Sharp stability for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Sharp stability for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence

Résumé

We prove a sharp quantitative version for the stability of the Sobolev inequality with explicit constants. Moreover, the constants have the correct behavior in the limit of large dimensions, which allows us to deduce an optimal quantitative stability estimate for the Gaussian log-Sobolev inequality with an explicit dimension-free constant. Our proofs rely on several ingredients such as competing symmetries, a flow based on continuous Steiner symmetrization that interpolates continuously between a function and its symmetric decreasing rearrangement, and refined estimates on the Sobolev functional in the neighborhood of the optimal Aubin-Talenti functions.
Fichier principal
Vignette du fichier
stability-preprint.pdf (525.61 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03780031 , version 1 (18-09-2022)
hal-03780031 , version 2 (11-10-2022)
hal-03780031 , version 3 (29-12-2022)
hal-03780031 , version 4 (21-07-2023)

Identifiants

Citer

Jean Dolbeault, Maria J. Esteban, Alessio Figalli, Rupert L. Frank, Michael Loss. Sharp stability for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence. 2022. ⟨hal-03780031v3⟩
149 Consultations
432 Téléchargements

Altmetric

Partager

More