
HAL Id: hal-03780031
https://hal.science/hal-03780031v3

Preprint submitted on 29 Dec 2022 (v3), last revised 21 Jul 2023 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sharp stability for Sobolev and log-Sobolev inequalities,
with optimal dimensional dependence

Jean Dolbeault, Maria J. Esteban, Alessio Figalli, Rupert L. Frank, Michael
Loss

To cite this version:
Jean Dolbeault, Maria J. Esteban, Alessio Figalli, Rupert L. Frank, Michael Loss. Sharp stability for
Sobolev and log-Sobolev inequalities, with optimal dimensional dependence. 2022. �hal-03780031v3�

https://hal.science/hal-03780031v3
https://hal.archives-ouvertes.fr


SHARP STABILITY FOR SOBOLEV AND LOG-SOBOLEV
INEQUALITIES, WITH OPTIMAL DIMENSIONAL DEPENDENCE

JEAN DOLBEAULT, MARIA J. ESTEBAN, ALESSIO FIGALLI, RUPERT L. FRANK,
AND MICHAEL LOSS

Abstract. We prove a quantitative version of the Sobolev inequality with explicit constants.
Moreover, the constants have the correct behavior in the limit of large dimensions, which al-
lows us to deduce an optimal quantitative stability estimate for the Gaussian log-Sobolev
inequality with an explicit dimension-free constant. Our proofs rely on several ingredients
such as, competing symmetries, a flow based on continuous Steiner symmetrization that in-
terpolates continuously between a function and its symmetric decreasing rearrangement and
refined estimates on the Sobolev-functional in the neighborhood of the optimal Aubin-Talenti
functions.
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1. Introduction and main results

On Rd with d ≥ 3, let us consider the Sobolev inequality

‖∇f‖2
L2(Rd) ≥ Sd ‖f‖2

L2∗ (Rd) ∀ f ∈ Ḣ1(Rd)

where 2∗ = 2 d/(d− 2) is the ‘Sobolev exponent’, Sd = 1
4
d (d− 2) |Sd|2/d is the sharp Sobolev

constant, and Sd denotes the d-dimensional unit ball. In [12] Brezis and Lieb posed the
question whether it is possible to bound the ‘Sobolev deficit’

‖∇f‖2
L2(Rd) − Sd ‖f‖

2
L2∗ (Rd)

on Ḣ1(Rd) from below in terms of some natural distance from the set of optimizers. The
homogeneous Sobolev space Ḣ1(Rd) is the space of the functions f ∈ L1

loc(Rd), whose dis-
tributional gradient is a square-summable function that vanish at infinity, in the sense that
|{x ∈ Rd : |f(x)| > ε}| < ∞ for all ε > 0. Here |A| denotes the Lebesgue measure of a
measurable set A. Throughout this paper we deal with real-valued functions. With minor
additional effort our arguments can be extended to the case of complex-valued functions.

Rodemich [58], Aubin [4] and Talenti [63] (see also [60]) proved that the Sobolev deficit is
nonnegative. Moreover, it was shown by Lieb [53], Gidas, Ni and Nirenberg [45] and Caffarelli,
Gidas and Spruck [18] that the deficit vanishes if and only if the function f is of the form

f(x) = c
(
a+ |x− b|2

)− d−2
2 , (1)

where a ∈ (0,∞), b ∈ Rd, and c ∈ R are constants. These functions are often called ‘Aubin–
Talenti functions’. LetM denote the (d+2)-dimensional manifold of functions of the form (1).

The question of Brezis and Lieb was answered by Bianchi and Egnell [6]: for any d ≥ 3
there is a strictly positive constant cBE such that, for any f ∈ Ḣ1(Rd) \M,

E(f) :=
‖∇f‖2

L2(Rd)
− Sd ‖f‖2

L2∗ (Rd)

infg∈M ‖∇f −∇g‖2
L2(Rd)

≥ cBE . (2)

We denote by cBE the optimal, that is, largest possible constant in (2).
Lions [55] has shown that if the Sobolev deficit is small for some function f , then f has to be

close to the setM of Sobolev optimizers. The closeness is measured in the strongest possible
sense, namely with respect to the norm in Ḣ1(Rd). The Bianchi–Egnell inequality (2) makes
the qualitative result of Lions more quantitative. In particular, it shows that the distance
to the manifold vanishes at least like the square root of the Sobolev deficit. Such ‘stability’
estimates have been established in other contexts as well, e.g., for the isoperimetric inequality
or for classical inequalities in real and harmonic analysis. In fact, stability has attracted a lot of
attention in recent years and we refer to [44, 26, 39, 27, 23, 30, 21, 24, 38, 25, 61, 42, 43, 40, 10]
and the references within for a list of works in this direction. In several of them the strategy
of Bianchi and Egnell or its generalizations play an important role.

An interesting point about (2) and other inequalities obtained by this method is that nothing
seems to be known about the optimal value of the constant cBE except for the fact that it is
strictly positive. The proof in [6] proceeds by a spectral estimate combined with a compactness
argument and hence cannot give any information about cBE. Explicit quantitative estimates
are known only for a distance toM measured by a weaker norm than (2), functions of Ḣ1(Rd)
satisfying additional constraints or superquadratic estimates of the distance which degenerate
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in a neighbourhood ofM, while much more is known for subcritical interpolation inequalities
than for Sobolev-type inequalities: see [9, 3, 31, 29, 10, 41, 13] for some references.

Stability results for the Sobolev inequality. It is the aim of this article to address the
question of proving (2) with an explicit lower bound on cBE. Not only will we obtain a
computable expression for the constant, we will also determine its asymptotic behavior as
d→ +∞. To explain the latter, we recall that

cBE ≤
4

d+ 4
. (3)

This follows from the proof of [6, Lemma 1]; see also [23, Introduction]. The constant on the
right side comes from the spectral gap inequality mentioned before. Thus, cBE decays at least
like d−1 as d → +∞. Our main result shows that it does not decay faster than d−1. More
precisely, we prove the following theorem.

Theorem 1. There is a constant β > 0 with an explicit lower estimate such that for all d ≥ 3
and all f ∈ H1(Rd) \M we have

E(f) ≥ β

d
.

We refer to Identity (44) and Remark 32 for an explicit expression of β and some comments
on a simpler bound deduced from Proposition 7.

Stability results for the logarithmic Sobolev inequality. Consistently with the opti-
mal d−1 behavior of the constant in Theorem 1 we obtain a quantitative version of the stability
for the sharp logarithmic Sobolev inequality, which we state next. On RN , N ≥ 1, we consider
the Gaussian measure

dγ(x) = e−π |x|
2

dx .

We abbreviate L2(γ) = L2(RN , dγ) and denote by H1(γ) the space of all u ∈ L2(γ) with dis-
tributional gradient in L2(γ). The logarithmic Sobolev inequality states that for all functions
u ∈ H1(γ) one has ∫

RN
|∇u|2 dγ ≥ π

∫
RN
|u|2 ln

(
|u|2

‖u‖2
L2(γ)

)
dγ .

The constant π is optimal and equality holds if and only if

u(x) = c ea·x (4)

for some a ∈ RN and c ∈ R. The corresponding stability result for the logarithmic Sobolev
inequality goes as follows.

Theorem 2. There is an explicit constant κ > 0 such that for all N ∈ N and all u ∈ H1(γ),∫
RN
|∇u|2 dγ − π

∫
RN
u2 ln

(
|u|2

‖u‖2
L2(γ)

)
dγ ≥ κ inf

a∈RN, c∈R

∫
RN

(u− c ea·x)2 dγ .

The logarithmic Sobolev inequality on a finite dimensional Euclidean space (with either
Gaussian or Lebesgue measures) can be seen as a large dimensional limit of the Sobolev

inequality, for instance by considering Sobolev’s inequality on a sphere of radius
√
d applied

to a function depending only on N real variables as in [5, p. 4818]. The classical versions of the
logarithmic Sobolev inequality are usually attributed to Stam [62], Federbush [36], Gross [46],
and also Weissler [66] for a scale-invariant form. There is a huge literature on logarithmic
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Sobolev inequalities and we refer to [47] for a survey on many early results. Equality cases in
the logarithmic Sobolev inequality have been characterized by Carlen in [20, Theorem 5], even
with a remainder term, see [20, Theorem 6]. Other remainder terms are given in [8, 35, 32]
and, using weaker notions of distances, in [8, 49, 35, 37, 48] while some obstructions to stability
results involving strong notions of distance are given in [50, 34]. However, as far as we know,
the Bianchi–Egnell strategy has so far not been applied to the logarithmic Sobolev inequality,
probably because u 7→ |u|2 ln |u|2 is not twice differentiable at the origin. Here we overcome
this issue. In fact, as will be clear from our proof, this non-twice-differentiability issue is
closely related to that of obtaining a d−1 decay in the setting of Theorem 1.

We have stated the logarithmic Sobolev inequality in its version with respect to the normal-
ized Gaussian measure. It has an equivalent version with respect to the Euclidean measure.
We set u = eπ |x|

2/2v and obtain by a simple integration by parts from Theorem 2∫
RN
|∇v|2 dx−π

∫
RN
v2 ln

(
v2

‖v‖2
L2(RN )

)
dx−N π ‖v‖2

L2(RN ) ≥ κ inf
b∈RN, c∈R

∫
RN

∣∣∣v−c e− π
2
|x−b|2

∣∣∣2dx .
Writing v(x) = λN/2w(λx) with a parameter λ > 0, we obtain equivalently

λ2

∫
RN
|∇w|2 dy − π

∫
RN
w2 ln

(
w2

‖w‖2
L2(RN )

)
dy −N π (1 + lnλ)‖w‖2

L2(RN )

≥ κ inf
b∈RN, c∈R

∫
RN

∣∣∣w − c e− π
2λ2
|y−b|2

∣∣∣2 dy .
We bound the right side from below by extending the infimum over all λ > 0 and then we
optimize the left side with respect to λ > 0. In this way we obtain the following stability
version of the Euclidean logarithmic Sobolev inequality.

Corollary 3. With κ > 0 as in Theorem 2 we have for all N ∈ N and all w ∈ H1(RN),

‖w‖2
L2(RN ) ln

(
2

N π e

∫
RN |∇w|

2 dx

‖w‖2
L2(RN )

)
− 2

N

∫
RN
w2 ln

(
w2

‖w‖2
L2(RN )

)
dx

≥ 2κ

N π
inf

λ>0, b∈RN, c∈R

∫
RN

∣∣∣w − c e− π
2λ2
|y−b|2

∣∣∣2 dy .
Ideas of the proof of Theorem 1. Let us describe the strategy of the proof of Theorem 1.
It consists of three independent parts, corresponding to Sections 3, 4 and 5, respectively. The
first and second parts concern nonnegative functions, while in the third part we deduce the
inequality for arbitrary functions from that for nonnegative functions. The latter argument
uses a certain concavity inherent in the problem. Potentially this argument comes with a loss
in the constant, but we show that it does not destroy the d−1 behavior that we need to prove
Theorem 2.

We now discuss the first and the second parts in more detail. Superficially, the proof
is analogous to that by Bianchi and Egnell [6], namely, one splits the problem into two
regions, one where f is close to the set of Sobolev optimizers and the other where it is far
away. These regions are defined in terms of the quantity infg∈M ‖∇f −∇g‖2

L2(Rd)
/‖∇f‖2

L2(Rd)
,

specifically by requiring that this quantity is either less or equal than δ, or bigger than δ.
Here δ > 0 is a free parameter that will be chosen appropriately at the end. Note that, since
infg∈M ‖∇f −∇g‖2

L2(Rd)
≤ ‖∇f‖2

L2(Rd)
, we may always assume that δ ≤ 1 and even δ < 1.



SHARP STABILITY FOR SOBOLEV AND LOG-SOBOLEV INEQUALITIES 5

The first part of the proof of Theorem 1 in Section 3 is concerned with a nonnegative
function f that is close to the set of optimizers. The basic strategy is to expand the quantity
‖f‖2

Lq(Rd)
with the main term given by the quantity with f replaced by the closest optimizer g.

By this choice there will be no linear term in this expansion, and for the quadratic term
one uses a spectral gap inequality. A first version of this argument appears in the proof of
Proposition 7. Such a naive expansion, however, is not good enough to reproduce the correct
d−1 behavior of the constant cBE. Instead, a refined argument is needed where we cut the
function f/g in its range and treat the different parts by different arguments. The spectral
gap inequality is only used for an L∞-bounded part of the perturbation.

Parenthetically we point out that we actually prove something stronger. Namely, we assume
a decomposition f = g + r with g ∈M and a perturbation r satisfying certain orthogonality
conditions. These orthogonality conditions for r are guaranteed when g realizes the infimum
infg′∈M ‖∇f −∇g′‖2

L2(Rd)
, but our argument does not make use of this minimality of g. This

observation turns out to be convenient when deducing the stability version of the logarithmic
Sobolev inequality in Theorem 2.

In the second part of the proof of Theorem 1, described in Section 4, we obtain a lower
bound on E(f) for nonnegative functions f satisfying infg∈M‖∇f −∇g‖2

L2(Rd)
> δ ‖∇f‖2

L2(Rd)
.

Bianchi and Egnell [6] handle this part by a compactness argument and this is the reason
why so far there does not exist a quantitative lower bound on cBE. One can replace this
argument by a constructive procedure using an idea taken from a paper by Michael Christ [25],
in which he establishes a quantitative error term for the Riesz rearrangement inequality.
To implement this idea in our context we construct, using competing symmetries [22] and
continuous rearrangement [14], a family of functions fτ , 0 ≤ τ < ∞, such that f0 = f ,
‖fτ‖2∗ = ‖f‖2∗ , τ 7→ ‖∇fτ‖2 is non-increasing and infb∈B ‖∇(fτ − b)‖2

2 → 0 as τ → ∞.
Clearly,

E(f) ≥
‖∇f‖2

L2(Rd)
− Sd ‖f‖2

L2∗ (Rd)

‖∇f‖2
L2(Rd)

= 1− Sd
‖f‖2

L2∗ (Rd)

‖∇f‖2
L2(Rd)

≥
‖∇fτ‖2

L2(Rd)
− Sd ‖fτ‖2

L2∗ (Rd)

‖∇fτ‖2
L2(Rd)

.

Starting with infg∈M ‖∇f −∇g‖2
L2(Rd)

> δ ‖∇f‖2
L2(Rd)

, one would like to run the flow until at

a certain point τ0 one has

inf
g∈M
‖∇(fτ0 − g)‖2

L2(Rd) = δ ‖∇fτ0‖2
L2(Rd) (5)

and one would conclude that

E(f) ≥
‖∇fτ0‖2

L2(Rd)
− Sd ‖fτ0‖2

L2∗ (Rd)

‖∇fτ0‖2
L2(Rd)

= δ
‖∇fτ0‖2

L2(Rd)
− Sd ‖fτ0‖2

L2∗ (Rd)

infg∈M ‖∇(fτ0 − g)‖2
L2(Rd)

.

We could then apply the first part of the proof to the function fτ0 and obtain the desired
bound. The details of this argument are more involved than presented here, mostly because
the function τ 7→ ‖∇fτ‖L2(Rd) need not be continuous, so the existence of a τ0 as in (5) is not
guaranteed.

Continuous rearrangement flows in the setting of Steiner symmetrizations have been used
by Pólya–Szegő [56, Note B], Brock [14, 15] and others. In the setting of symmetric decreas-
ing rearrangements of sets it was used by Bucur–Henrot [16] and we will generalize this to
functions. Additional results on this flow, which might be useful in other contexts as well, are
given in Appendix 7 at the end of the paper.
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On the proof of Theorem 2. The proof of Theorem 2 is given in Section 7. The underlying
idea is that the logarithmic Sobolev inequality on RN can be obtained by taking an appropriate
limit in the Sobolev inequalities in dimension d, in the limiting regime as d → +∞, and
that the same property should also be true for the stability inequality, except that for scaling
reasons, the Ḣ1(Rd) distance gives rise only to a stability estimate in L2(RN) for the logarithmic
Sobolev inequality. At a formal level, this suggests that the constant κ in Theorem 2 can be
explicitly estimated in terms of the constant β in Theorem 1, but to justify such a limit
further estimates on optimal Aubin-Talenti functions are needed. Instead of following this
path, we bypass these difficulties by reducing the problem to orthogonality conditions in a
neighbourhood of M, see Theorem 33.

Additional observations. Before ending this introduction, let us mention some further
progress on the optimal constant cBE that has been made since the first version of this paper
appeared on the arXiv. In that first version we had asked whether the upper bound (3) on
cBE is strict and whether there is a function f that minimizes E(f). Both questions have been
answered in an original way by T. König. In [51] he shows that the upper bound in (3) is
strict and in [52] that the infimum defining cBE is attained. This is reminiscent of the planar
isoperimetric inequality, where the constant in the quantitative isoperimetric inequality with
Frankel asymmetry is strictly smaller than the constant in the corresponding spectral gap
inequality and where one can prove the existence of an optimizing domain; see [7]. For further
studies under an additional convexity assumption, see [19, 2, 28].

In order to make notations lighter, we will write ‖ · ‖q = ‖ · ‖Lq(Rd) whenever the space is Rd

with Lebesgue measure.

2. The Sobolev inequality on the sphere

It is well known that the Sobolev inequality on Rd has an equivalent formulation on Sd, the
unit sphere in Rd+1. It will be convenient for us at several steps of our proof to carry out the
arguments in the setting of Sd. In this brief preliminary section, let us give some details.

We denote by ω = (ω1, ω2, . . . , ωd+1) the coordinates in Rd+1. Then the unit sphere Sd ⊂
Rd+1 can be parametrized in terms of stereographic coordinates by

ωj =
2xj

1 + |x|2
, j = 1, . . . , d , ωd+1 =

1− |x|2

1 + |x|2
.

To a function f on Rd we associate a function F on Sd via

F (ω) =

(
1 + |x|2

2

) d−2
2

f(x) ∀x ∈ Rd . (6)

Then, since (2/(1 + |x|2))d is the Jacobian of the inverse stereographic projection x 7→ ω,

|Sd|
∫
Sd
|F (ω)|2∗ dµ(ω) =

∫
Rd
|f(x)|2∗ dx ,

where µ denotes the uniform probability measure on Sd. Moreover, F ∈ H1(Sd) if and only if
f ∈ Ḣ1(Rd), and in this case

|Sd|
∫
Sd

(
|∇F |2 + 1

4
d (d− 2) |F |2

)
dµ(ω) =

∫
Rd
|∇f |2 dx .
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Therefore the sharp Sobolev inequality on Rd is equivalent to the following sharp Sobolev
inequality on Sd,∫

Sd

(
|∇F |2 + 1

4
d (d− 2) |F |2

)
dµ ≥ 1

4
d (d− 2)

(∫
Sd
|F |2∗ dµ

)2/2∗

∀F ∈ H1(Sd, dµ) ,

with equality exactly for the functions

G(ω) = c
(
a+ b · ω

)− d−2
2 ,

and a > 0, b ∈ Rd and c ∈ R are constants. We denote the corresponding set of functions
by M . Then the above equivalence shows that

E(f) =
‖∇f‖2

2 − Sd ‖f‖2
2∗

infg∈M ‖∇f −∇g‖2
2

=
‖∇F‖2

L2(Sd)
+ 1

4
d (d− 2) ‖F‖2

L2(Sd)
− Sd ‖F‖2

L2∗ (Sd)

infG∈M

{
‖∇F −∇G‖2

L2(Sd)
+ 1

4
d (d− 2) ‖F −G‖2

L2(Sd)

} .
3. Functions close to the manifold of optimizers

Our goal in this section is to prove a quantitative stability inequality for nonnegative func-
tions close to the manifold of optimizers. It is convenient to prove this result in the equivalent
setting of the sphere. We recall that µ denotes the uniform probability measure on Sd. In
order to simplify the notation, we write in this section

q = 2∗ =
2 d

d− 2
, θ = q − 2 =

4

d− 2
, A =

1

4
d (d− 2) .

Theorem 4. There are explicit constants ε0 > 0 and δ̃ ∈ (0, 1) such that for all d ≥ 3 and
for all − 1 ≤ r ∈ H1(Sd) satisfying (∫

Sd
|r|q dµ

)2/q

≤ δ̃ (7)

and ∫
Sd
r dµ = 0 =

∫
Sd
ωj r dµ , j = 1, . . . , d+ 1 , (8)

one has∫
Sd

(
|∇r|2 + A (1 + r)2

)
dµ− A

(∫
Sd

(1 + r)q dµ

)2/q

≥ θ ε0

∫
Sd

(
|∇r|2 + Ar2

)
dµ .

The key feature of this theorem is that the constant θ ε0 behaves like 4 ε0 d
−1 for large d.

This d−1 behavior leads to a corresponding lower bound on the behavior of cBE, which in view
of (3) is optimal.

Remark 5. In fact, we show that for every 0 < ε0 <
1
3

there is a δ̃ > 0 such that the assertion

in the theorem holds for all d ≥ 6. The same argument also gives that for every 0 < ε0 <
1
2

there is a D and a δ̃ > 0 such that the assertion of the theorem holds for all d ≥ D. The
explicit expression for δ̃ > 0 can be found in the proofs of Theorem 4, Proposition 21 and in
(21).

The proof of Theorem 4 will take up the rest of this section.
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3.1. The spectral gap inequality. Of crucial importance in our analysis, just like in that
of Bianchi and Egnell [6], is the following spectral bound. It appears, for instance, in Rey’s
paper [57, Appendix D] slightly before the work of Bianchi and Egnell.

Lemma 6. Let d ≥ 3 and assume that r ∈ H1(Sd) satisfies (8). Then∫
Sd

(
|∇r|2 − d r2

)
dµ ≥ 4

d+ 4

∫
Sd

(
|∇r|2 + Ar2

)
dµ .

Proof. We recall that the Laplace–Beltrami operator on Sd is diagonal in the basis of spherical
harmonics and that its eigenvalue on spherical harmonics of degree ` is ` (`+ d− 1).

Conditions (8) mean that r is orthogonal to spherical harmonics of degrees ` ≤ 1. Diago-
nalizing the Laplace–Beltrami operator, the claimed inequality becomes

` (`+ d− 1)− d ≥ 4

d+ 4

(
` (`+ d− 1) + 1

4
d (d− 2)

)
for all ` ≥ 2 .

This is elementary to check. �

3.2. Warm-up: A bound with suboptimal dimension dependence. In this subsection
we prove a preliminary version of Theorem 4 where the constant θ ε0 on the right side is
replaced by some d-dependent constant, which decreases much faster than d−1 as d increases.

The motivation for proving this preliminary version is threefold. First, it explains the basic
strategy of the proof without the additional difficulty of tracking the dependence on d. The
latter will require some rather elaborate additional arguments. Second, this more involved
proof works nicely when the exponent q = 2∗ is ≤ 3, which means d ≥ 6. (It is, however, not
difficult to adjust it to arbitrary d.) Therefore our chosen proof of Theorem 4 will combine
the inequality proved in this subsection for d = 3, 4, 5 with the inequality proved in the next
subsection for d ≥ 6. Third, the simpler argument in this subsection gives simpler expressions
for the relevant constants, which might be preferable in certain applications where the values
of these constants play a role.

Proposition 7. For all δ̃ > 0 and for all − 1 ≤ r ∈ H1(Sd) satisfying (7) and (8) one has∫
Sd

(
|∇r|2 + A (1 + r)2

)
dµ− A

(∫
Sd

(1 + r)q dµ

)2/q

≥ m(δ̃1/2)

∫
Sd

(
|∇r|2 + Ar2

)
dµ

where dµ is the uniform probability measure, with

m(ν) := 4
d+4
− 2

q
νq−2 if d ≥ 6 ,

m(ν) := 4
d+4
− 1

3
(q − 1) (q − 2) ν − 2

q
νq−2 if d = 4 , 5 ,

m(ν) := 4
7
− 20

3
ν − 5 ν2 − 2 ν3 − 1

3
ν4 if d = 3 .

(9)

We note that for any d ≥ 3 there is a νd such that m(ν) > 0 for ν < νd. Thus, for δ̃ < ν2
d

we obtain a stability inequality.

We begin the proof of Proposition 7 with some elementary inequalities.

Lemma 8. If q ≥ 2, then, for all x ≥ 0,

(1 + x)
2
q ≤ 1 + 2

q
x .

This is well known and we omit its simple proof.

Lemma 9. We have the following bounds.
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• If 2 ≤ q ≤ 3, then, for all x ≥ − 1,

(1 + x)q ≤ 1 + q x+ 1
2
q (q − 1)x2 + xq+ .

• If 3 ≤ q ≤ 4, then, for all x ≥ − 1,

(1 + x)q ≤ 1 + q x+ 1
2
q (q − 1)x2 + 1

6
q (q − 1) (q − 2)x3 + |x|q .

Similar bounds can also be derived for real q ∈ (4,∞). They become increasingly more
complicated as q passes an integer. The only bound for q > 4 that we shall need corresponds
to the critical exponent q = 6 when d = 3. In that case, we rely on the binomial expansion
(1 + x)6 = 1 + 6x+ 15x2 + 20x3 + 15x4 + 6x5 + x6.

Proof. We begin with the case 2 ≤ q ≤ 3 and set

f(x) := (1 + x)q − 1− q x− 1
2
q (q − 1)x2 − xq+ .

For any x ≥ − 1, we compute

f ′(x) = q
(
(1 + x)q−1 − 1− (q − 1)x− xq−1

+

)
,

f ′′(x) = q (q − 1)
(
(1 + x)q−2 − 1− xq−2

+

)
.

For − 1 ≤ x ≤ 0 we clearly have (1 + x)q−2 − 1 − xq−2
+ = (1 − |x|)q−2 − 1 ≤ 0. For x ≥ 0 we

have, by a well-known elementary inequality, (1+x)q−2−1−xq−2
+ = (1+x)q−2−1−xq−2 ≤ 0.

To summarize, f is concave on [−1,∞). We conclude that, for all x ≥ − 1,

f(x) ≤ f(0)− f ′(0)x .

Since f(0) = f ′(0) = 0, this is the claimed inequality.
We now turn to the case 3 ≤ q ≤ 4 and set this time

f(x) := (1 + x)q − 1− q x− 1
2
q (q − 1)x2 − 1

6
q (q − 1) (q − 2)x3 − |x|q .

Again, we compute

f ′(x) = q
(
(1 + x)q−1 − 1− (q − 1)x− 1

2
(q − 1) (q − 2)x2 − |x|q−2 x

)
,

f ′′(x) = q (q − 1)
(

(1 + x)q−2 − 1− (q − 2)x− |x|q−2
)
.

Since again f(0) = f ′(0) = 0, the claimed inequality will follow if we can show concavity of f
on [−1,∞), that is, g ≤ 0 on [−1,∞) where

g(x) := (1 + x)q−2 − 1− (q − 2)x− |x|q−2 .

We compute

g′(x) = (q − 2)
(
(1 + x)q−3 − 1− |x|q−4 x

)
,

g′′(x) = (q − 2) (q − 3)
(
(1 + x)q−4 − |x|q−4

)
.

We discuss g separately on [−1, 0] and on (0,∞).

◦ We begin with the second case. For x > 0 we have, by the same elementary inequality
as before, (1+x)q−3−1−xq−3 < 0. Thus, g′ < 0 on (0,∞). Since g(0) = 0, we deduce
g < 0 on (0,∞).
◦ Now let us consider the interval [−1, 0]. We see that g′′ > 0 on (−1,−1/2) and g′′ < 0

on (−1/2, 0). Therefore g′ is increasing on (−1,−1/2) and decreasing on (−1/2, 0).
Since g′(−1) = g′(0) = 0, we conclude that g′ > 0 on (−1, 0) and therefore g is
increasing on (−1, 0). Since g(0) = 0 we conclude that g < 0 on [−1, 0), as claimed.
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This completes the proof of the lemma. �

From these lemmas we easily obtain the following inequalities.

Proposition 10. Let (X, dµ) be a measure space and u, r ∈ Lq(X, dµ) for some q ≥ 2 with
u ≥ 0 and u+ r ≥ 0. Assume also that

∫
X
uq−1 r dµ = 0.

• If 2 ≤ q ≤ 3, then

‖u+ r‖2
q ≤ ‖u‖2

q + ‖u‖2−q
q

(
(q − 1)

∫
X

uq−2 r2 dµ+
2

q

∫
X

rq+ dµ

)
.

• If 3 ≤ q ≤ 4, then

‖u+ r‖2
q ≤‖u‖2

q

+ ‖u‖2−q
q

(
(q − 1)

∫
X

uq−2 r2 dµ+ 1
3

(q − 1) (q − 2)

∫
X

uq−3 r3 dµ+ 2
q

∫
X

|r|q dµ
)
.

• If q = 6, then

‖u+ r‖2
q ≤ ‖u‖2

q + ‖u‖2−q
q

(
5

∫
X

uq−2 r2 dµ+ 20
3

∫
X

uq−3 r3 dµ

+5

∫
X

uq−4 r4 dµ+ 2

∫
X

uq−5 r5 dµ+ 1
3

∫
X

r6 dµ

)
.

Proof of Proposition 10. For 2 ≤ q ≤ 3 we have, by Lemma 9, almost everywhere on X,

(u+ r)q ≤ uq + q uq−1 r + 1
2
q (q − 1)uq−2 r2 + rq+ .

Integrating this and using the assumed orthogonality condition, we obtain∫
X

(u+ r)q dµ ≤
∫
X

uq dµ+ 1
2
q (q − 1)

∫
X

uq−2 r2 dµ+

∫
X

rq+ dµ .

Applying Lemma 8, we obtain(∫
X

(u+ r)q dµ

) 2
q

≤
(∫

X

uq dµ

) 2
q

+

(∫
X

uq dµ

) 2−q
q
(

(q − 1)

∫
X

uq−2 r2 dµ+ 2
q

∫
X

rq+ dµ

)
.

This is the claimed inequality for 2 ≤ q ≤ 3. The proof for 3 < q ≤ 4 is similar and the
inequality for q = 6 follows from expanding the polynomial. �

Proof of Proposition 7. Let r be as in Theorem 4. Because of the mean-zero condition we can
apply Proposition 10 with u = 1 on X = Sd and dµ the uniform probability measure. We
simplify the resulting term using Hölder and Sobolev, which imply for 2 < t ≤ q,∫

Sd
|r|t dµ ≤

(∫
Sd
|r|q dµ

)t/q
≤ δ̃(t−2)/2A−1

∫
Sd

(
|∇r|2 + Ar2

)
dµ .

In this way, we obtain(∫
Sd

(1 + r)q dµ

)2/q

≤ 1 + (q − 1)

∫
Sd
r2 dµ+ n(δ̃1/2)A−1

∫
Sd

(
|∇r|2 + Ar2

)
dµ ,
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where
n(ν) := 2

q
νq−2 if d ≥ 6 ,

n(ν) := 1
3

(q − 1) (q − 2) ν + 2
q
νq−2 if d = 4 , 5 ,

n(ν) := 20
3
ν + 5 ν2 + 2 ν3 + 1

3
ν4 if d = 3 .

Using A (q − 2) = d, we deduce that∫
Sd

(
|∇r|2 + A (1 + r)2

)
dµ− A

(∫
Sd

(1 + r)q dµ

)2/q

≥
∫
Sd

(
|∇r|2 − dr2

)
dµ− n(δ̃1/2)

∫
Sd

(
|∇r|2 + Ar2

)
dµ .

Using the spectral gap inequality in Lemma 6 and noting that m(ν) = 4
d+4
− n(ν), we obtain

the claimed inequality. �

Remark 11. The estimates of Proposition 7 are good enough for proving Theorem 4 for d
finite, but fail for proving that the stability constant is of the order of θ ε0 in the large d limit,
for some positive ε0 independent of d and θ = q − 2 = 4/(d − 2). Indeed, if we write that
m(ν) ≥ θ ε0, we obtain

νq−2 ≤ q

2

(
4

d+ 4
− (q − 2) ε0

)
≤ q

2

4

d+ 4
=

4 d

(d− 2) (d+ 4)
≤ 4

d− 2
,

which means ν ≤
(
d−2

4

)−d−2
4 <

√
δ̃ for d large enough, for any given δ̃ > 0. Theorem 4 cannot

be deduced from Proposition 7 as d→ +∞ and this is why we need better estimates.

3.3. Cutting r into pieces. We turn now to the proof of Theorem 4 with the optimal
dependence of the constant on the dimension. Thus, until the end of Section 3 we will assume
that r satisfies the assumptions of Theorem 4. The following proposition gives an upper bound
on

(1 + r)q − 1− q r
for real numbers r in terms of three numbers

r1 := min{r, γ} , r2 := min{(r − γ)+,M − γ} and r3 := (r −M)+ (10)

where γ and M are parameters such that 0 < γ < M . We will later apply this when r is a
function. Our goal is to obtain a bound in terms of

θ := q − 2 where q = 2∗ =
2 d

d− 2
. (11)

We have in mind to let d→ +∞ so that θ → 0+.

Proposition 12. Given M ∈ (0,+∞) and M ∈ [
√
e,+∞), there are two positive constants

CM and CM,M depending respectively only on M and {M,M} such that, for any γ ∈ (0,M ],
q ∈ [2, 3] and r ∈ [−1,∞), we have

(1 + r)q − 1− q r ≤ 1
2
q (q − 1) (r1 + r2)2 + 2 (r1 + r2) r3 +

(
1 + CM θM

−1
lnM

)
rq3

+
(

3
2
γ θ r2

1 + CM,M θ r2
2

)
1{r≤M} + CM,M θM2

1{r>M} (12)

with r1, r2, r3 and θ given by (10) and (11).
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For the proof of Proposition 12, we need two elementary lemmas.

Lemma 13. If 2 ≤ q ≤ 3, then for all r ∈ [−1,∞),

(1 + r)q ≤ 1 + q r + 1
2
q (q − 1) r2 + (q − 2) r3

+ .

Proof. The inequality for − 1 ≤ r ≤ 0 follows from Lemma 9. Let now r ≥ 0. Then

(1 + r)q − 1− q r − 1
2
q (q − 1) r2 = q (q − 1) (q − 2)

∫ r

0

∫ s

0

∫ t

0

(1 + u)q−3 du dt ds .

Since q ≤ 3 we have (1 + u)q−3 ≤ 1 and therefore

q (q − 1) (q − 2)

∫ r

0

∫ s

0

∫ t

0

(1 + u)q−3 du dt ds ≤ q (q − 1) (q − 2)

∫ r

0

∫ s

0

∫ t

0

du dt ds

= q
3
q−1

2
(q − 2) r3 ≤ (q − 2) r3 ,

as claimed. �

Lemma 14. For all q ≥ 2 and all v ≥M ≥
√
e we have

q vq−1 − 2 v ≤ 1 + 2 lnM

M
(q − 2) vq and 1

2
q (q − 1) vq−2 − 1 ≤

1+q
2

+ lnM

M
2 (q − 2) vq .

Proof. Let

v(1)
∗ :=

(
2 q−1

q

) 1
q−2 and v(2)

∗ :=
(

1
q−1

) 1
q−2 .

Then an elementary computation shows that v 7→ q v−1 − 2 v1−q is increasing on
(
0, v

(1)
∗
]

and

decreasing on
[
v

(1)
∗ ,∞

)
. Similarly v 7→ 1

2
q (q − 1) v−2 − v−q is increasing on

(
0, v

(2)
∗
]

and

decreasing on
[
v

(2)
∗ ,∞

)
. Thus,

q vq−1 − 2 v ≤
(
qM

−1 − 2M
1−q
)
vq for all v ≥M ≥ v(1)

∗

and
1
2
q (q − 1) vq−2 − 1 ≤

(
1
2
q (q − 1)M

−2 −M−q
)

+
vq for all v ≥M ≥ v(2)

∗ .

One has v
(1)
∗ ≥ 1 ≥ v

(2)
∗ and, using ln t ≤ t− 1 for all t > 0, we find

ln v(1)
∗ ≤ 1

q
≤ 1

2
, that is, v(1)

∗ ≤
√
e .

Thus, the above inequality hold, in particular, for v ≥M ≥
√
e.

Moreover, using 1− t−1 ≤ ln t for t > 1 we can bound

qM
−1 − 2M

1−q
= (q − 2)M

−1
+ 2

(
M
−1 −M1−q

)
≤ (q − 2)M

−1 (
1 + 2 lnM

)
and
1
2
q (q−1)M

−2−M−q
=
(

1
2
q (q − 1)− 1

)
M
−2

+
(
M
−2 −M−q

)
≤ (q−2)M

−2 (1+q
2

+ lnM
)
.

This proves the assertion. �
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Proof of Proposition 12. We now turn to the proof of (12). Assume first that r ≤ M . We
apply Lemma 13 and obtain

(1 + r)q − 1− q r ≤ 1
2
q (q − 1) (r1 + r2)2 + θ (r1 + r2)3

+ .

If r ≤ γ, then r2 = 0 and (12) follows from (r1)3
+ ≤ γ r2

1 ≤ 3
2
γ r2

1. If γ < r ≤ M , we have,

since r1 = γ and 3 r1 r2 ≤ 1
2
r2

1 + 9
2
r2

2, we have

(r1 + r2)3
+ = γ r2

1 + 3 γ r1 r2 + 3 γ r2
2 + r3

2 ≤ 3
2
γ r2

1 +
(

15
2
γ +M

)
r2

2 .

Since γ ≤M this proves (12) with CM,M ≥ 17
2
M .

From here on, let us consider the case r > M . Using r = M + r3 we can write

(1 + r)q − 1− q r = (1 + r)q − (1 + r)2 + (1 +M)2 − 1− qM − (q − 2) r3 + r2
3 + 2M r3 .

We use

(1 +M)2 − 1− qM − 1
2
q (q − 1)M2 = − 1

2
(q − 2)M

(
2 + (q + 1)M

)
≤ 0

as well as − (q − 2) r3 ≤ 0, to get

(1 + r)q − 1− q r ≤ 1
2
q (q − 1)M2 + 2M r3 + r2

3 + (1 + r)q − (1 + r)2 . (13)

Note that the terms 2M r3 = 2 (r1+r2) r3 and 1
2
q (q−1)M2 = 1

2
q (q−1) (r1+r2)2 are already of

the form required in (12). In the following we bound the remaining terms r2
3 +(1+r)q−(1+r)2.

We do this separately in the cases M < r ≤ M + M and r > M + M , where M ≥ 0 is an
additional parameter.

If M < r ≤M +M , we have

(1 + r)q − (1 + r)2 ≤ C
(1)

M,M
θ and r2

3 − r
q
3 ≤ C

(1)

M
θ .

Inserting this into (13), we have for M < r ≤M +M

(1 + r)q − 1− q r ≤ 2M r3 + rq3 +
(

1
2
q (q − 1) + CM,M θ

)
M2 ,

provided

CM,M ≥M−2
(
C

(1)

M,M
+ C

(1)

M

)
.

This is a bound of the form (12), since r1 + r2 = M for r > M .
Next, we consider the case r > M +M , that is r3 = r −M > M . By Lemma 13 we have

(1 + r)q = (1 +M + r3)q = rq3
(
1 + 1+M

r3

)q
≤ rq3 + q rq−1

3 (1 +M) + 1
2
q (q − 1) rq−2

3 (1 +M)2 + θ rq−3
3 (1 +M)3

≤ rq3 + q rq−1
3 (1 +M) + 1

2
q (q − 1) rq−2

3 (1 +M)2 + θM
q−3

(1 +M)3

= rq3 + q rq−1
3 (1 +M) + 1

2
q (q − 1) rq−2

3 (1 +M)2 + C
(2)

M,M
θ .

In the last inequality, we used q ≤ 3 and r3 > M . This, together with

(1 + r)2 = (1 +M + r3)2 = r2
3 + 2 r3 (1 +M) + (1 +M)2 ,
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gives

1
2
q (q − 1)M2 + 2M r3 + r2

3 + (1 + r)q − (1 + r)2

≤ 2M r3 + rq3 +
(
q rq−1

3 − 2 r3

)
(1 +M)

+
(

1
2
q (q − 1) rq−2

3 − 1
)

(1 +M)2 + C
(2)

M,M
θ + 1

2
q (q − 1)M2 .

We now assume that M ≥
√
e. Then, by Lemma 14,

q rq−1
3 − 2 r3 ≤

1 + 2 lnM

M
θ rq3 and 1

2
q (q − 1) rq−2

3 − 1 ≤ 2 + lnM

M
2 θ rq3 .

Thus,

1
2
q (q − 1)M2 + 2M r3 + r2

3 + (1 + r)q − (1 + r)2

≤ 2M r3 +

(
1 +

CM lnM

M
θ

)
rq3 + C

(2)

M,M
θ + 1

2
q (q − 1)M2

where CM is a constant satisfying

1 + 2 lnM

M
(1 +M) +

2 + lnM

M
2 (1 +M)2 ≤ CM lnM

M
for all M ≥

√
e .

Combining this with (13) we obtain a bound of the form (12), provided the constant CM,M

there satisfies
CM,M ≥M−2C

(2)

M,M
.

This concludes the proof with CM,M = M−2 max
{
C

(1)

M,M
+ C

(1)

M
, C

(2)

M,M

}
. �

Corollary 15. Given ε > 0, M > 0, and γ ∈ (0,M/2), there is a constant Cγ,ε,M > 0 with
the following property: if 2 ≤ q ≤ 3, r ∈ [−1,∞), then

(1 + r)q − 1− q r ≤
(

1
2
q (q − 1) + 2 γ θ

)
r2

1 +
(

1
2
q (q − 1) + Cγ,ε,M θ

)
r2

2

+ 2 r1 r2 + 2 (r1 + r2) r3 + (1 + ε θ) rq3 (14)

with r1, r2, r3 and θ given by (10) and (11).

Proof. Since

q (q − 1) r1 r2 = 2 r1 r2 + (3 + θ) θ r1 r2 ≤ 2 r1 r2 + 4 θ r1 r2 ≤ 2 r1 r2 + γ
2
θ r2

1 + 8
γ
θ r2

2

and
CM,M M2

1{r>M} ≤ 4CM,M (M − γ)2
1{r>M} ≤ 4CM,M r2

2 ,

we deduce from (12) that

(1 + r)q − 1− q r ≤
(

1
2
q (q − 1) + 2 γ θ

)
r2

1 +
(

1
2
q (q − 1) + 8

γ
θ + 5CM,M θ

)
r2

2

+ 2 r1 r2 + 2 (r1 + r2) r3 +
(

1 + CM θM
−1

lnM
)
rq3 .

Given any M ≥ 2 γ, we choose M such that M ≥
√
e and CM M

−1
lnM ≤ ε. Then (14)

follows with Cγ,ε,M = 8
γ

+ 5CM,M . �
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We will apply Corollary 15 for q close to 2 and the main point is how the constants depend
on q. Apart from the ‘natural’ terms 1

2
q (q − 1) r2

1, 1
2
q (q − 1) r2

2, 2 r1 r2 and 2 (r1 + r2) r3,
all other terms are multiplied by θ, which is small in our application. Moreover, we have the
freedom to choose γ and ε as small as we please (independent of q) and so the prefactors of the
terms r2

1 and rq3 are almost the natural ones. The price to be paid is a rather large constant
in front of the error term involving r2

2. In order to have better estimates as d → +∞, more
work is needed.

3.4. A detailed estimate of the deficit. We assume that − 1 ≤ r ∈ H1(Sd) satisfies the

orthogonality conditions (8) as well as the smallness condition (7) with some δ̃, and we show

that, if this δ̃ is small enough, given ε0 ∈ (0, 1
3
), we obtain the claimed inequality.

Given two parameters ε1, ε2 > 0 we apply Corollary 15 with

γ = ε1/2 , ε = ε2 and Cγ,ε,M = Cε1,ε2 . (15)

In terms of these parameters, we decompose r = r1 + r2 + r3. We obtain∫
Sd
|∇r|2 dµ =

∫
Sd
|∇r1|2 dµ+

∫
Sd
|∇r2|2 dµ+

∫
Sd
|∇r3|2 dµ

and, since r has mean zero, ∫
Sd

(1 + r)2 dµ = 1 +

∫
Sd
r2 dµ .

Moreover,∫
Sd
r2 dµ =

∫
Sd
r2

1 dµ+

∫
Sd
r2

2 dµ+

∫
Sd
r2

3 dµ+ 2

∫
Sd
r1 r2 dµ+ 2

∫
Sd

(r1 + r2) r3 dµ .

According to Corollary 15 and using again the fact that r has mean zero, we have∫
Sd

(1 + r)q dµ ≤ 1 +
(

1
2
q (q − 1) + ε1 θ

) ∫
Sd
r2

1 dµ+
(

1
2
q (q − 1) + Cε1,ε2 θ

) ∫
Sd
r2

2 dµ

+ 2

∫
Sd
r1 r2 dµ+ 2

∫
Sd

(r1 + r2) r3 dµ+ (1 + ε2 θ)

∫
Sd
rq3 dµ .

Using (1 + x)2/q ≤ 1 + 2
q
x, we obtain(∫

Sd
(1 + r)q dµ

)2/q

≤ 1 + (q − 1 + 2
q
ε1 θ)

∫
Sd
r2

1 dµ+ (q − 1 + 2
q
Cε1,ε2 θ)

∫
Sd
r2

2 dµ

+ 4
q

∫
Sd
r1 r2 dµ+ 4

q

∫
Sd

(r1 + r2) r3 dµ+ 2
q

(1 + ε2 θ)

∫
Sd
rq3 dµ

≤ 1 + (q − 1 + ε1 θ)

∫
Sd
r2

1 dµ+ (q − 1 + Cε1,ε2 θ)

∫
Sd
r2

2 dµ

+ 2

∫
Sd
r1 r2 dµ+ 2

∫
Sd

(r1 + r2) r3 dµ+ 2
q

(1 + ε2 θ)

∫
Sd
rq3 dµ .
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In the last inequality we used 2
q
≤ 1. For the final term, however, it is vital that we keep 2

q
.

We thus have, for any 0 < ε0 ≤ θ−1,∫
Sd

(
|∇r|2 + A (1 + r)2

)
dµ− A

(∫
Sd

(1 + r)q dµ

)2/q

≥ θ ε0

∫
Sd

(
|∇r|2 + Ar2

)
dµ

+ (1− θ ε0)

∫
Sd

(
|∇r1|2 + Ar2

1

)
dµ− A (q − 1 + ε1 θ)

∫
Sd
r2

1 dµ

+ (1− θ ε0)

∫
Sd

(
|∇r2|2 + Ar2

2

)
dµ− A (q − 1 + Cε1,ε2 θ)

∫
Sd
r2

2 dµ

+ (1− θ ε0)

∫
Sd

(
|∇r3|2 + Ar2

3

)
dµ− 2

q
A (1 + ε2 θ)

∫
Sd
rq3 dµ .

With another parameter σ0 > 0 we define

I1 := (1− θ ε0)

∫
Sd

(
|∇r1|2 + Ar2

1

)
dµ− A (q − 1 + ε1 θ)

∫
Sd
r2

1 dµ+ Aσ0 θ

∫
Sd

(r2
2 + r2

3) dµ ,

I2 := (1− θ ε0)

∫
Sd

(
|∇r2|2 + Ar2

2

)
dµ− A

(
q − 1 + (σ0 + Cε1,ε2) θ

) ∫
Sd
r2

2 dµ ,

I3 := (1− θ ε0)

∫
Sd

(
|∇r3|2 + Ar2

3

)
dµ− 2

q
A (1 + ε2 θ)

∫
Sd
rq3 dµ− Aσ0 θ

∫
Sd
r2

3 dµ .

We recall that A = 1
4
d (d− 2). For later purposes, we note that Aθ = A (q − 2) = d and

I1 = (1− θ ε0)

∫
Sd
|∇r1|2 dµ− d (1 + ε0 + ε1)

∫
Sd
r2

1 dµ+ d σ0

∫
Sd

(r2
2 + r2

3) dµ ,

I2 = (1− θ ε0)

∫
Sd
|∇r2|2 dµ− d (1 + ε0 + σ0 + Cε1,ε2)

∫
Sd
r2

2 dµ .

To summarize, we have∫
Sd

(
|∇r|2 + A (1 + r)2

)
dµ− A

(∫
Sd

(1 + r)q dµ

)2/q

≥ θ ε0

∫
Sd

(
|∇r|2 + Ar2

)
dµ+

3∑
k=1

Ik .

In the following we will show that I1, I3 and I2 are nonnegative, in this order.

3.5. Bound on I1. The intuition here is the same as in the proof of the spectral gap inequality
in Lemma 6. Namely, the lowest L2-eigenvalue of

∫
Sd |∇u|

2 dµ on functions orthogonal to
spherical harmonics of degree less or equal than 1 is 2 (d + 1), while the term that we are
subtracting corresponds to a component that is multiplied by a number only slightly larger
than d. Therefore, there is space to accomodate the errors coming from ε0 and ε1. Another
source of an error comes from the fact that, while r is orthogonal to spherical harmonics of
degree less or equal than 1, r1 need not be. However, as we will see, it nearly is. To control
the corresponding error from orthogonality we need the positive terms involving σ0.

Proposition 16. For any 0 < ε0 <
1
3
, there is a constant σ0(γ, ε0, δ̃) > 0 depending explicitly

on γ, ε0 and δ̃ such that for all d ≥ 6 and all r ∈ H1(Sd) such that r ≥ −1 and satisfying (7)
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and (8) as in Theorem 4, with θ given by (11),

ε1 = 1
2

(1− 3 ε0) (16)

and σ0 ≥ σ0(γ, ε0, δ̃), one has
I1 ≥ 0 .

Notice that θ = q − 2 ≤ 1 with q = 2 d/(d− 2) means d ≥ 6. An expression of σ0 is given
below in (20).

Proof. We split the proof in three simple steps.

Step 1. Let r̃1 be the orthogonal projection of r1 onto the space of spherical harmonics of
degree ≥ 2, that is,

r̃1 = r1 −
∫
Sd
r1 dµ− (d+ 1)ω ·

∫
Sd
ω′ r1(ω′) dµ(ω′)

as
√
d+ 1ωj is L2-normalized with respect to the uniform probability measure on the sphere

for any j = 1, 2, . . . , N + 1. Then

I1 = (1− θ ε0)

∫
Sd
|∇r̃1|2 dµ− d (1 + ε0 + ε1)

∫
Sd
r̃2

1 dµ+ d σ0

∫
Sd

(r2
2 + r2

3) dµ

− d (1 + ε0 + ε1)

(∫
Sd
r1 dµ

)2

− d (d+ 1)
(
(1 + θ) ε0 + ε1

) ∣∣∣∣∫
Sd
ω r1 dµ

∣∣∣∣2
≥
(
2 (d+ 1) (1− θ ε0)− d (1 + ε0 + ε1)

) ∫
Sd
r̃2

1 dµ+ d σ0

∫
Sd

(r2
2 + r2

3) dµ

− d (1 + ε0 + ε1)

(∫
Sd
r1 dµ

)2

− d (d+ 1)
(
(1 + θ) ε0 + ε1

) ∣∣∣∣∫
Sd
ω r1 dµ

∣∣∣∣2 .
In the equality, we used the fact that the ωj’s are eigenfunctions of the Laplace–Beltrami
operator with eigenvalue d. In the inequality, we used the fact that the operator is bounded
from below by 2 (d + 1) on the orthogonal complement of spherical harmonics of degree less
or equal than 1.

Step 2. With ε1 given by (16), it is easy to see that for any ε0 <
1
3
, using θ ≤ 1, we have

2 (d+ 1) (1− θ ε0)− d (1 + ε0 + ε1) ≥ d
2

(1− 3 ε0) + 2 (1− ε0) > d ε1 > 0 . (17)

Using ∫
Sd
r̃2

1 dµ =

∫
Sd
r2

1 dµ−
(∫

Sd
r1 dµ

)2

− (d+ 1)

∣∣∣∣∫
Sd
ω r1 dµ

∣∣∣∣2
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and θ ≤ 1, we obtain

1

d
I1 ≥ ε1

∫
Sd
r̃2

1 dµ+ σ0

∫
Sd

(r2
2 + r2

3) dµ

− (1 + ε0 + ε1)

(∫
Sd
r1 dµ

)2

− (d+ 1)
(
(1 + θ) ε0 + ε1

) ∣∣∣∣∫
Sd
ω r1 dµ

∣∣∣∣2
≥ ε1

∫
Sd
r2

1 dµ+ σ0

∫
Sd

(r2
2 + r2

3) dµ

− (1 + ε0)

(∫
Sd
r1 dµ

)2

− 2 (d+ 1) ε0

∣∣∣∣∫
Sd
ω r1 dµ

∣∣∣∣2 .
Step 3. Let us take care of the rank one terms coming from the orthogonality conditions. We
will show that I1 ≥ 0 for an appropriately chosen σ0 as a consequence of

(1 + ε0)

(∫
Sd
r1 dµ

)2

+ 2 (d+ 1) ε0

∣∣∣∣∫
Sd
ω r1 dµ

∣∣∣∣2 ≤ ε1

∫
Sd
r2

1 dµ+ σ0

∫
Sd

(r2
2 + r2

3) dµ . (18)

Let Y be one of the functions 1 and a · ω, a ∈ Rd+1. Then, since
∫
Sd Y r dµ = 0 by (8),(∫

Sd
Y r1 dµ

)2

=

(∫
Sd
Y (r2 + r3) dµ

)2

≤ ‖Y ‖2
L4(Sd) µ

(
{r2 + r3 > 0}

)1/2 ‖r2 + r3‖2
L2(Sd) .

Since {r2 + r3 > 0} ⊂ {r1 ≥ γ}, we have

µ({r2 + r3 > 0}) ≤ µ({r1 ≥ γ}) ≤ 1

γ2

∫
Sd
r2

1 dµ =
1

γ2
‖r1‖2

L2(Sd) .

Thus we have(∫
Sd
Y r1 dµ

)2

≤ ‖Y ‖2
L4(Sd)

√
2 δ̃

γ
‖r1‖L2(Sd)

(∫
Sd

(
r2

2 + r2
3

)
dµ

)1/2

(19)

using ‖r2 + r3‖2
L2(Sd) ≤

√
2 δ̃
(∫

Sd (r2
2 + r2

3) dµ
)1/2

because ‖r2 + r3‖2
L2(Sd) ≤ 2

∫
Sd (r2

2 + r2
3) dµ

and

‖r2 + r3‖L2(Sd) ≤ ‖r‖L2(Sd) ≤ ‖r‖Lq(Sd) ≤
√
δ̃ .

If Y = 1, then clearly ‖Y ‖L4(Sd) = 1 and (19) gives(∫
Sd
r1 dµ

)2

≤

√
2 δ̃

γ
‖r1‖L2(Sd)

(∫
Sd

(
r2

2 + r2
3

)
dµ

)1/2

.

If Y = a · ω, then a quick computation gives

‖Y ‖4
L4(Sd) =

∫ π
0

cos4 θ sind−1 θ dθ∫ π
0

sind−1 θ dθ
|a|4 =

3 |a|4

(d+ 3) (d+ 1)
≤ 3 |a|4

(d+ 1)2
.

From (19) applied with a =
∫
Sd ω r1 dµ, we obtain

(d+ 1)

∣∣∣∣∫
Sd
ω r1 dµ

∣∣∣∣2 =
d+ 1

|a|2

(∫
Sd
Y r1 dµ

)2

≤
√

3

√
2 δ̃

γ
‖r1‖L2(Sd)

(∫
Sd

(
r2

2 + r2
3

)
dµ

)1/2

.
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Summing up, we have

ε1 ‖r1‖2
L2(Sd) + σ0

∫
Sd

(
r2

2 + r2
3

)
dµ− (1 + ε0)

(∫
Sd
r1 dµ

)2

− 2 (d+ 1) ε0

∣∣∣∣∫
Sd
ω r1 dµ

∣∣∣∣2
≥ ε1 ‖r1‖2

L2(Sd)+σ0

∫
Sd

(
r2

2 + r2
3

)
dµ−

(
1+(2

√
3+1) ε0

) √2 δ̃

γ
‖r1‖L2(Sd)

(∫
Sd

(
r2

2 + r2
3

)
dµ

)1/2

and the right-hand side is nonnegative under a nonpositive discriminant condition which is
satisfied by σ0 ≥ σ0(γ, ε0, δ̃) with

σ0(γ, ε0, δ) :=
1

2 ε1

(
1 + (2

√
3 + 1) ε0

)2 δ

γ2
. (20)

This choice establishes (18) and allows us to conclude that I1 ≥ 0. �

Let us define

δ1 :=
4 ε1 ε2 γ

2

q
(
1 + (2

√
3 + 1) ε0

)2 . (21)

The condition σ0 ≥ σ0(γ, ε0, δ̃) of Proposition 16 can be inverted as follows.

Corollary 17. For any 0 < ε0 <
1
3

and σ0 > 0, for all d ≥ 6 and all r ∈ H1(Sd) such that
r ≥ −1 and satisfying (7) and (8) as in Theorem 4, with θ, ε1, ε2 and δ1 respectively given
by (11), (16), (15) and (21), if

0 < δ̃ ≤ δ1
q σ0

2 ε2
,

then one has I1 ≥ 0.

Remark 18. The assumption ε0 <
1
3

is used in (16) to guarantee that ε1 takes positive values.
A less restrictive condition can be obtained by requesting that the left-hand side in (17) is
actually 0. We see that if ε0 < 1, then a similar bound as in (17), namely with 1

2
(1− ε0) on

the right side, holds for all sufficiently large d, depending on ε0.

3.6. Bound on I3. The idea for bounding this term is to use the Sobolev inequality. The
extra coefficient 2

q
< 1 gives us enough room to accomodate all error terms.

Proposition 19. Assume that δ̃ ∈ (0, 1) and 0 < ε0 <
1
3
. With

ε2 :=
1

4
(1− 3 ε0) (22)

and σ0 = 2
q
ε2, for all d ≥ 6, all δ̃ ≤ 1 and all r as in Theorem 4, one has

I3 ≥ 0 .

Proof. Taking into account the choice for σ0, we have

I3 = (1− θ ε0)

∫
Sd

(
|∇r3|2 + Ar2

3

)
dµ− 2

q
A

(
(1 + ε2 θ)

∫
Sd
rq3 dµ+ ε2 θ

∫
Sd
r2

3 dµ

)



20 J. DOLBEAULT, M. J. ESTEBAN, A. FIGALLI, R. L. FRANK, AND M. LOSS

We have ‖r3‖qLq(Sd)
≤ ‖r3‖2

Lq(Sd) because ‖r3‖Lq(Sd) ≤ ‖r‖Lq(Sd) ≤ 1 and ‖r3‖L2(Sd) ≤ ‖r3‖Lq(Sd)

by Hölder’s inequality. Thus, we obtain

I3 ≥ (1− θ ε0)

∫
Sd

(
|∇r3|2 + Ar2

3

)
dµ− A 2

q
(1 + 2 ε2 θ)

(∫
Sd
rq3 dµ

)2/q

≥ θ

q
(1− q ε0 − 4 ε2)

∫
Sd

(
|∇r3|2 + Ar2

3

)
dµ ≥ 0 ,

using θ = q − 2 ≤ 1 and Sobolev’s inequality: ‖∇r3‖2
L2(Sd) + A ‖r3‖2

L2(Sd) ≥ A ‖r3‖2
Lq(Sd). �

Remark 20. The restriction ε0 <
1
3

can be relaxed to ε0 <
1
2

at the expense of having the
inequality valid only in sufficiently high dimensions d, depending on ε0. Indeed, ignoring the
influence of ε2 and σ0 for the moment, the inequality at the end of the previous proof requires
1− q

2
ε0 > 0 and this is possible in all sufficiently high dimensions if and only if ε0 <

1
2
. Since

this inequality is strict, the errors from ε2 and σ0 can then be accomodated as well.

3.7. Bound on I2. At this point in the proof, for given 0 < ε0 < 1
3
, we have fixed the

parameters ε1 and ε2 and we have found a δ3 such that I1, I3 ≥ 0 under the assumption
δ̃ ≤ δ3. Here we show that, by further decreasing δ̃, if necessary, we can ensure that I3 ≥ 0.
The idea to achieve this is to use that r2 satisfies an improved spectral gap inequality.

Proposition 21. For any 0 < ε0 <
1
3
, let σ0 = 2

q
ε2. Then there is a δ2 ∈ (0, 1) such that, for

all d ≥ 6, all δ̃ ≤ δ2 and all r as in Theorem 4, one has

I2 ≥ 0 .

Proof. We first claim that for any L2-normalized spherical harmonic Y of degree k ∈ N, we
have ∣∣∣∣∫

Sd
Y r2 dµ

∣∣∣∣ ≤ 3
k
2 γ−

q
4 δ̃

q
8 ‖r2‖L2(Sd) . (23)

Indeed, according to [33, Theorem 1], for any such spherical harmonic and any p ∈ [2,∞) we
have

‖Y ‖Lp(Sd) ≤ (p− 1)
k
2 .

Thus, we can bound∣∣∣∣∫
Sd
Y r2 dµ

∣∣∣∣ ≤ ‖Y ‖L4(Sd) µ
(
{r2 > 0}

) 1
4 ‖r2‖L2(Sd) ≤ 3

k
2 µ
(
{r2 > 0}

) 1
4 ‖r2‖L2(Sd) .

Meanwhile,

µ
(
{r2 > 0}

)
= µ

(
{r > γ}

)
≤ 1

γq
‖r‖q

Lq(Sd)
≤ δ̃q/2

γq
.

This leads to the claimed bound (23).
If πk r2 denotes the projection of r2 onto spherical harmonics of degree k, from (23) to

Y = πk r2/ ‖πk r2‖L2(Sd), it follows that

‖Πk r2‖L2(Sd) ≤ 3
k
2 γ−

q
4 δ̃

q
8 ‖r2‖L2(Sd) .

Next, for any K ∈ N, if ΠK r2 :=
∑

k<K πk r2 denotes the projection of r2 onto spherical
harmonics of degree less than K, then

‖ΠK r2‖L2(Sd) =
(∑

k<K ‖πk r2‖2
L2(Sd)

)1/2

≤ γ−
q
4 δ̃

q
8 ‖r2‖L2(Sd)

√∑
k<K3k ≤ 3

K
2 γ−

q
4 δ̃

q
8 ‖r2‖L2(Sd) .
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From this we conclude that∫
Sd
|∇r2|2 dµ ≥

∫
Sd
|∇(1− ΠK) r2|2 dµ

≥ K (K + d− 1)

∫
Sd
|(1− ΠK) r2|2 dµ

= K (K + d− 1)
(
‖r2‖2

L2(Sd) − ‖ΠK r2‖2
L2(Sd)

)
≥ K (K + d− 1)

(
1− 3K γ−

q
2 δ̃

q
4

)
‖r2‖2

L2(Sd) .

Consequently,

I2 ≥
(

(1− θ ε0)K (K + d− 1)
(

1− 3K γ−
q
2 δ̃

q
4

)
− d (1 + ε0 + σ0 + Cε1,ε2)

)
‖r2‖2

L2(Sd) .

We choose K ∈ N and δ2 > 0 such that

K := 1 +

[
2

1 + ε0 + σ0 + Cε1,ε2
1− ε0

]
and δ2 :=

1

4

γ2

32K
(24)

where [x] denotes the integer part of x ∈ R and δ3 is given by (22). From the definition of δ2,

if δ̃ ≤ δ2, we have 1− 3K γ−
q
2 δ̃

q
4 ≥ 1

2
and conclude that I2 ≥ 0 because K + d− 1 ≥ d. �

3.8. Proof of Theorem 4. We assume that d ≥ 6 and fix some ε0 ∈ (0, 1/3). With the
choice

γ = ε2 = 2 ε1 = 1
4

(1− 3 ε0) and σ0 =
2

q
ε2

according to (15), (16), and (22) on the one hand so that the assumptions of Corollary 17,
Proposition 19 and Proposition 21 are fulfilled, and an arbitrary choice of

M ≥ 2 γ , M ≥
√
e and ε = γ

which determines Cε1,ε2 = Cγ,ε,M according to (15) on the other hand, the condition

δ̃ = min
{
δ1, δ2

}
with δ1 and δ2 given by (21) and (24), we claim that I1, I2 and I3 are nonnegative, which
completes the proof of Theorem 4 for q ≤ 3, that is d ≥ 6. The assertion for d = 3, 4, 5
follows from the result proved in Subsection 3.2. �

4. Functions away from the manifold of optimizers

Our goal in this section is to prove a stability inequality for nonnegative functions that are,
in a certain sense, ‘far’ away from the manifold of optimizers. Let us introduce

I (δ) := inf

{
E(f) : 0 ≤ f ∈ Ḣ1(Rd) \M , inf

g∈M
‖∇f −∇g‖2

2 ≤ δ ‖∇f‖2
2

}
. (25)

Theorem 22. Let δ ∈ (0, 1) and assume that 0 ≤ f ∈ Ḣ1(Rd) \M satisfies

inf
g∈M
‖∇f −∇g‖2

2 ≥ δ ‖∇f‖2
2 .

Then, with I (δ) defined by (25), we have

E(f) ≥ δI (δ) .
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We will prove this theorem by symmetrization. First, we will use a discrete symmetriza-
tion procedure to get somewhat close to the manifold, then we will use a further continuous
symmetrization procedure to fine tune the distance to the manifold.

4.1. Competing symmetries. The functional E(f) is conformally invariant in the sense
that if C : Rd ∪ {∞} → Rd ∪ {∞} is a conformal map, the function

fC(x) = |detDC(x)|1/2∗f
(
C(x)

)
satisfies

E(fC) = E(f) .

In order to verify this, we recall that any conformal map is a composition of scalings, trans-
lations, rotations and inversions. For scalings, translations and rotations in Rd the claimed
invariance is easy to see. The additional map to consider is the inversion I(x) = x

|x|2 and a

straightforward change of variables shows that

‖∇fI‖2
2 = ‖∇f‖2

2 , ‖fI‖2
2∗ = ‖f‖2

2∗ .

The equality
inf
g∈M
‖∇(fI − g)‖2

2 = inf
g∈M
‖∇f −∇g‖2

2

follows from
inf
g∈M
‖∇(fI − g)‖2

2 = inf
g∈M
‖∇(f − gI)‖2

2 = inf
g∈M
‖∇f −∇g‖2

2

since I2 = I and g → gI maps the set M to itself in a one-to-one and onto fashion.
Another and perhaps easier way to see the conformal invariance is to pull the problem

up to the sphere via the stereographic projection, as discussed in Section 2. On the sphere
the inversion I takes the form of the reflection (s1, . . . , sd, sd+1) → (s1, . . . , sd,−sd+1), which
clearly leaves the functional on the sphere unchanged.

A second ingredient for the construction of the discrete symmetrization flow is the technique
of ‘competing symmetries’, invented in [22]. Consider any nonnegative function f ∈ Ḣ1(Rd)
and its counterpart F ∈ H1(Sd) given by (6). Set

(UF )(ω) = F (ω1, ω2, . . . , ωd+1,−ωd) ,
which corresponds to a rotation by π/2 that maps the ‘north pole’ axis (0, 0, . . . , 1) to
(0, . . . , 1, 0). Reversing (6) the function on Rd that corresponds to UF is given by

(Uf)(x) =

(
2

|x− ed|2

) d−2
2

f

(
x1

|x− ed|2
, . . . ,

xd−1

|x− ed|2
,
|x|2 − 1

|x− ed|2

)
, (26)

where ed = (0, . . . , 0, 1) ∈ Rd. It follows that

E(Uf) = E(f) .

The operation U is obviously linear, invertible and an isometry on L2∗(Rd).
We also consider the symmetric decreasing rearrangement

Rf(x) = f ∗(x) .

The most important properties are that f and f ∗ are equimeasurable and that ‖∇f ∗‖2 ≤
‖∇f‖2. For elementary properties of rearrangements the reader may consult [54]. Being
equimeasurable, this map is also an isometry on L2∗(Rd). It is when using the decreasing
rearrangement that we use the fact that f is a nonnegative function. For functions that
change sign one conventionally defines their rearrangement as the rearrangement of their
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absolute value. Passing from a function to its absolute value does not alter the numerator of
E(f) but may decrease the denominator so that other arguments are needed.

On Rd, let

g∗(x) := |Sd|−
d−2
2 d

(
2

1 + |x|2

) d−2
2

. (27)

Note that ‖g∗‖2∗ = 1 because it is obtained as the stereographic projection of the constant
function on Sd with 2∗-norm equal to 1. The following theorem was proved in [22].

Theorem 23. Let f ∈ L2∗(Rd) be a nonnegative function. Consider the sequence (fn)n∈N of
functions

fn = (RU)nf ∀n ∈ N . (28)

Then
lim
n→∞

‖fn − hf‖2∗ = 0

where hf = ‖f‖2∗ g∗ ∈ M. Moreover, if f ∈ Ḣ1(Rd), then (‖∇fn‖2
2)n∈N is a nonincreasing

sequence.

It does not seem clear whether the functional E(f) decreases or increases under rearrange-
ment. The next lemma helps to explain this point. Define M1 to be the set of the elements
in M with 2∗-norm equal to 1.

Lemma 24. For any f ∈ Ḣ1(Rd), we have

inf
g∈M
‖∇f −∇g‖2

2 = ‖∇f‖2
2 − Sd sup

g∈M1

(
f, g2∗−1

)2
.

Here (·, ·) is the L2(Rd) inner product or, more precisely, the duality pairing between L2∗(Rd)
and L(2∗)′(Rd).

Proof. Let g be any Aubin–Talenti function with ‖g‖2∗ = 1. The function g is an optimizer of
the Sobolev inequality, i.e., ‖∇g‖2

2 = Sd ‖g‖2
2∗ = Sd and is a solution of the Sobolev equation

−∆g = Sd
g2∗−1

‖g‖2∗−2
2∗

= Sd g
2∗−1 .

Hence for any nonnegative constant c we find

‖∇(f − c g)‖2
2 = ‖∇f‖2

2 − 2 c (∇f,∇g) + c2 ‖∇g‖2 = ‖∇f‖2
2 − 2 c Sd

(
f, g2∗−1

)
+ Sd c

2

and minimizing with respect to c we find the lower bound ‖∇f‖2
2−Sd

(
f, g2∗−1

)2
, which proves

the lemma. �

Under the decreasing rearrangement, the term ‖∇f‖2
2 does not increase whereas the term

supg∈M1

(
f, g2∗−1

)2
increases. To see this, note that the supremum is attained at some Aubin–

Talenti function of the form (1), which is a strictly symmetric decreasing function about
some point b ∈ Rd. Replacing f by its symmetric decreasing rearrangement about that point

increases
(
f, g2∗−1

)2
, in fact strictly unless f is already symmetric decreasing about the point b.

Thus, while the numerator in E(f) decreases under rearrangements so does the denominator
and there are no direct conclusions to be drawn from this. The next lemma summarizes what
we have shown.
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Lemma 25. For the sequence (fn)n∈N in Theorem 23 we have that n 7→ supg∈M1

(
fn, g

2∗−1
)2

is strictly increasing, n 7→ infg∈M ‖∇fn −∇g‖2
2∗ is strictly decreasing and

lim
n→∞

inf
g∈M
‖∇fn −∇g‖2

2 = lim
n→∞

‖∇fn‖2
2 − Sd ‖hf‖2

2∗ = lim
n→∞

‖∇fn‖2
2 − Sd ‖f‖2

2∗ .

Proof. From

inf
g∈M
‖∇fn −∇g‖2

2 = ‖∇fn‖2
2 − Sd sup

g∈M1

(
fn, g

2∗−1
)2

we see that the first term converges since (‖∇fn‖2
2)n∈N is a nonincreasing sequence. For the

second term, which is strictly increasing, we have by Hölder’s inequality

sup
g∈M1

(
fn, g

2∗−1
)2 ≤ ‖fn‖2

2∗ = ‖f‖2
2∗

and since g∗ as defined in (27) is in M1 we have

lim inf
n→∞

sup
g∈M1

(
fn, g

2∗−1
)2 ≥ lim inf

n→∞
(fn, g∗)

2 = ‖f‖2
2∗

by Theorem 23. �

Lemma 26. Assume that 0 ≤ f ∈ Ḣ1(Rd) \M satisfies

inf
g∈M
‖∇f −∇g‖2

2 ≥ δ ‖∇f‖2
2

and let (fn)n∈N be the sequence defined by (28). Then one of the following alternatives holds:

(a) for all n = 0, 1, 2 . . . we have

inf
g∈M
‖∇fn −∇g‖2

2 ≥ δ ‖∇fn‖2
2

(b) there is a natural number n0 such that

inf
g∈M
‖∇fn0 −∇g‖2

2 ≥ δ ‖∇fn0‖2
2

and
inf
g∈M
‖∇fn0+1 −∇g‖2

2 < δ ‖∇fn0+1‖2
2 .

Proof. Assume that alternative (a) does not hold. Then there is a largest value n0 ≥ 0 such
that infg∈M ‖∇fn0 −∇g‖2

2 ≥ δ ‖∇fn0‖2
2. �

Lemma 27. Assume that 0 ≤ f ∈ Ḣ1(Rd) \M satisfies

inf
g∈M
‖∇f −∇g‖2

2 ≥ δ ‖∇f‖2
2

and suppose that in Lemma 26 alternative (a) holds for the sequence (fn)n∈N defined by (28).
Then

E(f) ≥ δ .

Proof. We have

E(f) =
‖∇f‖2

2 − Sd ‖f‖2
2∗

infg∈M ‖∇f −∇g‖2
2

≥ ‖∇f‖
2
2 − Sd ‖f‖2

2∗

‖∇f‖2
2

≥ ‖∇fn‖
2
2 − Sd ‖f‖2

2∗

‖∇fn‖2
2

, (29)
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where the second inequality is a consequence of ‖∇fn‖2
2 ≤ ‖∇f‖2

2 for all n = 0, 1, 2,. . . proved
in Theorem 23. By the assumption that alternative (a) holds and by Lemma 25, we learn that

lim
n→∞

‖∇fn‖2
2 ≤

1

δ
lim
n→∞

inf
g∈M
‖∇fn −∇g‖2

2 =
1

δ

(
lim
n→∞

‖∇fn‖2
2 − Sd ‖f‖2

2∗

)
.

Since

lim
n→∞

‖∇fn‖2
2 − Sd ‖f‖2

2∗ ≥ δ lim
n→∞

‖∇fn‖2
2 ≥ δ Sd lim

n→∞
‖fn‖2

2∗ = δ Sd ‖f‖2
2∗ > 0 ,

we can take the limit as n→∞ on the right side of (29) and compute the limit of the quotient
as the quotient of the limits. This proves the lemma. �

4.2. Continuous rearrangement. Next, we analyze the case where the alternative (b) in
Lemma 26 holds. We recall that I (δ) was defined in (25).

Lemma 28. For any δ ∈ (0, 1], we have I (δ) ≤ 1.

Proof. By Lemma 24, we have

inf
g∈M
‖∇f −∇g‖2

2 = ‖∇f‖2
2 − Sd sup

g∈M1

(
f, g2∗−1

)2

and it follows from Hölder’s inequality that

sup
g∈M1

(
f, g2∗−1

)2 ≤ ‖f‖2
2∗ .

Thus, the denominator in E(f) that enters the definition of I (δ) is at least as large as the
numerator, so the quotient is at most 1. �

Our goal in this subsection is to prove the following lower bound on E(f).

Lemma 29. Assume that 0 ≤ f ∈ Ḣ1(Rd) \M satisfies

inf
g∈M
‖∇f −∇g‖2

2 ≥ δ ‖∇f‖2
2

for some δ ∈ (0, 1) and suppose that in Lemma 26 alternative (b) holds for the sequence
(fn)n∈N of Theorem 23 defined by (28). Then, with I (δ) defined by (25), we have

E(f) ≥ δI (δ) .

For the proof of this lemma we introduce a continuous rearrangement flow that interpolates
between a function and its symmetric decreasing rearrangement. The basic ingredient for
this flow is similar to a flow that Brock introduced [14, 15] and that interpolates between
a function and its Steiner symmetrization with respect to a given hyperplane. Brock’s con-
struction, in turn, is based on ideas of Rogers [59] and Brascamp–Lieb–Luttinger [11]. Our
flow is obtained by glueing together infinitely many copies of Brock’s flows with respect to a
sequence of judiciously chosen hyperplanes. A similar construction was performed by Bucur
and Henrot [16]; see also [25].

More specifically, for a given hyperplane H, Brock’s flow interpolates between a given
function f and f ∗H , the Steiner symmetrized function with respect to H. The family that
interpolates between f and f ∗H is denoted by fHτ , τ ∈ [0,∞], and we have

f0 = f , fH∞ = f ∗H .

Further, for any τ , fHτ and f are equimeasurable, i.e.,∣∣{x ∈ Rd : fHτ (x) > t
}∣∣ =

∣∣{x ∈ Rd : f(x) > t
}∣∣ ∀ t > 0 .
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Moreover, if f ∈ Lp(Rd) for some 1 ≤ p <∞, then τ 7→ fHτ is continuous in Lp(Rd).
By choosing a sequence of hyperplanes we construct another flow τ 7→ fτ that has the

same properties but interpolates between f and f ∗, the symmetric decreasing rearrangement.
In Appendix 7 we explain this in more detail and prove the following properties that are
important for our proof, assuming f ∈ Ḣ1(Rd). From the L2∗(Rd) continuity of the flow we
will deduce that

lim
τ→τ0

sup
g∈M1

(fτ , g)2 = sup
g∈M1

(fτ0 , g)2 . (30)

Concerning the gradient we prove the monotonicity

‖∇fτ2‖2 ≤ ‖∇fτ1‖2 , 0 ≤ τ1 ≤ τ2 ≤ ∞ ,

and the right continuity

lim
τ2→τ+1

‖∇fτ2‖2 = ‖∇fτ1‖2 , 0 ≤ τ1 <∞ . (31)

Proof of Lemma 29. We begin by motivating and explaining the strategy of the proof. As
before, we bound

E(f) =
‖∇f‖2

2 − Sd ‖f‖2
2∗

infg∈M ‖∇f −∇g‖2
2

≥ ‖∇f‖
2
2 − Sd ‖f‖2

2∗

‖∇f‖2
2

≥ ‖∇fn0‖2
2 − Sd ‖fn0‖2

2∗

‖∇fn0‖2
2

. (32)

We could bound the right side further from below by replacing fn0 by fn0+1. This bound,
however, might be too crude for our purposes and we proceed differently. The move from fn0

to fn0+1 consists of two steps, namely first applying a conformal rotation and second applying
symmetric decreasing rearrangement. The first step leaves all terms on the right side invariant
and we do carry out this step. The second step leaves the 2∗-norm invariant, while the gradient
term does not go up. In fact, the gradient term might go down too far. Therefore, we replace
the application of the rearrangement by a continuous rearrangement flow. In order to make
the notation less cumbersome we shall denote Ufn0 by f0 where U denotes the conformal
rotation (26). We denote by fτ , 0 ≤ τ ≤ ∞, the continuous rearrangement starting at f0 and
let

f∞ = fn0+1 . (33)

Ideally, we would like to find τ0 ∈ [0,∞) such that

inf
g∈M
‖∇fτ0 −∇g‖2

2 = δ ‖∇fτ0‖2
2 .

Then the right side of (32) is equal to

1− Sd
‖f0‖2

2∗

‖∇f0‖2
2

≥ 1− Sd
‖fτ0‖2

2∗

‖∇fτ0‖2
2

= δ
‖∇fτ0‖2

2 − Sd ‖fτ0‖2
2∗

infg∈M ‖∇fτ0 −∇g‖2
2

,

which can be bounded from below by δI (δ), since fτ0 is admissible in the infimum (25). This
would prove the desired bound.

The problem with this argument is that the existence of such a τ0 ∈ [0,∞) is in general not
clear, since neither of the terms infg∈M ‖∇fτ −∇g‖2

2 and ‖∇fτ‖2
2 needs to be continuous in τ .

Nevertheless, we will be able to adapt the above argument to yield the same conclusion.
We now turn to the details of the argument. Recalling that

inf
g∈M
‖∇f0 −∇g‖2

2 ≥ δ ‖∇f0‖2
2 ,
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we define

τ0 := inf

{
τ ≥ 0 : inf

g∈M
‖∇fτ −∇g‖2

2 < δ ‖∇fτ‖2
2

}
with the convention that inf ∅ = ∞. If τ < τ0 ∈ (0,∞], similarly as before, the right side
of (32) is equal to

‖∇f0‖2
2 − Sd ‖f0‖2

2∗

‖∇f0‖2
2

= 1− Sd
‖f0‖2

2∗

‖∇f0‖2
2

≥ ‖∇fτ‖
2
2 − Sd ‖fτ0‖2

2∗

‖∇fτ‖2
2

≥ δ
‖∇fτ‖2

2 − Sd ‖fτ0‖2
2∗

infg∈M ‖∇fτ −∇g‖2
2

,

where the last inequality arises from infg∈M ‖∇fτ−∇g‖2
2 ≥ δ ‖∇fτ‖2

2 for any τ ∈ [0, τ0). Taking
the limit inferior as τ → τ−0 , we obtain

‖∇f0‖2
2 − Sd ‖f0‖2

2∗

‖∇f0‖2
2

≥ δ
limτ→τ−0

‖∇fτ‖2
2 − Sd ‖fτ0‖2

2∗

lim infτ→τ−0 infg∈M ‖∇fτ −∇g‖2
2

. (34)

Note that the denominator appearing here does not vanish. Indeed, we have

inf
g∈M
‖∇fτ −∇g‖2

2 ≥ δ ‖∇fτ‖2
2 ≥ δ Sd ‖fτ‖2

2∗ = δ Sd ‖f‖2
2∗ > 0 ∀ τ ∈ [0, τ0)

and, as a consequence,

lim inf
τ→τ−0

inf
g∈M
‖∇fτ −∇g‖2

2 ≥ δ Sd ‖f‖2
2∗ > 0 .

The same inequality (34) remains valid if τ0 = 0 and if we interpret limτ→τ−0
and lim infτ→τ−0

as evaluating at τ0 = 0.
At this point we find it convenient to apply Lemma 24 and use the representation

inf
g∈M
‖∇fτ −∇g‖2

2 = ‖∇fτ‖2
2 − Sd sup

g∈M1

(
fτ , g

2∗−1
)2
.

Using (30), that is, the continuity of τ 7→ supg∈M1

(
fτ , g

2∗−1
)2

, we see that

lim inf
τ→τ−0

inf
g∈M
‖∇fτ −∇g‖2

2 = lim
τ→τ−0

‖∇fτ‖2
2 − Sd sup

g∈M1

(
fτ0 , g

2∗−1
)2
.

Thus, the relevant quotient is equal to

limτ→τ−0
‖∇fτ‖2

2 − Sd ‖fτ0‖2
2∗

limτ→τ−0
‖∇fτ‖2

2 − Sd supg∈M1
(fτ0 , g

2∗−1)2 . (35)

Our goal in the remainder of this proof is to show that this quotient is larger or equal than
I (δ). We will use the fact that

sup
g∈M1

(
fτ0 , g

2∗−1
)2 ≤ ‖fτ0‖2

2∗ , (36)

which follows from Hölder’s inequality. We also note that equality holds here if and only if
fτ0 ∈M.

Let us first handle the case where fτ0 ∈ M. Then by (4.2) and because of equality in (36),
the quotient (35) is equal to 1, which by Lemma 28 can be further bounded from below
by I (δ), leading to the claimed bound. This completes the proof in the case fτ0 ∈M and in
what follows we assume

fτ0 6∈ M .
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As a consequence of this assumption and (36), we have

‖∇fτ0‖2
2 > Sd ‖fτ0‖2

2∗ ≥ Sd sup
g∈M1

(
fτ0 , g

2∗−1
)2
. (37)

Next, we observe that for α > β the function x 7→ (x − α)/(x − β) is monotone increasing
on the interval (β,∞). This, together with the strict inequality in (37), implies that the
quotient (35) can be bounded from below by

limτ→τ−0
‖∇fτ‖2

2 − Sd ‖fτ0‖2
2∗

limτ→τ−0
‖∇fτ‖2

2 − Sd supg∈M1
(fτ0 , g

2∗−1)2 ≥
‖∇fτ0‖2

2 − Sd ‖fτ0‖2
2∗

‖∇fτ0‖2
2 − Sd supg∈M1

(fτ0 , g
2∗−1)2 . (38)

We now claim that
inf
g∈M
‖∇fτ0 −∇g‖2

2 ≤ δ ‖∇fτ0‖2
2 . (39)

Once this is proved, we can bound the right side of (38) from below by I (δ). This inequality
is the claimed inequality after taking into account (34).

To prove (39), we first note that it is verified if τ0 = ∞. Indeed, f∞ = fn0+1 by (33) and
therefore, by assumption of alternative (b), infg∈M ‖∇f∞ −∇g‖2

2 < δ ‖∇f∞‖2
2.

Now let τ0 <∞. We argue by contradiction and assume that

inf
g∈M
‖∇fτ0 −∇g‖2

2 > δ ‖∇fτ0‖2
2 . (40)

Because of this strict inequality and the definition of τ0 there are σk ∈ (τ0,∞) for any k ∈ N
with limk→∞ σk = τ0 such that infg∈M ‖∇fσk −∇g‖2

2 < δ ‖∇fσk‖2
2, that is,

‖∇fσk‖2
2 − Sd sup

g∈M1

(
fσk , g

2∗−1
)2
< δ ‖∇fσk‖2

2 ∀ k ∈ N .

Letting k → ∞ and using (30) as well as the right continuity of ‖∇fτ‖2
2, see (31), we deduce

that
‖∇fτ0‖2

2 − Sd sup
g∈M1

(
fτ0 , g

2∗−1
)2 ≤ δ ‖∇fτ0‖2

2 .

This is the same as infg∈M ‖∇fτ0 −∇g‖2
2 ≤ δ ‖∇fτ0‖2

2 and contradicts (40). This proves (39)
and completes the proof of the lemma. �

Remark 30. The above argument would be simpler if τ 7→ ‖∇fτ‖2
2 were continuous for an

appropriate choice of hyperplanes (see Appendix 7) in the definition of the flow. Since the flow
is weakly continuous in Ḣ1(Rd), continuity of the norm is equivalent to (strong) continuity of
the flow in Ḣ1(Rd). Thus, for continuity of the norm for an appropriate choice of hyperplanes,
it is necessary that there is such a choice for which the Steiner symmetrizations approximate
f ∗ in Ḣ1(Rd). According to a theorem of Burchard [17] this holds if and only if f is co-area
regular, i.e, if and only if the distribution function

h 7→ |{x ∈ Rd : f(x) > h, ∇f(x) = 0}|
has no absolutely continuous component. As shown by Almgren and Lieb [1], both co-area
regular and co-area irregular functions are dense for d ≥ 2.
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4.3. Proof of Theorem 22. It is now easy to prove the main result of this section, Theo-
rem 22. Let δ ∈ (0, 1) and assume that 0 ≤ f ∈ Ḣ1(Rd) \M satisfies

inf
g∈M
‖∇f −∇g‖2

2 ≥ δ ‖∇f‖2
2 .

By Lemma 26 either alternative (a) or (b) holds. In the first case, we apply Lemmas 27
and 28, and in the second case, we apply Lemma 29. This completes the proof. �

5. From nonnegative functions to arbitrary functions

We recall that cBE denotes the optimal constant in (2). Similarly, we denote by cpos
BE the

optimal constant in (2) when restricted to nonnegative functions f . Thus, cpos
BE ≥ cBE. We do

not know whether these two constants coincide or not. The main result in this section will be
to prove the following lower bound on cBE in terms of cpos

BE .

Proposition 31. For any d ≥ 3,

cBE ≥ min
{

1
2
cpos

BE , 1− 2−
2
d

}
.

Proof. To simplify the notation, given a function v ∈ Ḣ1(Rd), we define the deficit

d(v) := ‖∇v‖2
L2(Rd) − Sd ‖v‖

2
L2∗ (Rd) .

Also, we set αd := 2
2∗

= 1− 2
d
< 1,

h(p) := pαd + (1− p)αd − 1 , and hd := h(1
2
) = 21−αd − 1 = 2

2
d − 1 .

Let us consider a function u ∈ Ḣ1(Rd). By homogeneity we can assume that ‖u‖L2∗ (Rd) = 1.
Let u± denote the positive and negative parts of u, set

m := ‖u−‖2∗

L2∗ (Rd) ,

and assume (without loss of generality) that

m ∈ [0, 1/2] . (41)

Note that ‖u+‖2∗

L2∗ (Rd) = 1−m and ‖∇u‖2
L2(Rd) = ‖∇u−‖2

L2(Rd) + ‖∇u+‖2
L2(Rd). Hence, we have

d(u) = ‖∇u‖2
L2(Rd) − Sd = d(u+) + d(u−) + Sd h(m). (42)

Since the function p 7→ h(p) is monotone increasing and concave on [0, 1/2], we have

2hd p ≤ h(p) . (43)

Also, if we set ξd := 2 (1 − 2−αd), the function f(p) := (1 − p)αd − 1 + ξd p satisfies f(0) =
f(1/2) = 0 and f ′′(p) ≤ 0, so that f(p) ≥ 0 for all m ∈ [0, 1/2]. Hence, by (41), we have

(1− p)αd ≥ 1− ξd p ,
which, by the definition of h(p), yields

h(p) ≥ pαd − ξd p .
Combining this bound with (43), this gives(

1 +
ξd

2hd

)
h(p) ≥ pαd .
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Therefore, recalling (42) and noticing that d(u−) + Sdm
αd = ‖∇u−‖2

L2(Rd), we get

d(u) ≥ d(u+) + d(u−) + Sd
2hd

2hd + ξd
mαd ≥ d(u+) +

2hd
2hd + ξd

‖∇u−‖2
L2(Rd) .

By definition, we have
d(u+) ≥ cpos

BE inf
g∈M
‖∇u+ −∇g‖2

L2(Rd) .

As a consequence, if g+ ∈M is optimal for u+, we obtain

d(u) ≥ cpos
BE ‖∇u+ −∇g+‖2

L2(Rd) +
2hd

2hd + ξd
‖∇u−‖2

L2(Rd)

≥ min
{
cpos

BE ,
2hd

2hd + ξd

}(
‖∇u+ −∇g+‖2

L2(Rd) + ‖∇u−‖2
L2(Rd)

)
≥ 1

2
min

{
cpos

BE ,
2hd

2hd + ξd

}
‖∇u−∇g+‖2

L2(Rd) .

Since 2hd + ξd = 2 · 2 2
d − 2 + 2− 21−αd = 2

2
d we get

hd
2hd + ξd

= 2−
2
d

(
2

2
d − 1

)
= 1− 2−

2
d ,

which concludes the proof. �

6. Stability of the Sobolev inequality: Proof of Theorem 1

We now combine the results from the previous three sections and deduce in this way the
main result of this paper.

Proof. We recall that the constant cpos
BE was defined in the previous subsection and that I (δ)

was defined in (25). Then, as a consequence of Theorem 22, we have

cpos
BE ≥ sup

0<δ≤1
δI (δ) .

(Indeed, for any δ ∈ (0, 1), if f satisfies ‖∇f −∇g‖2
2 ≥ δ ‖∇f‖2, then E(f) ≥ δI (δ), while if

‖∇f −∇g‖2
2 ≤ δ ‖∇f‖2, then E(f) ≥ I (δ) ≥ δI (δ).) Thus, it remains to bound I (δ) for a

suitable δ ∈ (0, 1).

We let ε0, δ̃ > 0 be as in Theorem 4. We will bound I (δ) with δ = δ̃
1+δ̃

. Thus, let

0 ≤ f ∈ Ḣ1(Rd) with

inf
g∈M
‖∇g −∇f‖2

2 ≤ δ̃
1+δ̃
‖∇f‖2

2 .

It is easy to see that the infimum on the left side is attained. After a translation, a dilation and
multiplication by a constant, we may assume that it is attained at g = (2/(1+|x|2))(d−2)/2. We
now pass to the sphere using the stereographic projection as in Section 2. Let 0 ≤ u ∈ H1(Sd)
be the function associated to f . The function 1 is associated to g and we set r := u− 1. The
fact that the distance is attained at 1 implies that r satisfies the orthogonality conditions (8).
Moreover, we have∫

Sd

(
|∇r|2 + Ar2

)
dµ ≤ δ̃

1+δ̃

∫
Sd

(
|∇u|2 + Au2

)
dµ = δ̃

1+δ̃

(
A+

∫
Sd

(
|∇r|2 + Ar2

)
dµ

)
,

so ∫
Sd

(
|∇r|2 + Ar2

)
dµ ≤ δ̃ A .
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By the Sobolev inequality, this implies(∫
Sd
rq dµ

)2/q

≤ δ̃ ,

and therefore we are in the situation of Theorem 4. We deduce that∫
Sd

(
|∇u|2 + Au2

)
dµ− A

(∫
Sd
uq dµ

)2/q

≥ θ ε0

∫
Sd

(
|∇r|2 + Ar2

)
dµ .

Translating this result back to Rd, we have shown that

I ( δ̃
1+δ̃

) ≥ θ ε0 = 4 ε0
d−2

,

and therefore
cpos

BE ≥ δ̃
1+δ̃

4 ε0
d−2

,

where we recall that 0 < ε0 <
1
3

is fixed and δ̃ depends on ε0, but not on d. This constant has
the claimed d−1 behavior.

We turn now to the case of general, not necessarily nonnegative functions. By Proposition 31

cBE ≥ min
{

1
2
cpos

BE , 1− 2−
2
d

}
.

Using 1− 2−
2
d ≥ (2 ln 2)/d together with the result for cpos

BE we obtain also in the general case
the claimed d−1 behavior. As constant in Theorem 4 we get

β = min
{

2 ε0 δ̃

1+δ̃
, 2 ln 2

}
, (44)

which is computable, since δ̃ depends in a complicated, yet explicit way on ε0. �

Remark 32. The constant given by (44) is a lower estimate of d cBE, which is of the same
order as the strict upper estimate obtained from (3). If we apply Proposition 7 instead of
Theorem 4 in the above argument, we obtain

cpos
BE ≥ sup

0<δ≤1
δI (δ) ≥ sup

δ̃>0

δ̃
1+δ̃

m(δ̃1/2) = sup
0<δ<1

δm
((

δ
1−δ

)1/2
)

with m given by (9). As explained in Remark 11, this lower bound is not very good for
larges dimensions. In the above expression, it corresponds to a right-hand side of the order of
2−d d−(d+2)/2 as d→ +∞, but for d = 3, 4, 5, 6 it gives decent numerical lower bounds on cpos

BE .

7. Stability of the logarithmic Sobolev inequality: Proof of Theorem 2

Just like the quantitative version of the sharp Sobolev inequality, we prove the quantitative
version of the sharp logarithmic Sobolev inequality in two steps, one close and one far from
the set of optimizers. Let us start with the result that replaces Theorem 4.

Theorem 33. There are explicit constants η > 0 and δ̃ > 0 such that for all N ∈ N and for
all − 1 ≤ r ∈ H1(γ) satisfying ∫

RN
r2 dγ ≤ δ̃ (45)

and ∫
RN
r dγ = 0 =

∫
RN
xj r dγ , j = 1 . . . , N , (46)
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one has ∫
RN
|∇r|2 dγ − π

∫
RN

(1 + r)2 ln

(
(1 + r)2

‖1 + r‖2
L2(γ)

)
dγ ≥ η

∫
RN
r2 dγ .

Remark 34. The constant δ̃ coincides with the corresponding constant in Theorem 4 and
η = 2π ε0. Indeed, Remark 5 together with the proof below implies that one can fix η ∈ (0, π)

and then the bound holds with some δ̃ depending on η.

Proof. Notice that x is in L2(γ) so that orthogonality constraints raise no integration issues.

We denote Σd := {x ∈ Rd+1 : |x| = ρd} with ρd :=
√
d/(2 π). (The factor of 1/(2 π) in

the definition of ρd is necessary to get the π in the exponent of the Gaussian density.) We
integrate on Σd with respect to the uniform probability measure, which we denote by dµd. By
rescaling our result in Theorem 4 we find that∫

Σd

|∇R|2 dµd − π d−2
2

((∫
Σd

(1 +R)
2d
d−2 dµd

) d−2
d

−
∫

Σd

(1 +R)2 dµd

)

≥ 2 π ε0

∫
Σd

(
1
π

2
d−2
|∇R|2 +R2

)
dµd . (47)

(Note that rescaling results in a factor ρ−2
d in front of all terms except the term |∇R|2.) This

inequality is valid for all R ∈ H1(Σd) such that(∫
Σd

R
2d
d−2 dµd

) d−2
d

≤ δ̃ (48)

and ∫
Σd

Rdµd = 0 =

∫
Σd

xj Rdµd , j = 1, . . . , d+ 1 . (49)

Given a function r ∈ H1(γ) and a d > N , we apply this inequality to the function

Rd(x) := r(x1, . . . , xN)−
∫

Σd

r dµd − 2 π d+1
d

N∑
n=1

xn

∫
Σd

yn r(y1, . . . , yN) dµd(y)

for x ∈ Σd. This function satisfies the orthogonality conditions (49). Note here that the

functions
√

2 π
√

(d+ 1)/d xj are L2-normalized on Σd.
We now use the well-known fact that, as d → +∞, the marginal of dµd corresponding to

the first N coordinates converges to dγ. Thus,

lim
d→+∞

∫
Σd

|∇r|2 dµd =

∫
RN
|∇r|2 dγ , lim

d→+∞

∫
Σd

r2 dµd =

∫
RN
r2 dγ ,

lim
d→+∞

∫
Σd

r dµd =

∫
RN
r dγ = 0 , lim

d→+∞

∫
Σd

yn r(y1, . . . , yN) dµd(y) =

∫
RN
yn r dγ = 0 .

From this we conclude easily that

lim
d→+∞

∫
Σd

|∇Rd|2 dµd =

∫
RN
|∇r|2 dγ , lim

d→+∞

∫
Σd

R2
d dµd =

∫
RN
r2 dγ .

With some modest amount of effort one also finds that

lim
d→+∞

∫
Σd

R
2d
d−2

d dµd =

∫
RN
r2 dγ .
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In particular, since we assume that the right side is less than δ̃, the same is true for the left
side when d is sufficiently large, and consequently the smallness condition (48) holds when d
is sufficiently large. Thus, inequality (47) is valid for all sufficiently large d.

We drop the gradient term on the right side. Passing to the limit d→ +∞, we infer that∫
RN
|∇r|2 dγ−π lim sup

d→+∞

d−2
2

((∫
Σd

(1 +Rd)
2d
d−2 dµd

) d−2
d

−
∫

Σd

(1 +Rd)
2 dµd

)
≥ 2π ε0

∫
RN
r2 dγ .

Finally, we verify that

lim sup
d→+∞

d− 2

2

((∫
Σd

(1 +Rd)
2d
d−2 dµd

) d−2
d

−
∫

Σd

(1 +Rd)
2 dµd

)

=

∫
RN

(1 + r)2 ln

(
(1 + r)2

‖1 + r‖2
L2(γ)

)
dγ .

In fact, if the orthogonality conditions were not present and the marginals would already be
equal to their limit, this would follow from the fact that

lim
p→1+

1

p− 1

((∫
RN
hp dγ

)1/p

−
∫
RN
h dγ

)
=

∫
RN
h ln

(
h∫

RN h dγ

)
dγ ,

valid on any measure space for any nonnegative function h that satisfies h ∈ L1 ∩ Lp0(γ)
for some p0 > 1. Proving the latter fact is simple, as well as including the effect of the
orthogonality conditions and the convergence of the marginals and we shall omit it. These
remarks complete the proof Theorem 33. �

We emphasize that in the previous proof we did not use Theorem 1, but rather Theorem 4.
In this way we avoid having to control the distance to the set of optimizers in the high-
dimensional limit, which seems harder than verifying the orthogonality conditions.

Proof of Theorem 2. As in the proof of Theorem 1, we first prove the result for nonnegative
functions and then extend it to sign changing solutions. Let us denote by κpos the stability
constant in the stability inequality restricted to nonnegative functions.

Step 1. Let η and δ̃ be as in Theorem 33. For 0 ≤ u ∈ H1(γ) we distinguish two cases.
• The first case is where

inf
a∈RN, c∈R

∫
RN

(u− c ea·x)2 dγ ≤ δ̃

1 + δ̃

∫
RN
u2 dγ .

The infimum on the left-hand side is attained at some a ∈ RN and c ∈ R as can be checked
by optimizing

∫
RN
∣∣v − c e|a|2/(2π)−π |x−a/π|2/2

∣∣2 dx where v(x) := u(x) e−π |x|
2/2. Let

ũ(y) := e− y·a− |a|
2

2π u
(
y + a

π

)
.

Then, by a simple computation involving an integration by parts and a change of variables,∫
RN
|∇ũ|2 dγ − π

∫
RN
ũ2 ln

(
ũ2

‖ũ‖2
L2(γ)

)
dγ =

∫
RN
|∇u|2 dγ − π

∫
RN
u2 ln

(
u2

‖u‖2
L2(γ)

)
dγ .

Therefore, the deficit of ũ coincides with that of u, while the infimum for ũ among all functions
of the form (4) is attained at the constant c e|a|

2/(2π). Finally, by multiplying ũ with a constant,
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we may assume that this constant is equal to one. To summarize, we may assume without
loss of generality that the infimum in the theorem is attained at a = 0 and c = 1.

Let us set r := u − 1. Then the minimality implies that r satisfies the orthogonality
conditions (46). Moreover, we have∫

RN
r2 dγ ≤ δ̃

1 + δ̃

∫
RN
u2 dγ =

δ̃

1 + δ̃

(
1 +

∫
RN
r2 dγ

)
,

so ∫
RN
r2 dγ ≤ δ̃ .

Thus, the smallness condition (45) is satisfied and we can apply Theorem 33. This yields the
inequality in the theorem with a stability constant η.

• Next, we consider the case where

inf
a∈RN, c∈R

∫
RN

(u− c ex·a)2 dγ >
δ̃

1 + δ̃

∫
RN
u2 dγ .

We argue similarly as we did in Section 4 concerning the Sobolev inequality, but there are
some simplifications in this case.

For f ∈ L2(γ) we denote by Uf its Gaussian rearrangement, that is, the function on RN

whose superlevel sets have the form {x ∈ RN : x1 < µ} for some µ ∈ R and have the same
γ-measure as the corresponding superlevel sets of f . Moreover, we denote

V f := e
π
2
|x|2R

(
e−

π
2
|x|2 f

)
,

where R is, as before, the Euclidean rearrangement. Then, as shown in [22, Theorem 4.1], for
any 0 ≤ f ∈ L2(γ) one has

fn := (V U)nf → ‖f‖L2(γ) in L2(γ) .

Moreover, ‖fn‖L2(γ) = ‖f‖L2(γ) and

n 7→
∫
RN
|∇fn|2 dγ − π

∫
RN
f 2
n ln

(
f 2
n

‖fn‖2
L2(γ)

)
dγ

is nonincreasing.
We apply this procedure to our function u and obtain a sequence of functions un with

constant L2(γ)-norm. Moreover, since

inf
c,a
‖un − c ea·x‖L2(γ) ≤

∥∥un − ‖u‖L2(γ)

∥∥
L2(γ)

→ 0 ,

there is an n0 ∈ N such that

inf
c,a
‖un0 − c ea·x‖2

L2(γ) ≥
δ̃

1 + δ̃
‖u‖2

L2(γ) > inf
c,a
‖un0+1 − c ea·x‖2

L2(γ) .
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We have∫
RN |∇u|

2 dγ − π
∫
RN u

2 ln

(
u2

‖u‖2
L2(γ)

)
dγ

infc,a ‖u− c ea·x‖2
L2(γ)

≥

∫
RN |∇u|

2 dγ − π
∫
RN u

2 ln

(
u2

‖u‖2
L2(γ)

)
dγ

‖u‖2
L2(γ)

≥

∫
RN |∇un0|2 dγ − π

∫
RN u

2
n0

ln

(
u2n0

‖un0‖
2
L2(γ)

)
dγ

‖u‖2
L2(γ)

.

We now use a continuous rearrangement flow to connect un0 to un0+1. More precisely, we a
consider a family of functions uτ , τ ∈ [0,∞], where u0 := Uun0 and u∞ := un0+1. We define

uτ as eπ |x|
2/2 times the continuous (Euclidean) rearrangement of e−π |x|

2/2 Uun0 . In the same
way as in Lemma 36 one sees that

τ 7→ inf
c,a
‖uτ − c ea·x‖2

L2(γ)

is continuous, and therefore there is a τ0 ∈ [0,∞) such that

inf
c,a
‖uτ0 − c ea·x‖2

L2(γ) =
δ̃

1 + δ̃
‖u‖2

L2(γ) .

It follows that∫
RN |∇un0|2 dγ − π

∫
RN u

2
n0

ln

(
u2n0

‖un0‖
2
L2(γ)

)
dγ

‖u‖2
L2(γ)

≥

∫
RN |∇uτ0|

2 dγ − π
∫
RN u2

τ0
ln

(
u2τ0

‖uτ0‖
2
L2(γ)

)
dγ

‖u‖2
L2(γ)

=
δ̃

1 + δ̃

∫
RN |∇uτ0 |

2 dγ − π
∫
RN u2

n0
ln

(
u2τ0

‖uτ0‖
2
L2(γ)

)
dγ

infc,a ‖uτ0 − c ea·x‖2
L2(γ)

.

According to the first case, the right side is larger or equal than κpos := δ̃
1+δ̃

η. This concludes

the proof in the case of nonnegative functions.

Step 2. Finally, we prove the theorem in the general case. This is a variation of the argument
in Proposition 31.

We shall use the notation

D(v) :=

∫
RN
|∇v|2 dγ − π

∫
RN
v2 ln

(
v2

‖v‖2
L2(γ)

)
dγ for v ∈ H1(γ) .

Let u ∈ H1(γ). By homogeneity we can assume ‖u‖L2(γ) = 1. Replacing u by −u if necessary,
we can also assume that

m := ‖u−‖2
L2(γ) ∈ [0, 1

2
] .

Then
D(u) = D(u+) +D(u−) + π h(m)



36 J. DOLBEAULT, M. J. ESTEBAN, A. FIGALLI, R. L. FRANK, AND M. LOSS

with
h(p) := −

(
p ln p+ (1− p) ln(1− p)

)
.

Since the function p 7→ h(p) is monotone increasing and concave on [0, 1
2
], it holds that

h(p) ≥ (2 ln 2) p for all p ∈ [0, 1
2
] .

Thus, with κpos denoting the constant from Step 1,

D(u) ≥ D(u+) + (2 π ln 2)m ≥ κpos inf
a,c
‖u+ − c ea·x‖2

L2(γ) + (2 π ln 2) ‖u−‖2
L2(γ)

≥ 1
2

min
{
κpos, 2 π ln 2

}
inf
a,c
‖u− c ea·x‖2

L2(γ) .

This proves the inequality in the general case, with κ = 1
2

min
{
κpos, 2 π ln 2

}
. �

Appendix. Some remarks about continuous rearrangement

In this appendix we discuss some aspects of the continuous rearrangement and prove some
of its properties.

Brock’s continuous Steiner rearrangement is based on the following operation for functions of
one real variable that are finite union of disjoint characteristic functions

∑N
k=1 χ(−ak,ak)(x−bk).

Replace this function by
∑N

k=1 χ(−ak,ak)

(
x−e− t bk

)
where t varies from 0 to∞. As t increases,

the intervals start moving closer and as soon as any two intervals touch one stops the process
and redefines the set of intervals by joining the two that touched. Then one restarts the
process and keeps repeating it until all of them are joined into one. The movement stops once
this interval is centered at the origin. By the outer regularity of Lebesgue measure the level
sets of a measurable function can be approximated by open sets and, since in one dimension
this is a countable union of open intervals, one can further approximate the level set by a finite
number of open disjoint intervals for which one uses the sliding argument explained above.

As mentioned before, this procedure can be generalized to higher dimensions by consider-
ing Steiner symmetrization with respect to a hyperplane. One considers any hyperplane H
through the origin and then rearranges the function symmetrically about the hyperplane along
each line perpendicular to H, resulting in a function denoted by f ∗H . For more information
see [54]. In this fashion one obtains a continuous rearrangement f → fHτ , τ ∈ [0,∞], which
was studied in detail by Brock [14, 15]. We shall refer to the statements in those papers.

To pass from Steiner symmetrization to the symmetric decreasing rearrangement we con-
sider a sequence of continuous Steiner symmetrizations and chain them with a new continous
parameter à la Bucur–Henrot. Inspired by [16, 25], we proceed as follows. Given a function
f ∈ Lp(Rd) for some 1 ≤ p <∞ there is a sequence (Hn)n∈N of hyperplanes such that, defining
recursively with f0 = f ,

fn := f ∗Hnn−1 , n = 1, 2, . . . ,

we have
fn → f ∗ in Lp(Rd) as n→∞ .

In fact, it is shown in [65, Theorem 4.3] that this holds for ‘almost every’ (in an appropriate
sense) choice of hyperplanes. It is also of interest that this sequence can actually be chosen
in a universal fashion (that is, independent of f and p); see [64, Theorem 5.2].

Given f and the sequence (fn)n∈N as above, we set for any n = 0, 1, 2, . . .

φn(τ) := e
τ−n
n+1−τ − 1 , τ ∈ [n, n+ 1] ,
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and define
fτ := fn,φn(τ) , (50)

where the right side denotes Brock’s continuous Steiner symmetrization with respect to the
hyperplane Hn with parameter φn(τ) applied to fn. As τ runs from n to n + 1, φn(τ) runs
from 0 to ∞, so fτ is well defined even for τ ∈ N0.

From the properties of Brock’s flow, see, in particular, [15, Lemma 4.1], we obtain the
following properties for our flow.

Proposition 35. Let d ≥ 1, 1 ≤ p < ∞ and let 0 ≤ f ∈ Lp(Rd). Then, for any τ ∈ [0,∞],
the function fτ defined by (50) is in Lp(Rd) and ‖fτ‖p = ‖f‖p. Moreover, for any τ ∈ [0,∞]
and any sequence (τn)n∈N with limn→∞ τn = τ ,

lim
n→∞

‖fτn − fτ‖p = 0 .

The following fact is important for us.

Lemma 36. Let d ≥ 3 and 0 ≤ f ∈ L2∗(Rd). The function

τ 7→ sup
u∈M1

(
fτ , u

2∗−1
)2

with fτ defined by (50) is continuous.

Proof. We use the fact, shown in Proposition 35, that

lim
τ1→τ2

‖fτ1 − fτ2‖2∗ = 0 .

Fix ε > 0. There exists u1 ∈ M1 such that supu∈M1

∣∣(fτ1 , u2∗−1
)∣∣ ≤ ∣∣(fτ1 , u2∗−1

1

)∣∣ + ε and
hence

sup
u∈M1

∣∣(fτ1 , u2∗−1
)∣∣− sup

u∈M1

∣∣(fτ2 , u2∗−1
)∣∣ ≤ ∣∣(fτ1 , u2∗−1

1

)∣∣+ ε−
∣∣(fτ2 , u2∗−1

1

)∣∣
≤
∣∣(fτ1 , u2∗−1

1

)
−
(
fτ2 , u

2∗−1
1

)∣∣+ ε ,

which by Hölder’s inequality is bounded above by

‖fτ1 − fτ2‖2∗ ‖u2∗−1
1 ‖q + ε = ‖fτ1 − fτ2‖2∗ + ε

with q = 2∗

2∗−1
. Hence

lim sup
τ2→τ1

(
sup
u∈M1

∣∣(fτ1 , u2∗−1
)∣∣− sup

u∈M1

∣∣(fτ2 , u2∗−1
)∣∣) ≤ ε .

There exists u2 ∈M1 such that supu∈M1

∣∣(fτ2 , u2∗−1
)∣∣ ≤ ∣∣(fτ2 , u2∗−1

2

)∣∣+ ε and hence

sup
u∈M1

∣∣(fτ1 , u2∗−1
)∣∣− sup

u∈M1

∣∣(fτ2 , u2∗−1
)∣∣ ≥ ∣∣(fτ1 , u2∗−1

2

)∣∣− ∣∣(fτ2 , u2∗−1
2

)∣∣− ε ,
which is greater or equal to

−
∣∣(fτ1 , u2∗−1

2

)
−
(
fτ2 , u

2∗−1
2

)∣∣− ε ≥ −‖fτ1 − fτ2‖2∗ − ε .
Hence

lim inf
τ2→τ1

(
sup
u∈M1

∣∣(fτ1 , u2∗−1
)∣∣− sup

u∈M1

∣∣(fτ2 , u2∗−1
)∣∣) ≥ − ε .

This proves the claimed continuity. �
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We now consider the behavior of the gradient under the rearrangement flow. The following
proposition is closely related to [15, Theorems 3.2 and 4.1], but there inhomogeneous Sobolev
spaces are considered, which leads to some minor changes. For the sake of simplicity we
provide the details.

Proposition 37. Let 0 ≤ f ∈ Ḣ1(Rd). Then fτ defined by (50) is in Ḣ1(Rd) and τ 7→ ‖∇fτ‖2

is a nonincreasing, right-continuous function.

Proof. By construction, it suffices to prove these properties for Brock’s flow. Since the latter
has the semigroup property (fσ)τ = fσ+τ for all σ, τ ≥ 0, it suffices to prove monotonicity and
right-continuity at τ = 0.

We begin with the proof of monotonicity, which we first prove under the additional assump-
tion that f ∈ L2(Rd). This is shown in [15, Theorem 3.2], but we give an alternative proof.
We proceed as in the proof of [54, Lemma 1.17]. Extending [14, Corollary 2] to the sequence
of Steiner symmetrizations we find for three nonnegative functions f , g, h that∫∫

Rd×Rd
fτ (x) gτ (x− y)hτ (y) dx dy ≥

∫∫
Rd×Rd

f(x) g(x− y)h(y) dx dy .

If we choose g(x − y) to be the standard heat kernel, i.e., g(x − y) = e∆t(x − y), then
gτ (x− y) = g(x− y) and hence∫∫

Rd×Rd
fτ (x) e∆t(x− y) fτ (y) dx dy ≥

∫∫
Rd×Rd

f(x) e∆t(x− y) f(y) dx dy .

Since ‖fτ‖2 = ‖f‖2 by the equimeasurability of rearrangement,

1

t

(
‖fτ‖2

2 −
(
fτ , e

∆t fτ
))
≤ 1

t

(
‖f‖2

2 −
(
f, e∆tf

))
and letting t→ 0 yields the first claim under the additional assumption f ∈ L2(Rd).

For general 0 ≤ f ∈ Ḣ1(Rd) we apply the above argument to the functions (f − ε)+, ε > 0.
They belong to L2(Rd) since f vanishes at infinity and belongs to L2∗(Rd). We obtain∥∥∇((f − ε)+

)
τ

∥∥
2
≤ ‖∇(f − ε)+‖2 ≤ ‖∇f‖2 . (51)

We claim that fτ ∈ Ḣ1(Rd) and ∇
(
(f − ε)+

)
τ
⇀ ∇fτ in L2(Rd) as ε→ 0+. Once this is shown,

the claimed inequality follows from (51) by the weak lower semicontinuity of the L2 norm.
To prove the claimed weak convergence, note that by (51), ∇

(
(f − ε)+

)
τ

is bounded in

L2(Rd) as ε → 0+ and therefore has a weak limit point. Let F ∈ L2(Rd) be any such limit
point. Since (f − ε)+ → f in L2∗(Rd), the nonexpansivity of the rearrangement [14, Lemma 3]
implies that

(
(f − ε)+

)
τ
→ fτ in L2∗(Rd). Thus, for any Φ ∈ C1

c (Rd),∫
Rd

(∇ · Φ) fτ dx←
∫
Rd

(∇ · Φ)
(
(f − ε)+

)
τ
dx = −

∫
Rd

Φ · ∇
(
(f − ε)+

)
τ
dx→ −

∫
Rd

Φ · F dx

as ε → 0+. This proves that fτ is weakly differentiable with ∇fτ = F . In particular,
fτ ∈ Ḣ1(Rd) (note that fτ vanishes at infinity since f does and since these functions are
equimeasurable) and the limit point F is unique. This concludes the proof of the first part of
the proposition.

Let us now show the right-continuity at τ = 0. It follows from Proposition 35 that fτ → f in
L2∗(Rd) as τ → 0+. This implies that ∇fτ ⇀ ∇f in L2(Rd) as τ → 0+. (Indeed, the argument
is similar to the one used in the first part of the proof. The family ∇fτ is bounded in L2(Rd)
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as τ → 0+ and, if F denotes any weak limit point in L2(Rd), then the convergence in L2∗(Rd)
and the definition of weak derivatives implies that F = ∇f .) By weak lower semicontinuity,
we deduce that

‖∇f‖2 ≤ lim inf
τ→0+

‖∇fτ‖2 .

This, together with the reverse inequality, which was established in the first part of the proof,
proves the claimed right continuity. �

We note that the proposition remains valid for 0 ≤ f ∈ Ẇ1,p(Rd) with 1 ≤ p < d. If
p 6= 2, the monotonicity for the gradient for f ∈W1,p(Rd) is proved in [15, Theorem 3.2]. The
remaining arguments above carry over to p 6= 2.
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