From microscopic to macroscopic scale equations: mean field, hydrodynamic and graph limits - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

From microscopic to macroscopic scale equations: mean field, hydrodynamic and graph limits

Thierry Paul
  • Fonction : Auteur
  • PersonId : 878449
  • IdRef : 158973372
Emmanuel Trélat

Résumé

Considering finite particle systems, we elaborate on various ways to pass to the limit as the number of agents tends to infinity, either by mean field limit, deriving the Vlasov equation, or by hydrodynamic or graph limit, obtaining the Euler equation. We provide convergence estimates. We also show how to pass from Liouville to Vlasov or to Euler by taking adequate moments. Our results encompass and generalize a number of known results of the literature. As a surprising consequence of our analysis, we show that sufficiently regular solutions of any linear PDE can be approximated by solutions of systems of N particles, to within 1/ log log(N ).
Fichier principal
Vignette du fichier
hal_2024-01 (1).pdf (842.25 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03779694 , version 1 (17-09-2022)
hal-03779694 , version 2 (13-10-2022)
hal-03779694 , version 3 (10-01-2024)

Identifiants

Citer

Thierry Paul, Emmanuel Trélat. From microscopic to macroscopic scale equations: mean field, hydrodynamic and graph limits. 2024. ⟨hal-03779694v3⟩
124 Consultations
164 Téléchargements

Altmetric

Partager

More