1; p = 2; = 0; Theorem 4.13 can be checked easily, since the equation w 00 = "w q admits a …rst integral: w 02 + 2" q+1 w q+1 = C: As a direct consequence we obtain the behaviour in region D: Here also we have an very interesting behaviour: we …nd in…nitely many bounded solutions in an exterior domain which do not converge to 0 at 1; and global ones when " = 1 : Theorem 4.14 (region D) Let p < N < : Then For " = 1 there exists local solutions near 1 of three types:

lim r!1 w = C > 0; lim r !1 r +1 p 1 w 0 = "c(C); c(C) > 0; lim r!1 w = 0; lim r!1 r N p p 1 w = k > 0; lim r!1 r N 1 p 1 w 0 = c(k) < 0; lim r!1 w = C > 0; lim r!1 r N 1 p 1 w 0 = D 6 = 0:
For " = 1 they are not global, and there is no solution in (0; r 0 ). For " = 1 there exists two types of global solutions in (0; 1) :

w (r) = a r p+ q+1 p ; which is C 0 -regular, solutions such that w r !0 w ; lim r!1 w = C > 0; lim r!1 r N 1 p 1 w 0 = c(C) > 0:

Study of regions C and E

In regions C and then in region E from Lemma 4.3, we obtain the following results: and there exist also solutions on (r 0 ; 1) such that u(r 0 ) = 0 and others such that lim r !r 0 w = 1; and w r !1 w , and nonglobal solutions on (0; r 0 ) such that w r !0 w and lim r !r 0 = 1.

For " = 1 there is no local solution in (0; r 0 ). and there exist also solutions on (0; r 0 ) such that w(r 0 ) = 0 , and others such that lim r !r 0 w = 1; and w r !0 w ; and there exist nonglobal solutions on (r 0 ; 1) such that w r !1 w and lim r !r 0 w = 1.

For " = 1 there is no local solution in (r 0 ; 1).

Other case of explicit solutions

We have recalled at (4.13) the well-known explicit grounds states obtained for q = q S and " = 1:

Here we give another case where we …nd global explicit solutions in R N n f0g : We remark that system (1.1) admits the solutions (u 1 ; u 2 ) = (u; u) when p = q; where u is a solution of the scalar equation (1.7), given explicitely by (2.3) and (2.4); and the corresponding solutions of system (3.7) satisfy the relation S Z; and p = N = : This suggests that system (4.3) with general p; N; may admit particular explicit solutions for some values of the parameters. We show below that it is true, and this result appears to be new: 

w = (c d N ln r) N q N+1 ; if p = N; (4.20) 
where c > 0 and d p;q;N = (p 1)(q p+1) p(p N)

( p (p 1)(q+1) ) 1 p , d N = q N+1 N ( N (N 1)(q+1) ) 1 N .

Limit cases

Here we give a complete study of all the critical cases = p 6 = N; = N 6 = p; p = N 6 = ; p = N = :

4.6.1 Case = p 6 = N Theorem 4.18 (1) Assume N > p = For " = 1; there exist local solutions near 1 such that lim r!1 r N p p 1 w = k > 0; lim r!1 r N 1 p 1 w 0 = c(k) < 0:
For " = 1; there exists an in…nity with 2 parameters of local solutions near 1 such that lim r !1

(ln r) p 1 q p+1 w(r) = p 1 q p 1 q p+1 : (4.21) 
For " = 1; there exists at least a local solution near 0 such that lim r !0 jln rj For " = 1; there exists an in…nity with 2 parameters of local solutions near 1 such that

p 1 q p+1 w(r) = p 1 q p 1 q p+1 : (4.22) (2) 
lim r !1 w = C > 0; lim r !1 r N 1 p 1 (ln r) 1 p 1 w 0 = "c(C): (4.24) 
For " = 1; there exists C 0 -regular solutions w = a r N p q+1 p : There exists local solutions near 0 such that w r !0 w ; and local ones near 1 such that w r !1 w : There exists an in…nity of solutions such that 

w r !0 w ; lim r !1 w = C > 0; lim r !1 r N 1 p 1 (ln r) 1 p 1 w 0 = ( q + 1 p N p ) q q+1 p : (4.25) (2) 
w = (C d N ln r) N q N+1 ; C 2 R: (4.26) 
For " = 1 there is no local solution near 0 nor 1:

5 Description of the radial solutions of system (3.1)

5.1 The case p = q

In the case p = q; the system (1.1) admits solutions of the form u 1 u 2 u; where u is any solution of the scalar equation (1.7). However at Proposition 3.1 we have constructed local solutions such that u 1 6 = u 2 , for example such that u 0 1 (r 0 ) = 0; u 0 2 (r 0 ) 6 = 0 at some point r 0 > 0: A natural question is the existence global solutions in R N n f0g : Here we answer this question: Proposition 5.1 Assume that p = q > 1: Then all the radial solutions of system (1.1) satisfy the …rst integral in any interval of de…nition

u 0 1 q u 0 1 u 0 2 q u 0 2 Cr (1 N )(q+1) ; C 2 R; (5.1) 
and can be computed by quadratures. All the radial solutions (u

1 ; u 2 ) in R N n f0g satisfy u 1 u 2 u;
where u is any solution of the scalar Hamilton-Jacobi equation.

Proof.

Here system (3.3) reduces to w 0 1 = r (N 1)(1 q) jw 2 j q ; w 0 2 = r (N 1)(1 q) jw 1 j q : As a consequence, jw 1 j q w 0 1 jw 2 j q w 0 2 = r (N 1)(1 q) jw 1 j q jw 2 j q r (N 1)(1 q) jw 1 j q jw 2 j q = 0: So we get the relation jw 1 j q w 1 jw 2 j q w 2 C; equivalent to (5.1). Suppose that C 6 = 0: By symmetry we can suppose that C = c q+1 > 0: Then we obtain w 0

2 jC + jw 2 j q w 2 j q q+1 = r (N 1)(1 q) :
We claim that the solution cannot be de…ned on R N n f0g. Indeed let

F ( ) = Z 0 d jc q+1 + j j q j q q+1 = Z c 0 d jc q+1 + j j q j q q+1 + Z c d jc q+1 + j j q j q q+1 :
This function is well de…ned, since the integrals are convergent at the bound c since q q+1 < 1: And the integrals are convergent at the bounds 1; since q > 1; thus F is bounded. If the solution is global, that means r describes (0; 1); then F (w 2 ) = r N (N 1)q N (N 1)q + D; D 2 R; for q 6 = N N 1 ; F (w 2 ) = ln r + D if q = N N 1 ; which is impossible in any case. So the solutions are not global. Hence all the global solutions on (0; 1) satisfy w 1 w 2 ; u 1 = u 2 + c; c 2 R; where u 2 is solution of the scalar equation. The nonglobal solutions can be computed on any interval where w 1 ; w 2 have a constant sign, by the formulas F (w 2 ) = r N (N 1)q N (N 1)q + D;

for q 6 = N N 1 ; F (w 2 ) = ln r + D if q = N N 1 :
Remark 5.2 When p = q 6 = N N 1 ; the existence of local solutions near 0 or 1 will be described as a particular case of Theorem 5.7. When q = N N 1 ; such solutions do not exist, because F is bounded.

Constant sign solutions (u 0

1 ; u 0 2 ) of system (3.1)

In this paragraph, we study the existence of radial solutions (u 1 ; u 2 ) of system (1.1) in terms of the derivatives u 0 1 ; u 0 2 ; by applying all the results of Section 4 to system (3.1). It appears that the situation is extremely rich when p 6 = q: Here we focus our study on solutions de…ned in B r 0 n f0g ; or R N nB r 0 ; and above all on global solutions in R N n f0g : :

We distinguish four regions of study, corresponding respectively to the regions A; B; C; D de-…ned at (4.7) for system (4.3), where p; N; are de…ned at (3.15), (3.17 (p; q) 2 R 2 : pq > 1; q p; q 6 = q 1 ; q 2 ; p; q 6 = N N 1 o we consider the subsets of S de…ned by

A = p > N N 1 ; q < q 2 ; B = p < N N 1 ; C = q 2 < q < N N 1 ; D = q > N N 1 :
Lemma 5.4 Let (u 1 ; u 2 ) be any radial solution of system (1.1) de…ned near 0 (resp near 1); let w 1 ; w 2 be associated by (3.2) and w = jw 1 j , solution of (3.14) with (3.15). Then u 0 1 has the sign of w 0 ; and u 0 2 has the sign of "w 0 :

(5.2)

And as r ! 0; t ! 1 (resp r ! 1; t ! 1);

(i) w w ) (u 0 1 ; u 0 2 ) (u 0 1 ; u 0 2 ); (ii) 
( lim w = c > 0; lim r +1 p 1 w 0 = d 6 = 0; ) lim r N 1 ju 0 1 j = c 1 > 0; lim r (N 1)q 1 ju 0 2 j = c 2 > 0;
(iii)

( lim w = c > 0; lim r N 1 p 1 w 0 = d 6 = 0; ) lim r N 1 ju 0 1 j = c 1 > 0; lim r N 1 ju 0 2 j = c 2 > 0;
(iv)

( lim r N p p 1 w = k > 0; lim r N 1 p 1 w 0 = d(k) 6 = 0; ) lim r (N 1)p 1 ju 0 1 j = k > 0; lim r N 1 ju 0 2 j = jd(k)j > 0:
Proof. From Proposition 3.8, the function w = jw 1 j = r N 1 ju 0 1 j satis…es the Hardy-Hénon equation with p; q; N; given by (3.15),(3.17), and we deduce jw 2 j from any of the formulas jw 2 j = (r (N 1)(p 1) w 0 1 )

1 p ; or w 0 2 = r (N 1)(1 q) w q ;

(5.3) and then we obtain the conclusions by computation, from the relations u 0 i = r 1 N w i ; i = 1; 2: The signs of the derivatives are obtained from (3.8) and (3.11), since s S. Remark 5.5 (i) From the phase plane analysis in Section 4, all the trajectories relative to singular global solutions of the Hardy-Hénon equation (3.14) are located in the quadrant containing the point M 0 = (S 0 ; Z 0 ) corresponding to the particular solutions. Morover from (3.6), u 0 1 has the sign of S and u 0 2 has the sign of Z: So u 0 1 has the sign of S 0 and u 0 2 has the sign of Z 0 : From (3.9), for q 6 = q 1 ; q 2 ; u 0 1 < 0 () q > q 2 ; u 0 2 < 0 () q > q 1 : (5.4)

Then, with (5.2) and (5.4) we have a complete knowledge of system (3.1) as soon as we know the absolute value of the derivatives.

(ii) Some results of Section 4 involve the Serrin exponent q c and the Sobolev exponent q S ; de…ned at (4.5). We easily check that for our system, q q c () q q 1 = q 1 (p); q q S () q q = q (p):

As a consequence of Theorems 4.9, 4.13, 4.14, 4.15 , we get the following result on global solutions of system (1.1), where we use Remark 5.5: Theorem 5.6 (1) Let (p; q) 2 A; with q < q 1 . Then there exists a particular solution of system (3.1) such that u 0 1 = a 1 r p+1 pq 1 > 0 and u 0 2 = a 2 r q+1 pq 1 > 0; there exist solutions on (0; 1) such that u 0 1 ; u 0 2 > 0 and

lim r!0 r (N 1)p 1 u 0 1 = c 1 > 0; lim r!0 r N 1 u 0 2 = c(c 1 ) > 0; (u 1 ; u 2 ) r!1 (u 1 ; u 2 ):
(2) Let (p; q) 2 A; with q > q 1 :Then there exists a particular solution such that u 0 1 = a 1 r p+1 pq 1 > 0 and u 0 2 = a 2 r q+1 pq 1 < 0;

Proof. The existence of the solutions is a direct consequence of Theorem 5.7. and the behaviour follows from Brezis-Lions Lemma applied to u i ; i = 1; 2: Next consider any radial supersolution (u 1 ; u 2 ) and assume q q 2 : If C 1 > 0; then u 1 cr 2 N and ju 0 1 j cr 1 N near 0; and ju 0 1 j q 2 L 1 loc (B r 0 ); thus q < N N 1 ; and (r N 1 u 0 2 ) 0 cr (N 1)(1 q) ; then by integration we deduce that lim r !0 r N 1 ju 0 2 j = l 0; and ju 0 2 j r 1 (N 1)q N (N 1)q if l = 0: In any case, ju 0 2 j cr 1 (N 1)q : Then (r N 1 u 0 1 ) 0 cr (1 (N 1)q)p ; thus r (1 (N 1)q)p 2 L 1 loc (B r 0 ); so that N + p (N 1)pq > 0; which is q < q 2 : Similarly, if C 2 > 0; then q < q 1 ; moreover ju 0 2 j cr 1 N near 0, thus ju 2 0 j p Cr (1 N )p ; and ju 0 1 j p 2 L 1 loc (B r 0 ); thus N (N 1)p > 0: In the same way we obtain existence of solutions in an exterior domain with a linear type: Theorem 5.10 Existence of solutions of system (1.4) in R N nB r 0 : in region C; there exist solutions such that

lim r !1 r N 2 u 1 = c 1 > 0; 8 < : lim r!1 r (N 1)q 2 u 2 = c(c 1 ); if q < 2 N 1 ; lim r!1 u 2 = c 2 > 0; if q > 2 N 1 ; lim r!1 (jln rj 1 u 2 ) = c(c 1 ); if q = 2 N 1 ;
in regions C and D; there exist solutions such that

lim r !1 r N 2 u 1 = c 1 > 0; lim r !1 r N 2 u 2 = c 2 > 0;
in regions A with q > q 1 , and D; there exist solutions such that lim r !1

u 1 = c 1 > 0; lim r !1
r N 2 u 2 = c 2 > 0:

Global radial existence and behaviour

Next we study all the global constant sign solutions (u 1 ; u 2 ) of system (1.1), of any sign. Since they are obtained by integration of the derivates, we are lead to divide some of the regions A; B; C; D into subregions, according to the position of q with respect to q 3 ; q 4 :

De…nition 5.11 We set A = A 1 [ A 2 [ A 3 ; C = C 1 [ C 2 [ C 3 ; D = D 1 [ D 2 [ D 3 ;
where

A 1 = n p > N N 1 ; q < q 1 o
; A 2 = fq 1 < q < min(q 2 ; q 3 )g ; A 3 = fq 3 < q < q 2 g ;

C 1 = n q 2 < q < min(q 3 ; N N 1 ) o ; C 2 =
n max(q 2 ; q 3 ) < q < min(q 4 ; N N 1 )

o ; C 3 = n q 4 < q < N N 1 o ; D 1 = n N N 1 < q < q 3 o ; D 2 = n max(q 3 ; N N 1 ) < q < q 4 o ; D 3 = n max(q 4 ; N N 1 ) < q o :
We …rst study the problem with source terms (1.4) in case q < q 4 : Theorem 5.12 For (p; q) 2 C 1 [ D 1 ; up to positive constants, system (1.4) admits two types of global nonconstant solutions: (u 1 ; u 2 ), with both components 1-singular, De…nition 6.1 We say that a couple (u 1 ; u 2 ) of C 2 function in a domain R N is a supersolution (resp. a subsolution) of system (1.1) if u 1 jru 2 j p ; u 2 jru 1 j q ; in ; resp. u 1 jru 2 j p ; u 2 jru 1 j q ; in : (6.2) Theorem 6.2 Let pq > 1; p q 1;and (u 1 ; u 2 ) be any supersolution of system (1.1) (with no condition of sign) in a domain R N . (i) If = B r 0 n f0g, resp = R N nB r 0 , then there exist C = C(N; p; q) > 0 such that for any

R < r 0 2 (resp. R > 2r 0 ) Z R 2 jxj 3R 2 jru 2 j p dx CR N p(q+1) pq 1 ; Z R 2 jxj 3R 2 jru 1 j q dx CR N q(p+1) pq 1 : (6.3) (ii) If = R N and (N 1)pq < max(N + p; N + q) = N + p: (6.4) 
that means q < q 2 ; then all the solutions of system (1.1) are constant.

Proof. (i) Let R > 0 and x 0 2 such that B(x 0 ; 2R)

: Let 2 C 1 0 (R N ); with values in [0; 1] ; such that = 1 on B R 2 ; = 0 on B C
R and jr j 2 R : We take as test function '(x) = (x x 0 ), > 0; in the …rst inequality and get by integration, for any p > 1 and > 0;

Z B(x 0 ;R) jru 1 j q dx Z B(x 0 ;R) < ru 2 ; r > 1 dx = Z B(x 0 ;R) jru 2 j jr j 1 dx ( Z B(x 0 ;R) jru 2 j p p dx) 1 p ( Z B(x 0 ;R)
jr j p 0 ( 1 )p 0 dx)

1 p 0 ; then for 1 + ; Z B(x 0 ;R) jru 1 j q dx ( Z B(x 0 ;R) jru 2 j p p dx) 1 p ( Z B(x 0 ;R) jr j p 0 dx) 1 p 0 :
Similarly for given > 0; > 0 such that

1 + ; Z B(x 0 ;R) jru 2 j p dx ( Z B(x 0 ;R) jru 1 j q q dx) 1 p ( Z B(x 0 ;R) jr j q 0 dx) 1 q 0 : Taking = q(p+1) pq 1 ; = q+1 pq 1 = p(q+1) pq 1 and = p+1 pq 1 ; we …nd Z B(x 0 ;R) jru 1 j q q(p+1) pq 1 dx ( Z B(x 0 ;R) jru 2 j p p(q+1) pq 1 dx) 1 p ( Z B(x 0 ;R) jr j p 0 dx) 1 p 0 ;
and by symmetry, when q > 1;

Z B(x 0 ;R) jru 2 j p p(q+1) pq 1 dx ( Z B(x 0 ;R) jru 1 j q q(p+1) pq 1 dx) 1 q ( Z B(x 0 ;R) jr j q 0 dx) 1 q 0 : As a consequence, Z B(x 0 ;R) jru 2 j p p(q+1) pq 1 dx 1 q ( Z B(x 0 ;R) jru 2 j p p(q+1) pq 1 dx) 1 pq ( Z B(x 0 ;R) jr j q 0 dx) 1 q 0 ( Z B(x 0 ;R) jr j p 0 dx) 1 qp 0 ; ( Z B(x 0 ; R 2 ) jru 2 j p dx) pq 1 pq ( Z B(x 0 ;R) jru 2 j p p(q+1) pq 1 dx) pq 1 pq 1 q ( Z B(x 0 ;R) jr j q 0 dx) 1 q 0 ( Z B(x 0 ;R) jr j p 0 dx) 1 qp 0 CR N q 0 q 0 + N p 0 qp 0 = CR N pq 1 pq q+1 q ;
for some constant C = C(N; p; q) > 0: When q = 1; we get directly with = 2p

p 1 Z B(x 0 ;R) jru 2 j p 2p p 1 dx 2p p 1 Z B(x 0 ;R) < ru 1 ; r > p+1 p 1 dx = 2p p 1 Z B(x 0 ;R) jru 1 j p+1 p 1 jr j dx C R Z B(x 0 ;R) jru 1 j p+1 p 1 ; Z B(x 0 ;R) jru 1 j p+1 p 1 dx ( Z B(x 0 ;R) jru 2 j p 2p p 1 dx) 1 p ( Z B(x 0 ;R) jr j p 0 dx) 1 p 0 ;
then we obtain (

Z B(x 0 ; R 2 ) jru 2 j p dx) 1 p 0 CR N p 0 2 :
In any case the estimates (6.3) follow by considering a …nite recovering of R (ii) If = R N and N (pq 1) < p(q + 1); equivalently (6.4) holds, we consider any ball B(0; R) and make R ! 1; we deduce that ru 2 = 0; hence u 2 = C 2 ; then u 2 = 0 jru 1 j q ; thus u 1 = C 1 : Remark 6.3 In case p = q; and u 1 0; u 2 0; the nonexistence can be obtained by reducing to the scalar case:

(u 1 + u 2 ) = jru 2 j q + jru 1 j q c 1 q (jru 2 j + jru 1 j) q c 2 q jr(u 1 + u 2 )j q :

If 1 < q < N N 1 ; then the only nonnegative solutions in whole R N satisfy u 1 + u 2 = C; for example from [10, Proposition 2.1]. Then (u 1 +u 2 ) = 0 jru 2 j q +jru 1 j q ; hence u 1 and u 2 are constant. At Theorem 6.2we have shown that the positivity is not required. And moreover we obtain integral upperestimates of the gradients when q N N 1 .

In the sequel, the mean value of any function u in fR jxj R 0 g on the sphere S N 1 is denoted by u. Lemma 6.4 Let p q 1 and (u 1 ; u 2 ) be a supersolution of system (1.1) in fR jxj R 0 g : Then (u 1 ; u 2 ) is also a supersolution. In particular if (f u 1 ; f u 2 ) is a positive subsolution of system (1.4), then (f u 1 ; f u 2 ) is also a subsolution.

Proof. For any function u 2 C 1 (B(0; R)); and any p 1; from the Jensen inequality, jruj p u 0 p : (6.5)

Indeed

jruj p = 1 jS N 1 j Z S N 1 (u 2 2;r + r 2 r 0 u 2 2 ) p 2 d 1 jS N 1 j Z S N 1 ju r j p d ( 1 jS N 1 j Z S N 1 ju r j d ) p 1 jS N 1 j Z S N 1 u r d p = u 0 p :
Then, since q 1; u 1 jru 2 j p u 2 0 p ; u 2 jru 1 j q u 1 0 q :

6.2 Local behaviour near 0 or 1

As a consequence of Theorem 6.2 and Proposition 3.5, we get Proposition 6.5 Let pq > 1; p q 1; and (u 1 ; u 2 ) be any supersolution of system (1.4) in B r 0 n f0g : Then there exist C = C(N; p; q) > 0, and 2 (0; r 0 ) depending on u 1 ; u 2 , such that for r 2 (0; ) ;s ju 1 (r)j 8 > < > :

Cr 2 p(q 1) pq 1 if q < q 4 ; C jln rj if q = q 4 ; C if q > q 4 ; ju 2 (r)j 8 > < > : Cr 2 q(p 1) pq 1 if q < q 3 ; C jln rj if q = q 3 ; C if q > q 3 :
(ii) (u 1 ; u 2 ) be any supersolution of system (1.4) in R N nB r 0 : Then there exists > r 0 such that for r > ;

ju 1 (r)j 8 > < > : C jxj p(q 1) 2 pq 1 if q > q 4 ; C ln r if q = q 4 ; C if q < q 4 ; ju 2 (r)j 8 > < > : Cr q(p 1) 2 pq 1 if q > q 3 ; C ln r if q = q 3 ; C if q < q 3 : 6.2.1 Case of system (1.5)
In this case, we can improve the preceeding results. We give Osserman's type estimates for the local solutions near 0 or 1 Theorem 6.6 Let pq > 1; p q 1:(i) Let (f u 1 ; f u 2 ) be any positive subsolution of system (1.5) in B r 0 n f0g : Then there exists and C = C(N; p; q) > 0, and 2 (0; r 0 ) depending on f u 1 ; f u 2 , such that for 0 < jxj < ;

f u 1 (x) 8 > < > :
C jxj 2 p(q 1) pq 1 if q < q 4 ; C jln jxjj if q = q 4 ; C if q > q 4 ; f u 2 (x) 8 > < > : C jxj 2 q(p 1) pq 1 if q < q 3 ; C jln jxjj if q = q 3 ; C if q > q 3 : and then to a Hardy-Hénon equation (1.2) with new parameters p; q; N de…ned by p k 2 1 = 1 p 1 ; q k 1 1 = q; p N p 1 = N +b 1 (N +a 2 1) p k 2 1

; N+ = N +b 2 (N +a 1 1)q;

and q > p 1 is equivalent to pq > (k 1 1)(k 2 1):

(3) Some of our nonradial results can be extended to more general systems, like (7.1), following the methods of [START_REF] Bidaut-Véron | Nonexistence results and estimates for some nonlinear elliptic problems[END_REF], for example Theorem 6.2. It would be interesting to extend Theorem 6.9 to such type systems.

Appendix

In this section we give the proofs of the main results of Section 4

Proof of Lemma 4.5. (i) Setting s = s 0 + s; z = z 0 + z; the linearized problem at M 0 is s t = s 0 (s + z p 1) ); z t = z 0 ( qs z):

It admits the eigenvalues 1 ; 2 ; roots of the equation (4.12). When the roots are real, that means s 0 z 0 < 0 then 1 < 0 < 2 ; and 1 < s 0 < 2 since T (s 0 ) < 0; and the corresponding eigenvectors ! v 1 = ( s 0 p 1 ; 1 s 0 ) and ! v 2 = ( s 0 p 1 ; 2 s 0 ) have the slopes i = (p 1)( i s 0 1) = qz 0 z 0 + i ; i = 1; 2: (ii) Setting z = N + + z; the linearized problem at N 0 is s t = p+ p 1 s; z t = (N + )( qs z):

It admits the eigenvalues l 1 = p+ p 1 and l 2 = (N+ ): When l 1 6 = l 2 ; the corresponding eigenvectors are ! v 1 = (l 1 l 2 ; ql 2 ) and ! v 2 = (0; 1):

(iii) Setting s = N p p 1 + s; the linearized system at A 0 is ( s t = N p p 1 (s + z p 1 ); z t = z(N + q N p p 1 ):

It admits the eigenvalues 1 = N p p 1 and 2 = N + q N p p 1 ; And z = 0 contain particular trajectories linked to 1 . When Suppose that s is unbounded near 1. Either s is monotone near 1; then lim t ! 1 jsj = 1; hence t 1 near 1; ln j j jtj 2 ; which is impossible. Or there exists a sequence t n ! 1 such that js(t n )j ! 1 of points of maximum of jsj : At these points, and p N p 1 + s(t n ) + z(tn) p 1 = 0, hence s(t n )z(t n ) < 0; and s tt (t n ) = s(t n )z t (t n ) p 1 = s(t n )z(t n ) p 1 (p + (q p + 1)s(t n )); thus s tt (t n )s(t n ) > 0; which is contradictory. Then s is bounded. Suppose that z is unbounded. Either z is monotone near 1; then lim t ! 1 jzj = 1; thus lim t ! 1 js t j = 1; which is impossible. Or there exists a sequence t n ! 1 such that jz(t n )j ! 1 of points of maximum of jzj : At these points there holds N + qs(t n ) z(t n ) = 0; which is impossible since s is bounded. Then z is bounded. It converges to one of the …xed points of the system, or has a limit cycle around them. Since N 0 ; (0; 0) or A 0 have real eigenvalues, such cycle can happen only at M 0 ; when q = q S : Proof of Theorem 4.9. Here we consider region A; where N > p > : In this case we refer to [START_REF] Bidaut-Véron | A new dynamical approach of Emden-Fowler equations and systems[END_REF] for the description of the system. Here the behaviour depend on position of q with respect to q c ; and also of q S when " = 1; see …gures1,2,3,4. The point M 0 is in Q 4 for q < q c ; corresponding to solutions of the equation with absorption (" = 1), and M 0 2 Q 1 for q > q c : The point N 0 is a saddle point, corresponding to C 0 -regular solutions near 0. The point A 0 is a source for q < q c and a saddle point for q > q c : The point (0; 0) is a saddle point, and the associated trajectories are not admissible. The existence of ground states of the equation with source (" = 1) if and only if q q S is well known. The phase plane in the critical Sobolev case q = q S is remarkable: there exist particular particular trajectories , located on a straight line (p 1)s + pz q + 1 N + p = 0:

These trajectories correspond to the ground states given at (4.13) when " = 1; and to explicit local solutions near 0 or 1 when " = 1:

Figure 1,Theorem 4.9: Figure 2,Theorem 4.9: N = 2:2 > p = 1:4 > = 0:6; q = 0:7< q c = 0:75 q c < q = 0:85< q S = 85=90 

For p > N > and " = 1 , 1 p 1

 111 we get existence of solutions of equation (1.2) in C 0 (B r 0 ) \ C 2 (B r 0 n f0g) of three types : such that lim r!0 w = c > 0; and either lim r !0 r +1 p 1 w 0 = d 6 = 0 or lim r!0 r N w 0 = d 6 = 0; and solutions such that lim r!0 w = 0 and lim r!0 r N p p 1 w = k > 0:For > max(p; N); there exist solutions in an exterior domain R N nB r 0 such that lim r!1 w = c > 0, see Theorems 4.12, 4.14, 4.20.

  ; where c > 0 and d = d(c; N; p; ): In fact the same phenomena holds when > p > N (see Theorem 4.12).

1 u 0 2 0

 12 be any radial solution. Then the set f(0; ) : u 0 on (0; )g is closed and open in (0; R) ; thus equal to (0; R): Remark 3.2

1 )pq 0 ; w 1 :

 101 (r 0 (1 2")) c 5 " p+1 pq (w 1 (r 0 ) 1 pq r N +p (N 1)pq pq 0 Setting r 0 = r 0 (1 2"); and using by the bootstrap technique developed at [13, Lemma 2.2], [11, Lemma 2.8] and [?], we obtain, since d = 1 pq < 1; and

Remark 3 . 9

 39 From the de…nitions (3.15) and (3.13) we get the relations p N p 1 = N (N 1)p; N + = N (N 1)q;

q+1 pq 1

 1 y(t); t = ln r: leads to the systemx t = b 1 x jyj p ; y t = b 2 y jxj q ;

9 )

 9 Then w satis…es the equation (4.1) if and only if b w satis…es the analogous equation with r; N; replaced by b r; b N; b ; and b r b b w(b r) = Cr w(r); b r b N p p 1 b w(b r) = Cr N p p 1 w(r); b r b +1 p 1 b w 0 (b r) = Cr +1 p 1 w 0 (r): (4.10) Moreover for any (N; ) 2 F (resp. D, resp. E) there exists ( b N; b ) 2 A (resp. B, resp. C), such that (4.8) holds with = 1: As a consequence all the results valid for regions A; B; C apply respectively to F; D; E by changing r into 1 r : Proof. Setting t = b t and (b s; b z) = (s; z); we obtain a system analogous to (4.3) where N; are replaced by b N; b : This corresponds to the change of unknown (4.9). And the regions A; B; C are respectively exchanged to F; E; D; after choosing suitable reals < 0 such that N > 0 correponds to b N > 0: The relations (4.10) are straightforward, implying the last conclusions.

  14, Theorem 3.1], valid for any 2 R: Both results suppose N > 1; and are given and N > p, even if this condition does not seem necessary. Next suppose N < p: We use the transformation (4.8) (4.9) with = 1 : it de…nes b N = 2p N and b = 2p , and w(r) = b w(b r); b r = 1 r : From (4.10), b r b b w(b r) = Cr w(r); and the behaviours near 0 and 1 are exchanged, hence the conclusion is still valid.

Lemma 4 . 5

 45 The …xed points of system (4.3) are M 0 = (s 0 ; z 0 ) = ( ; N p (p 1) ) = ( p+ q+1 p ; (N p)(q qc) q+1 p); N 0 = (0; N + );A 0 = ( N p p 1 ; 0); and (0; 0): (4.11)

1 w

 1 = k > 0:

p 1

 1 w 0 = "c(w 0 ); c(w 0 ) > 0:For " = 1 there exist an in…nity of local solutions near 0 such that lim p); where c(N; p) = (( N p p 1 ) p p 1 p+ )N p

lim r ! 1 (Remark 4 . 11

 1411 As mentioned in[START_REF] Bidaut-Véron | A new dynamical approach of Emden-Fowler equations and systems[END_REF] Remark 3.2], some energy functions of Pohozaev-type linked to the equation are well known. In fact they are valid for any values of the parameters p; q; N; ; and for the two equations (" = 1):

Theorem 4 . 13 1 p 1

 41311 Let p > N > (region B) For " = 1 there exists local C 0 -regular solutions of three types: lim r!0 w = w 0 > 0; lim r !0 r +1 p 1 w 0 = "c(w 0 ); c(w 0 ) > 0; w 0 = "c(w 0 ); c(w 0 ) > 0: (4.16)

Theorem 4 . 15 For " = 1 ; 1 w 1 rp 1

 4151111 Let p < < N (region C) Then there exists no C 0 -regular solution. For " = 1 there exist local (nonglobal) solutions near 1 of two types: there exist two types of global solutions in (0; 1) : w (r) = a r p+ q+1 p ;which is a cusp-solution, solutions such that w r !0 w ; lim r!= C > 0; lim r!+1 w 0 = D > 0;

Theorem 4 . 1 w 1 p 1 p 1

 41111 16 (region E) Let p > > N: For " = 1 there exist local (nonglobal) solutions near 0 of two types: = k > 0; lim r!0 r N w 0 = d(k) > 0: For " = 1; there exist two types of global solutions in (0; 1) : w (r) = a r p+ q+1 p ; w 0 = d < 0; w r !1 w ;

Theorem 4 . 17

 417 Let q > p 1 > 0: When = p N 1 p 1 there exist explicit radial solutions w of the Hardy-Hénon equation (4.1) with " = 1, of the form w = (c d p;q;N r

1 p 1

 11 Assume p = > N: Then the behaviour is deduced from (1) by changing r into 1 r : 4.6.2 Case = N 6 = p Theorem 4.19 (1) Assume = N > p: For " = 1; there exist local solutions near 1 such that lim w 0 = c(k) < 0: (4.23)

4 . 6 . 3 6 =For " = 1 ;( 2 ) 4 . 6 . 4

 463612464 Assume p > N = : Then the behaviour is deduced from (1) by changing r into 1 r : Case p = N Theorem 4.20 (1) Assume p = N > For " = 1 there exists local (C 0 -regular) solutions: for any w 0 > 0 there exists a unique solution such that lim r !0 w = w 0 > 0; lim r !0 r +1 p 1 w 0 = "c(w 0 ); c(w 0 ) > 0: For " = 1; there exist an in…nity of local solutions near 0 such that lim r !0 jln rj 1 w = C > 0; lim r !0 rw 0 = C: there exists a particular solution w = a r p+ q+1 p : There exist local solutions near 0 such that w r !0 w ; and local ones near 1 such that w r !1 w : There exists an in…nity of solutions such that lim r !0 jln rj 1 w = C; lim r !0 rw 0 = C; w r !1 w : Assume p = N < : Then the behaviour is deduced from (1) by changing r into 1 r : Case p = N = Theorem 4.21 Assume p = N = . For " = 1; there exist local explicit solutions near 0 or near 1 of the form (4.20):

). De…nition 5 . 3

 53 Let S = n

1 6 =

 6 2 6 = 0; corresponding eigenvectors are ! v 1 = (1; 0) and ! v 2 = ( 1 p 1 ; 2 1 ): (iv) The linearized system at point (0; 0); ( s t = p N p 1 z; z t = (N + )z: gives the eigenvalues 1 = p N p 1 ; 2 = N + ; which are distinct for 6 = (N 1)p p 1 , and corresponding eigenvectors ! v 1 = (1; 0) and ! v 2 = (0; 1): Proof of Lemma 4.7. (i) Direct consequence of (4.4).

(

  ii) Suppose lim(s; z) = N 0 . From (4.3) we …nd s t = s(l 1 + s + z) = s(l 1 + o(1)); then s = o(e jl 1 tj 2 ); and z t = z (N+ ) = ( l 2 +z)( qs z) = z(l 2 qs z)+l 2 qs = (l 2 +o(1))z +o(e 2jl 1 tj ): Then z = o(e kjtj ) for some k > 0: In turn s t = s(l 1 + o(e kjtj ) for some k > 0; thus lim e l 1 t s = C 6 = 0: The conclusion follows from (4.4) with lim e l 1 t s = C 6 = 0 and lim z = N + :(iii) Suppose lim(s; z) = (0; 0). Then s t = s( 1 + s + z) = s( 1 + o(1)); and z t = z( 2 + o(1)):Then s; z = o(e kjtj ) for some k > 0: Therefore we obtain s t = s( 1 + o(e kt )); z t = z( 2 + o(e kt )): By integration we deduce lim e 1 t s = C 6 = 0 and lim e 2 t z = D 6 = 0, and we still apply(4.4).(iv) Suppose lim(s; z) = A 0 :Then z t = z( 2 qs z) with s = s N p p 1 = o(1); so that z t = z( 2 + o(1)); then z = o(e j 2 tj 2 ): It follows that s t = ( 1 + s)(s + z p 1 ) = s( 1 + z p 1 + s) + N p (p 1) z = 1 s + o((e j 2 tj2 ): Then s = o(e kjtj ) for some k > 0; in turn z t = z( 2 + o(e kjtj ); thus lim e 2 t z = D 6 = 0; and we apply (4.4) where lim s = 1 ; lim e 2 t z = D: Proof of Lemma 4.8. Let for example w be any solution in (0; r 0 ): From Lemma (4.4), and (4.4), = jsj p 1 jzj is bounded. And t = (p + (q p + 1)s):

Figure 3 ,Figure 4 , 1 and 2

 3412 Figure 3,Theorem 4.9:Figure4,Theorem 4.9: q = 1 > q S = 85 90

  

if q < q ; there exist solutions such that u 0 1 > 0 > u 0 2 ; and (u 0 1 ; u 0 2 ) r!0 (u 0 1 ; u 0 2 ); lim r!1 r (N 1)p 1 u 0 1 = c 1 > 0; lim r!1

r N 1 u 0 2 = c(c 1 ) < 0; if q > q ; there exist solutions such that lim r!0 r N 1 u 0 1 = c 1 > 0; lim r!0 r (N 1)q 1 u 0 2 = c 3 < 0; (u 0 1 ; u 0 2 ) r!1 (u 0 1 ; u 0 2 ); if q = q ; there exist explicit solutions:

2(N (N 1)p) p q ; u 0 2 = br (1 (N 1)q ) (d + r p q

2 ) 2((N 1)q N ) p q (5.5) for any c > 0, with d = d(c) = ( c pq 1 (N 1)p N ) (3) Let (p; q) 2 B: Then there exists a particular solution such that u 0 1 = a 1 r p+1 pq 1 > 0 and u 0 2 = a 2 r q+1 pq 1 > 0: there exists solutions such that lim r!0

(4) Let (p; q) 2 C [ D: Then there exists a particular solution such that u 0 1 = a 1 r p+1 pq 1 < 0 and u 0 2 = a 2 r q+1 pq 1 < 0: If (p; q) 2 C; there also exist solutions such that (u 0 1 ; u 0 2 ) r!0 (u 0 1 ; u 0 2 ); lim r!1 r N 1 u 0 1 = c 1 < 0; lim r!1 r (N 1)q 1 u 0 2 = c(c 1 ) < 0:

If (p; q) 2 D; there also exist solutions such that (u 0 1 ; u 0 2 ) r!0 (u 0 1 ; u 0 2 ); lim

And all the global solutions are described.

And we also get the existence of local but not global solutions near 0 or 1 with a behaviour of linear type, by using Lemma 5.4: Theorem 5.7 [START_REF] Abdellaoui | On the existence of positive solutions to semilinear elliptic systems involving gradient terms[END_REF] Local existence of solutions of system (3.1) near 0:

in regions A or B; there exist solutions such that lim r !0 r N 1 u 0 1 = c(c 2 ); lim r !0 r (N 1)q 1 u 0 2 = c 2 < 0;

in region A with q < q 1 ; there exist solutions such that lim r!0 r (N 1)p 1 u 0 1 = c(c 2 ) > 0; lim

in region B; there exist solutions such that lim r!0 r (N 1)p 1 u 0 1 = c(c 2 ) < 0; lim

and solutions such that for any c 1 ; c 2 2 Rn f0g ;

and no such solution near 0 in regions C; D.

(2) Local existence of solutions near 1: in regions C and D; for any c 1 ; c 2 2 Rn f0g ; there exist solutions such that lim r !1

in region A with q > q 1 ; and in regions C and D; there exist solutions such that lim r!1 r (N 1)p 1 u 0 1 = c 1 > 0; lim r!1

r N 1 u 0 2 = c(c 1 ); in region C; there exist solutions such that

in region D; there exist solutions such that lim r !1

r N 1 u 0 1 = c(c 2 ); lim r !1 r (N 1)q 1 u 0 2 = c 2 > 0:

Finally we consider the limit cases, where for simplicity we only mention the solutions presenting a logarithmic behaviour: Theorem 5.8 (1) For q = q 1 < p , there exist local solutions of system (1.1) near 0 or 1, with respectively lim r !0 r (N 1)p 1 jln rj

(2) For q = q 2 < p ; there exist local solutions near 0 or 1, with respectively lim r !0 r N 1 jln rj

(5.7)

(3) For p = N N 1 > q , there exist local solutions near 0; such that

and global solutions such that

);

(4) For q = N N 1 < p , there exist local solutions near 1 such that

and global ones such that,

(5) For q = p = N N 1 ( where p = N = ) we …nd again the solutions given at (2.4) and no other local solution.

Proof. We deduce (1) from Theorem 4.10, since q = q c ; then ( 2 

Local radial existence results for system (1.1)

Next we deduce local existence results for system (1.1), obtained from Theorem 5.7 by integration. We …rst give a result of existence of local solutions near 0, with a behaviour of linear type. For simplicity, due to the great number of possibilities, we consider only the positive solutions of the system. One can formulate analogous results for systems (1.5) and (1.6).

Theorem 5.9 Existence of solutions of system (1.4) in B r 0 n f0g, r 0 > 0 :

in regions A or B; there exist solutions such that

in region B; there exist solutions such that

and solutions such that

In any case the solutions satisfy the equations in the sense of distributions in B r 0 ; where 0 is the Dirac mass at 0:

(5.8)

There is no radial supersolutions of system (5.8) such that C 1 > 0 or C 2 > 0 for p q q 2 ; and no supersolutions such that C 2 > 0 for p

There is no global nonconstant solution in the other regions such that q < q 4 :

so we can apply Theorem 5.6,(4). In any case lim r N 1 u 0 1 = C 1 < 0; so u 0 1 is integrable at 1 since N > 2; and the same holds for u 0 2 for q > N N 1 :

satisfy the conclusions. Note that q > 2 N 1 in C 1 [ D 1 : Next we note that there is no global solution of (1.4) for q < q 2 : indeed if such solution exists then u 0 1 and u 0 2 are negative; but all the global solutions are given at Theorems 5.6 and 5.8, and they do not ful…l these conditions.Then we are lead to consider the regions C 2 ; D 2 . From Theorems 4.14 and 4.15, there is no global solution w on (0; 1) for " = 1; and the global solutions relative to " = 1 do not bring solutions of system (1.4): Indeed near 0, the function w behaves as w ; and the corresponding solutions (u 1 ; u 2 ) are such that u 2 is not positive.

Next we consider the problem with absorption, for which the situation is very rich. Using Theorem 5.6 and similar arguments of integrability, we obtain the following: Theorem 5.13 Consider the system (1.5) For (p; q) 2 B [ A 1 [ A 3 it admits a particular solution (f u 1 ; f u 2 ): (1) If (p; q) 2 A 1 ; f u 1 ; f u 2 are 1-singular, and there exist solutions such that

(2) If (p; q) 2 B; f u 1 ; f u 2 are still 1-singular, and there exist solutions such that

(3) If (p; q) 2 A 3 ; f u 1 is 1-singular, and f u 2 is a cusp-solution; moreover if q < q there exist solutions such that

so the function f u 2 varies from 0 to C 2 : if q > q there exist solutions such that

and there are explicit solutions if q = q :

There is no global nonconstant solution in the other regions such that q < q 4 :

Now we study the system (1.6), also of a great richness, in particular involving the Sobolev exponent q Theorem 5.14 Consider the system (1.6). For (p; q) 2 A 2 [ C 2 [ D 2 it admits a particular solution (c u 1 ; c u 2 ): (1) Assume (p; q) 2 A 2 : Then c u 1 ; c u 2 are 1-singular; moreover if q < q ; there exist solutions such that

if q > q ;there exist solutions such that

if q = q ; there exist explicit solutions, given by integration of (5.5).

(2) Assume (p; q) 2 C 2 ; q 6 = 2 N 1 : Then c u 1 is 1-singular and c u 2 is a cusp-solution. There exist solutions such that

(3) Assume (p; q) 2 D 2 . Then again c u 1 is 1-singular and c u 2 is a cusp-solution.There exist solutions such that

There is no global nonconstant solution in the other regions such that q < q 4 .

The region fq > q 4 g ; containing C 3 [ D 3 , plays a particular role, as in the scalar case for q > 2; because we can construct solutions such that u 1 and u 2 are bounded on (0; 1); then for any of the three systems (1.4), (1.5) and (1.6) by adding suitable constants.

Theorem 5.15 Let (p; q) 2 C 3 [ D 3 = fq > q 4 g : (i)Then system (1.5) still admits a particular solution (f u 1 ; f u 2 ); where both components are cusp-solutions. Moreover there exist bounded global solutions on (0; 1) :

If (p; q) 2 C 3 ; there exist solutions such that

If (p; q) 2 D 3 ; there exist solutions such that

(iii) System (1.6) admits global bounded solutions of the same form for C 1 > c 1 ; C 2 < 0:

Proof of Theorem 1.1. The proofs of (1) (2) are direct consequences of Theorem 5.9,5.12 and 5.15 respectively, from the de…nition 5.11 of the regions. Remark 5. [START_REF] Bidaut-Véron | Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations[END_REF] The limit cases p = N N 1 and q = q 1 ; q 2 ; N N 1 can be deduced from Remark 5.8 by integration. We leave the computations to the reader. In the limit cases q = q 3 6 = q 2 ; q 4 , the particular solutions have a logarithmic form: If p > q = q 3 6 = q 2 , and q we obtain solutions such that u 0 1 = a 1 r 1 p and u 0 2 = a 2 r 1 ; so we get non constant sign solutions of the form

(5.9)

p ; then we …nd nonconstant sign solutions of the form

And for p = q = 2; we recall the solutions u 1 = u 2 = (2 N ) ln r + c. in these limit cases, there is no global nonconstant solution.

Finally when q = q 2 = q 3 ; equivalently (p; q) = (N; 2 N 1 ); the behaviours of type (5.6) (5.7) near 0 or 1 resumes to lim r jln rj 6 Nonradial case: upper estimates and local behaviour

Nonexistence results, and upperestimates of mean values

Here we give upperestimates for the supersolutions of system (1.1), implying in particular nonexistence results of entire solutions of the system. the nonexistence results obtained by integral methods were initiated by [START_REF] Mitidieri | Absence of positive solutions for quasilinear elliptic problems in RN. (Russian)[END_REF] for the positive supersolutions of the Lane-Emden system (1.3) where a = b = 0, and then extended in various directions, to more general operators and second members in [START_REF] Filippucci | Quasilinear elliptic systems in R N with multipower forcing terms depending on the gradient[END_REF], involving quasilinear operators and gradient terms, of type

where P; Q > 1; the solutions are positive, and b; c > 0. In [START_REF] Bidaut-Véron | Nonexistence results and estimates for some nonlinear elliptic problems[END_REF] we also obtained integral estimates of the positive solutions, for example on problems of type (6.1) with p = q = 0: In the situation of system (1.1) we adapt the methods of [START_REF] Bidaut-Véron | Nonexistence results and estimates for some nonlinear elliptic problems[END_REF], and obtain integral upperestimates of the gradient. A noticeable fact is that the solutions are not supposed to be positive, and not even of constant sign.

(ii) Let (f u 1 ; f u 2 ) be any positive subsolution of system (1.5) in R N nB r 0 : Then there exists > r 0 such that for jxj > ;

Proof. (i) Since the functions are subharmonic, if u i is nonconstant near 0; then e u i is strictly monotone for small r; and either r N 2 e u i has a positive limit as r ! 0; or e u i is bounded. And for jxj < small enough, depending on the functions, from Proposition 3.5 applied to the functions e

Then by integration, for small enough, there holds f u 1 (r) Cr 2 p(q 1) pq 1

if q < q 4 and f u 1 (r) C if q > q 4 ; similarly for f u 2 by exchanging q 3 and q 4 : Since the functions are subharmonic,

); e u i (2 jxj); see [13, Lemma 2.1], hence the conclusions hold. Moreover if q > q 4 ; then f u 1 0 is integrable, hence f u 1 has a …nite limit l as r ! 0.

(ii) The proof is similar.

Case of system (1.4)

We …rst consider the exterior problem. We observe that in the scalar case, when 1 < q < N N 1 ; there is no positive radial solution of the equation such that lim r!1 u = 0: But there exist solutions such that u is increasing to some l > 0 as r ! 1; so there exist solutions of system (1.4) for p = q: In the general case we prove the following when q is subcritical, namely q < q 2 : Theorem 6.7 Let pq > 1; p q 1: If q < q 2 ; there is no positive supersolution (u 1 ; u 2 ) of system (1.4) such that lim r!1 u 1 = 0 in an exterior set R N nB r 0 .

Proof. We have the upper estimates of the derivatives

and

The function u 1 is superharmonic, and

; so as soon as q < q 4 , u 1 is bounded. And more precidely lim r !1 u 1 = l 1 (and lim r !1 u 2 = l 2 ). Here we suppose that l 1 = 0: From the superharmonicity, r N 1 u 1 0 is decreasing so either lim r !1 r N 1 u 1 0 = l 2 (0; 1) or lim r !1 r N 1 u 1 0 = 1; and l 2 (0; 1) is impossible because then u 1 0 > 0 for large r so u 1 cannot tend to 0: Thus u 1 0 < 0. Then r N 1 u 1 0 < K for large r; so u 1 K N 2 r 2 N is decreasing to 0, hence u 1 K N 2 r 2 N : But for large r; there holds u 1 0 (r) Cr p+1 pq 1 = ( C(pq 1) p(q 4 q) r p(q q 4 ) pq 1 ) 0 ; then u 1 C(pq 1)

p(q 4 q) r p(q q 4 ) pq 1 ; is increasing to 0; thus u 1 cr p(q q 4 ) pq 1

= cr p(q 1) 2 pq 1

: Therefore r 2 N r p(q 1) 2 pq 1

; which implies q q 2 ; leading to a contradiction.

Remark 6.8 In the case q < q 2 ; from Theorem (5.10) there exist solutions such that lim r !1 u 1 = c 1 > 0: In regions C and D, where q > q 2 , we have proved the existence of solutions in R N nB r 0 at the same theorem. For q > q 4 from Theorem 5.15 there exist solutions on (0; 1). So our result is optimal.

Finally we consider the local behaviour of the solutions of system (1.4) near a singularity, and moreover the existence of a system with measure data. We give a nonradial existence result of solutions of a Dirichlet problem when q < q 2 ; extending the radial ones of Theorem 5.9 : Theorem 6.9 Let pq > 1; p q 1: Let be a C 2 bounded domain containing 0:

) be a solution of system (1.4) in n f0g ; with u 1 = u 2 = 0 on @ . Then (u 1 ; u 2 ) 2 W 1;q 0 ( ) W 1;p 0 ( ) and there exist C 1 0; C 2 0; such that

Moreover if C 1 > 0 then q < q 2 ; and if C 2 > 0; then p < N N 1 : (6.8)

(ii) Reciprocally, let C 1 ; C 2 satisfying (6.8) with C 1 > 0 or C 2 > 0; and C 1 ; C 2 small enough.Then there exists a solution (u 1 ; u 2 ) of system (6.7), such that (u 1 ; u 2 ) 2 W 1;q 0 ( ) W 1;p 0 ( ): More generally, for any bounded Radon measures ; in ; under the same conditions on C 1 ; C 2 ; there exists a solution of the system

in D 0 ( ):

Proof. (i) The functions u 1 ; u 2 are superharmonic and nonnegative. Then there exist C 1 0; C 2 0; such that (6.7) holds, and jru 2 j p + jru 1 j q 2 L 1 loc ( ); and moreover u 1 ; u 2 2 W 1;s 0 ( ) for any s 2

. From Lemma 6.4 (u 1 ; u 2 ) is a supersolution, then the conditions on C 1 ; C 2 follow from Theorem 5.9.

(ii) We recall a result of [3, Theorem 3.1]: for any nonnegative f 2 L m ( ) and g 2 L k ( ); m; k 2 (1; N ) such that qk < mN N m and pm < kN N k ; there exists = (p; q; m; k) > 0 such that the problem

admits a solution such that (u 1 ; u 2 ) 2 W 1;q 0 ( ) W 1;p 0 ( ) under the condition Let ; be two positive Radon measures in : Let ( n ); ( n ) be sequences in C 1;+ converging respectively to ; in the sense of measures, and n ( ) 2 ( ), n ( ) 2 ( ): Then there exists a solution of the approximate problem

We take m = k = 1; and f = n ; g = n . For 2 q C q 1 q ( ) + 2C 2 ( ) < we get the existence of sequences (u 1;n ); (u 2;n ) bounded in W 1;s 0 ( ) for any s 2

We take f = n and g = 0. We need to …nd some m and k such that qk < mN N m and pm < kN N k : We …x m = 1, so we require that that N p N +p < k < N (N 1)q (which implies q < N N 1 ): This is possible because q < q 2 = N +p (N 1)p N N 1 . Then (u 1;n ) is bounded in W 1;s 0 ( ) for any s 2 h 1; N N 1 u 2;n bounded in W 1;s 2 0 ( ) for any s 2 2 h 1;

N (N 1)q 1 ; hence in particular for s 2 2 h 1; N N 1 : Therefore we get the existence for 2 q C q 1 q ( ) : Next we can pass to the limit in D 0 ( ). We …x s 1 with q < s 1 < N N 1 and s 2 with p < s 2 < N N 1 if C 2 > 0 and p < s 2 < N (N 1)q 1 if C 2 = 0; up to subsequences, (u 1;n ) converges weakly and a:e: in W 1;s 1 0 ( ) and (u 2;n ) converges weakly and a:e: in W 1;s 2 0 ( ) to some u 1 ; u 2 ; in both cases, (jru 2;n j p ) converges strongly in L 1 ( ); then u satis…es the equation in D 0 ( )

and (jru 1;n j q ) converges strongly in L 1 ( ); so we also pass to the limit and get in any case

7 Extensions

(1) First note also that the study of Hardy-Hénon type equations by using of system (4.3) can be adapted to other ranges of the parameters, for example to a "sublinear" case, that is q < p 1; corresponding to the case where pq < 1 for the system, or also to case q < 0; corresponding to q < 0: This allows to extend some results of [START_REF] Giga | Exhaustive existence and nonexistence results for Hardy-Henon equations in R n[END_REF] given for the Hardy-Hénon equation w = jxj u q with the Laplacian to the m-Laplacian, in the radial case, in particular their study in dimension 1.

(2) Moreover consider an equation of Hardy-Hénon-type in dimension 2 N; 1; with a weight jxj a (a 2 R) inside the operator: div(jxj a jrwj p 2 rw) = " jxj b w q ;

In the radial case, it reduces to so it directly falls in the scope of our study, with N = + a and = b a: It allows for example to …nd again rapidly some recents results of [START_REF] Villavert | Classi…cation of radial solutions to equations related to Ca¤ arelli-Kohn-Nirenberg inequalities[END_REF], given for the Laplacian with some conditions on a; b; and extend them to the p-Laplacian, in all the ranges of the parameters.

(3) All our radial study of system (1.1) can be easily directly extended to a system of k-Laplacians,

where k > 1: Indeed the radial system reduces to

So we are reduced to study functions w 1 ; w 2 ; with p; q replaced by p k 1 and q k 1 ; and the results apply for pq > (k 1) 2 : We obtain analogous results as in the case k = 2; with new parameters q i de…ned by

Moreover one can make an easy adaptation of the results of the nonradial section, relative to the supersolutions of system (1.1),where the estimates of the mean values are replaced by integral estimates, as in [START_REF] Bidaut-Véron | Nonexistence results and estimates for some nonlinear elliptic problems[END_REF] in case of source, aborption or mixed terms. The computations are let it to the reader.

(4) More generally our study allows to treat systems of the type ( div( jxj a 1 jru 1 j k 1 2 ru 1 ) = jxj b 1 jru 2 j p ; div( jxj a 2 jru 1 j k 2 2 ru 2 ) = jxj b 2 jru 1 j q ; which in the radial case reduce to

It contains trajectories converging to M 0 as t ! 1 or t ! 1. The eigenspace associated to 1 > 0 has dimension 1; so it is precisely the axis z = 0; and the trajectories are not admissible.

First assume " = 1: In fact there exists an in…nity of trajectories tangent to ! v 2 ; that means an in…nity of central manifolds. The idea is the following: we know that there exists a trajectory T 0 starting from N 0 and corresponding to C 0 -regular solutions; they are not global, w vanishes, which means that s ! 1 and z ! 0 in …nite time. The region R in Q 1 delimitated by T 0 is invariant. The region R\

o is negatively invariant, since the …eld at ( N p p 1 ; z) satis…es s t = sz p 1 > 0: Then any trajectory passing by a point of this region stays in it, and cannot converge to (0; 0); so it converges to M 0 as t ! 1.

Setting s = N p p 1 + s; we obtain the system ( s t = (s + N p p 1 )(s + z p 1 );

Since the trajectory is tangent to ! v 2 ; there holds z (p 1)s; then z t q+1 p p 1 z 2 and by integration z Then assume " = 1: There exist trajectories converging to M 0 as t ! 1: Indeed up to a scaling there exist solutions w with a logarithmic behaviour as r ! 1, from [START_REF] Véron | Comportement asymptotique des solutions d'équations elliptiques semi-linéaires dans R N[END_REF] for = 0; obtained by minimisation. and the construction extends to 6 = 0. The exact behaviour follows as before. ) converge to M 0 as t ! 1 (resp. 1). associated to 1 < 0 (resp.

2 > 0) with a negative slope 1 = (p 1)(1 + j 1 j s 0 ) < (p 1) (resp. a positive slope). Then T M 1 lies in the bounded region H of Q 4 where s t < 0; z t < 0 for large t: Since this region is negatively invariant, the trajectory T M 1 stays in H, so it is bounded, hence de…ned on (1; 1); and converges to (0; 0) as t ! 1; since it is the only possible …xed point in H.

The point N 0 is located at the boundary of Q 1 and Q 2 : The eigenvalues satisfy l 2 < 0 < l 1 , then N 0 is a saddle point. There are two trajectories T 0 1 ; T 0 2 ; starting from N 0 ; the …rst one in Q 1 and one in Q 2 ; and the corresponding solutions satisfy (4.14) the solutions are not global, from Lemma 4.8, since in Q 1 and Q 2 there is not …xed point attracting at 1:. The point A 0 is located at the boundary of Q 2 and Q 3 : The eigenvalues satify 1 < 0 < 2 ; then it is a saddle point. Two trajectories corresponding to 1 are ending at A 0 as t ! 1 are located on the line z = 0 not admissible. Two trajectories correponding to 2 are starting from A 0 at 1; a trajectory T A 2 in Q 2 and a trajectory T A 3 in Q 3 ; with a negative slope (p 1) 2 +j 1 j j 1 j : The corresponding solutions satisfy (4.15). They are not global, from Lemma 4.8, since in Q 2 and Q 3 there is no attracting point at 1:

The point (0; 0) is a source, since 1 > 0 and 2 > 0. So if 1 6 = 2 ; that means p N p 1 6 = N + ; there exists an in…nity of trajectories starting from (0; 0). From Lemma 4.7 the corresponding solutions satisfy (4.16). If 1 = 2 , we prove that there exist particular solutions at Proposition 4.17.

In Q 1 and Q 3 there is no …xed point attracting at 1; so for " = 1 there is no solution in (r 0 ; 1): The point M 0 is in Q 2 . Indeed s 0 = < 0; and z 0 = N p + (p 1) j j > 0: It is a saddle point, and the eigenvalues satisfy 1 < s 0 < 2 : So there exist four trajectories

2 ) converge to M 0 as t ! 1 (resp. 1). associated to 1 < 0 (resp. 2 > 0) with the slopes i = (p 1)( i s 0

1) i = 1; 2; hence 1 > 0 > 2 ; and we call T M 1 ; T M 2 ; the trajectories such that s(t) > s 0 for any t 2 R:In particular T M 2 starts in the region J of Q 2 where s t > 0; z t < 0: We check easily that the region J is positively invariant. Then the trajectory T M 2 stays in J; so it is bounded, and since s and z are monotone, we get that T M 2 converges at 1 to a …xed point in Q 2 ; that is to N 0 if N + > 0; and to (0; 0) if N + < 0:

The point (0; 0) admits the eigenvalues 1 = p N p 1 < 0 and 2 = N + > 0; it is a saddle point, the trajectories issued from this point are the two axes, they are not admissible.

The point N 0 is located at the boundary of Q 1 and Q 2 : The eigenvalues satisfy l 1 < 0 and l 2 < 0; so N 0 is a sink. In any case, all the corresponding solutions satisfy (4.17), from Lemma 4.7.

In any case, we know that the trajectory T M 2 converges to N 0 : The point A 0 = ( N p p 1 ; 0): is located at the boundary of Q 1 and Q 4 : It has the eigenvalues 1 = N p p 1 > 0 and

so it is a saddle point. As we have done before, we check that there exist two trajectories converging to A 0 as t ! 1; one in Q 1 and one in Q 4 . This show the existence of local solutions of the equations with " = 1; such that lim r!1 r N p p 1 w = k > 0; satisfying (4.18). Clearly those solutions are not global, since there is no …xed point in Q 1 and Q 4 attracting at 1; from Lemma 4.8 So the corresponding functions w are only solutions of the exterior problem.

Proof of Theorem 4.17. Setting s = z; we get

Then system admits particular solutions such that s z for some > 0 if and only if p N p 1 = N + ; that means = p N 1 p 1 ; and = p (p 1)(q+1) . They are given explicitely from the equation

and from (4.2), "r w q+1 jw 0 j p = 1; hence " = 1 and we get w [START_REF] Ca¤arelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF]) by integration, with d p;q;N = (p 1)(q p+1) p(p N) 

Proof of Theorem 4.18. Using Lemma 4.3, we reduce to the case (1) N > p = ; see …gure 8.

Here the point M 0 = (0; N p) coincides with N 0 .The eigenvalues are l 1 = 0 and l 2 = p N < 0: The corresponding eigenvectors are ! v 1 = (1; q) and ! v 2 = (0; 1): Corresponding to the eigenvalue 0; there exists a central manifold of dimension 1, tangent to ! v 1 ; invariant by the ‡ow.

It contains trajectories converging to M 0 as t ! 1 or t ! 1. The eigenspace associated to l 2 > 0 has dimension 1; so it is precisely the axis s = 0; and the trajectories are not admissible. The system becomes ( s t = s( p N p 1 + s + z p 1 ); z t = z(N p qs z):

The point A 0 = ( N p p 1 ; 0): is located at the boundary of Q 1 and Q 4 : The eigenvalues are 1 = N p p 1 > 0 and 2 = (q p + 1) p N p 1 < 0; with eigenvectors. ! 1 = (1; 0) and ! 2 = (1; (p 1)(q p + 2)): Two trajectories associated to A 0 are located on the line fz = 0g , so they are not admissible. There exist two other trajectories, T 1 and T 4 ; respectively in Q 1 and Q 4 ; converging to A 0 at 1: The corresponding solutions w satisfy lim r !1 r N p p 1 w = k > 0; from Lemma 4.7, for " = 1.

First consider the trajectories located in Q 1 ; corresponding the case " = 1: The trajectory T 1 has a slope less that (p 1); then it arrives as t ! 1 in the region R = fs t > 0g in Q 1 delimitated by the line N 0 A 0 where s t = 0; and R is negatively invariant, so T 1 stays in it. The line fz t = 0g is located under the line M 0 A 0 ; thus z t < 0 in R: If T 1 converges to M 0 ; then the region R 1 delimitated by the two axis and T 1 is bounded with no …xed point inside, and this is contradictory. Then T 1 is asymptotic to the axis fs = 0g ; and the solutions are not global. Consider again the region R 1 : Then any trajectory passing by a point of R 1 is bounded, and then converges to M 0 as t ! 1; so we get a (2 parameters) family of solutions w in (r 0 ; 1) such that (4.21) holds. Indeed the trajectory is tangent to line of direction (1; q) passing by M 0 ; which means z qs; and we have s t = s(s + z p 1 ); z t = (N p + z)( z qs):

Then s t q p 1 s 2 ; and by integration s Next consider the trajectories located in Q 2 ; corresponding the case for " = 1: The line fs t = 0g = M 0 A 0 is located under the line fz t = 0g and the region G located between the two lines is negatively invariant. Any trajectory passing by a point above fz t = 0g necessarily crosses this line since z and s are decreasing, and any trajectory passing by a point under fs t = 0g cuts this line, because s and z are increasing. We consider two sets of trajectories: U 1 is the union of trajectories which cut fz t = 0g at some point, and U 2 is the union of trajectories which cut fs t = 0g at some point. They are open in Q 2 , so U 1 [ U 2 6 = Q 2 : Then there exists some point P such that the trajectory passing by P is located in G; which is negatively invariant. Then it converges to the point M 0 as t ! 1: So we get solutions w satisfying (4.22). The point M 0 = (s 0 ; z 0 ) = ( p N q+1 p ; (N p)q q+1 p ) is in Q 2 , corresponding to particular solutions of the equation with absorption " = 1: w = a r N p q+1 p ; note that lim r !0 w = 0: The point N 0 coincides with (0; 0); the eigenvalues are 1 = p N p 1 ; 2 = 0; corresponding eigenvectors ! v 1 = (1; 0) and ! v 2 = (0; 1): The trajectories associated to 1 are not admissible. There exist at least one central manifold, relative to 2 ; tangent to the axis fs = 0g : We are going to precise it below:

The eigenvalues at point M 0 are given by (4.12), their product is (N p) 2 q < 0:; so M 0 is a saddle point. There exist four trajectories lies in the bounded region H of Q 2 where s t > 0; z t < 0 for large t: Since this region is positively invariant, the trajectory T M 3 stays in H, so it is bounded, hence converges to (0; 0) which is the only possible …xed point in H. Then any trajectory passing by some point of H converges to (0; 0): So there is an in…nity of trajectories converging to this point, staying in Q 2 .

The point A 0 is located at the boundary of Q 1 and Q 4 : Moreover the eigenvalues at A 0 are 1 = N p p 1 > 0 and 2 = q p N p 1 < 0; A 0 is a saddle point. Two trajectories associated to 1 are located on the line z = 0 are not admissible. There are trajectories T 1 ; T 4 , respectively in Q 1 and Q 4 converging to A 0 as t ! 1 corresponding to the eigenvector ! v 2 = ( 1 p 1 ; 2 1 ); with the slope (p 1)(q + 1); the solutions are not global, since there is no …xed point in those quadrants.

Then there exist solutions in (r 0 ; 1) for " = 1; such that lim r !1 r N p p 1 w = k > 0: Moreover, since (p 1)(q + 1) > (p 1); T 1 is located in the region of Q 1 where s t > 0 and z t < 0; which is negatively invariant, so it stays in it. Next consider the region K in Q 1 delimitated by the two axis and T 1 (under T 1 ). It is invariant, and z t < 0 in K: Then consider any trajectory T passing by a point of K: It cannot converge to A 0 because T 1 is the only trajectory in Q 1 converging to this point. Then T necessarily converges to (0; 0): There still exists an in…nity of trajectories converging to this point, staying in Q 1 .

Thus in Q 1 (corresponding to " = 1) as well as in Q 2 ; (corresponding to " = 1) there is an in…nity of trajectories converging to (0; 0): From system (8.1), since lim t !1 s z = 0; we get s t s( p N p 1 ); and z t z 2 : Then by integration, z 1 t : jsj Ce kt for some k > 0: From (4.2) we get w q 1 p w 0 = ( p 1 q+1 p w q+1 p p 1 ) 0 r !1 "r 

The …rst eventuality is impossible for " = 1: Let us check if it is possible for " = 1 : it would imply that s = r w 0 w tends to p N 6 = 0; which is contradictory. Then for " = 1; for given r 0 > 0 there exists an in…nity (with 2 parameters) of solutions w in (r 0 ; 1) satisfying (??), and an in…nity (with one parameter) of solutions satisfying (4.25).

Proof of Theorem 4.20. Here again we reduce to the case (1) p = N > ; see …gure 10. The system reduces to s t = s(s + z p 1 ); z t = z(p + qs z):

The point M 0 = (s 0 ; z 0 ) = ( p+ q+1 p ; (p 1)(p+ ) q+1 p ) is in Q 4 ; corresponding to particular solutions of the equation with absorption " = 1: w = a r p+ q+1 p , which are 1-singular.

The point N 0 = (p + ; 0) is located at the boundary of Q 1 and Q 2 and admits the eigenvalues l 1 = p+ p 1 > 0 and l 2 = (p + ) < 0; with eigenvectors ! v 1 = ( p p 1 ; q) and ! v 2 = (0; 1): it is a saddle point; the trajectories associated to l 2 are not admissible. There exists two trajectories, T 1 and T 2 , respectively in Q 1 and Q 2 starting from N 0 at 1; corresponding to C 0 -regular solutions w: The trajectory T 2 starts in the region where s t < 0; z t > 0; which is positively invariant, so it stays in it. The trajectory T 1 starts in the region where s t > 0; z t < 0; with a slope q p 1 p ; above the line N 0 M 0 ; and stays in the region of Q 1 ahere z t < 0; and then it is asymptotic to the axis fz = 0g :

Here the point A 0 coincides with (0; 0); and the eigenvalues are 1 = 0; 2 = N + ; with eigenvectors ! v 1 = (1; 0) and ! v 2 = (0; 1): The trajectories associated to 2 are not admissible. There exist at least one central manifold, relative to 1 ; tangent to the axis fz = 0g : We are going to precise it below.

The eigenvalues at point M 0 are given by (4.12), their product is s 0 z 0 < 0; then 1 < 0 < s 0 < 2 ; so M 0 is a saddle point, There exist four trajectories T M 1 ; T M 2 ; T M 3 ; T M 4 ; such that T M 1 ; T M 2 (resp. T M 3 ; T M 4 ) converge to M 0 as t ! 1 (resp. 1). associated to 1 < 0 (resp. 2 > 0) with the slope 1 = (p 1)( 1 s 0 1) < 0 (resp. 2 = (p 1)( 2 s 0 1) > (p 1)). Then one of the two …rst trajectories, denoted by T M 1 lies in the bounded region H of Q 4 where s t > 0; z t < 0 for large t: Since this region is negatively invariant, the trajectory T M 1 stays in H, so it is bounded, hence converges to (0; 0) as t ! 1 which is the only possible …xed point in H. Moreover any trajectory passing by some point of H converges to (0; 0): So there is an in…nity of trajectories converging to this point as t ! 1, staying in Q 4 .

Next consider the other quadrants Q 1; Q 2 : There is no trajectory converging to (0; 0) in Q 2 : Indeed suppose that a trajectory converges to (0; 0) in Q 2 as t ! 1; then it satis…es s t > 0; z t < 0; near 1 which is impossible; if it converges as t ! 1; then s t < 0; z t > 0; then it cannot be tangent to the axis fz = 0g : Finally consider the quadrant Q 1 : The region K delimitated by the two axis and the line N 0 M 0 is negatively invariant. Then any trajectory passing by a point of K converges to (0; 0) at 1: Moreover the region L delimitated by the two axis and T 1 is also invariant. Then any trajectory passing by a point of L converges to (0; 0) at 1: Thus there is an in…nity of central manifolds.

Those trajectories satisfy lim t ! 1 z s = 0; then s t s 2 : By integration, 0 < s = wt w 1 jtj : Thus for given " > 0; there holds C 1 jtj (1+") w C 2 jtj (1+") near 1: Since p = N; equation (4.1) reduces to (N 1) jw t j N 2 w tt = "e (N+ )t w q : Then (N 1) jw t j N 2 q w tt = ( N 1 q N + 1 jw t j N 1 q ) t "e (N+ )t jtj q ;

hence by integration, either lim t ! 1 w t = c < 0; or N 1 q N+1 jw t j N 1 q " N+ e (N+ )t jtj q . The last case is impossible for " = 1: If " = 1; since jwtj w 1 jtj ; it implies that w q N 1 jw t j = ( N 1 q N +1 w q N +1 N 1 ) t Ce N+ N 1 t ; which by integration contradicts the estimate C 1 jtj (1+") w C 2 jtj (1+") : Then w r !0 C jln rj ; and w 0 r !0 C r : The unique …xed point is (0; 0), and the two eigenvalues are 0: From Proposition 4.17, there exist solutions such that s N (N 1)(q+1) z; corresponding to trajectories in Q 2 and Q 4 . We get a family of solutions w given by (4.20). The sign + (resp. ) corresponds to the trajectory in Q 4 (resp. Q 2 ). It seems that there is no other trajectory converging to (0; 0); thus no other solution w can be de…ned near 0; or near 1:

For " = 1, corresponding to quadrants Q 1 and Q 3 all the trajectories satisfy s t z t < 0; hence they cannot converge to the unique …xed point (0; 0) as t ! 1; from Lemma 4.8. Therefore there is no local solution near 0 or 1.