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From microscopic to macroscopic scale equations: mean field,

hydrodynamic and graph limits

Thierry Paul* Emmanuel Trélat�

January 10, 2024

Abstract

Considering finite particle systems, we elaborate on various ways to pass to the limit as the
number of agents tends to infinity, either by mean field limit, deriving the Vlasov equation,
or by hydrodynamic or graph limit, obtaining the Euler equation. We provide convergence
estimates. We also show how to pass from Liouville to Vlasov or to Euler by taking adequate
moments. Our results encompass and generalize a number of known results of the literature.
As a surprising consequence of our analysis, we show that sufficiently regular solutions of any
linear PDE can be approximated by solutions of systems ofN particles, to within 1/ log log(N).

Contents

1 Introduction

1.1 Setting

Multi-agent collective models have regained an increasing interest over the last years, due in par-
ticular to their connection with mean field and graph limit equations. At the microscopic scale,
such models consist of considering particles or agents evolving according to the dynamics

ξ̇i(t) =
1

N

N∑
j=1

GN
ij (t, ξi(t), ξj(t)), i ∈ {1, . . . , N}, (1)

for some (large) number of agents N ∈ IN∗ where, for every i ∈ {1, . . . , N}, ξi(t) ∈ IRd (for
some d ∈ IN∗) stands for various parameters describing the behavior of the ith agent and GN

ij :

IR× IRd × IRd → IRd is a mapping modeling the interaction between the ith and jth agents.
Dynamics of the form (??) are used in a wide range of very different problems, ranging from

the study of flocking and swarming in biology, of modeling traffic flows, to dynamics evolution in
social sciences (see, e.g., [?, ?, ?, ?, ?, ?, ?, ?, ?], just to mention a few of a vast literature).

Among classes of multi-agent systems, we point out the so-called opinion systems that have
the striking property of exhibiting features nowadays grouped under the common denomination
of self-organization: their large-time asymptotic behavior shows consensus phenomena, namely an
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alignment of all values ξi(t) to a single one. These models correspond to GN
ij (t, ξi, ξj) = σij(ξj−ξi),

i.e., their dynamics is

ξ̇i(t) =
1

N

N∑
j=1

σij(ξj(t)− ξi(t)) (2)

where (σij)1⩽i,j⩽N is a N -by-N matrix whose spectral properties may cause the above-mentioned
asymptotic behavior. We refer to the recent [?] for a large set of references concerning the two
systems (??) and (??), where also the case of time-dependent matrices σ is treated.

The large N limit of systems (??), (??) has been extensively studied over the last years. In [?]
the author shows how to pass to the continuum limit in nonlocally coupled dynamical networks
by using the concept of graph limit. This concept has also been used recently in [?] to obtain
discrete-to-continuum convergence results with error estimates in the Wasserstein distance. We
also mention the recent articles [?, ?, ?]. In a nutshell, the graph limit allows one to pass to the
limit from the general system of agents (??) to an integro-differential equation by interpreting the
right-hand side of (??) as a Riemann sum. Then, obtaining the limit equation is seen as passing
to the limit in a Riemann sum and thus obtaining a continuous integral. This is what has been
done in [?, ?, ?] for the opinion propagation model G(t, x, x′, ξ, ξ′) = σ(x, x′)(ξ′ − ξ), leading to
the graph limit equation

∂ty(t, x) =

∫
Ω

σ(x, x′)(y(t, x′)− y(t, x)) dx′

where for instance σ(i, j) = σij . This example is particularly paradigmatic of what we develop in
the present paper.

Another important class of systems (??) concerns particles ξi = (pi, qi) ∈ IRd × IRd, either
Hamiltonian in which case G takes the form

GH(t, ξi, ξj) =

(
pi

∇V (qi − qj)

)
(3)

for some potential V , or of Cucker-Smale type in which case we have

GCS(t, ξi, ξj) =

(
pi

F (|qi − qj |)(pi − pj)

)
(4)

for some influence function F .
The main difference between general systems (??) and the particular systems (??) and (??) is

that for the latter the mapping Gij does not depend on i and j, that is on the “names” of the
agents. A consequence is that the associated evolution equation preserves the indistinguishability
of the particles, a feature often consider as fundamental for the large N limit of particle systems.
One of the objectives of the present article is to show how to extend the standard mean field
methods to the non-indistinguishable setting, simply by endowing to the index i the status of a
parameter, treated as a new state variable of zero dynamics.

The systematic study of large N limit of particle systems has a long and glorious history,
starting with Hartree (see [?]) in the late 20’s for quantum systems, and then Vlasov in the 40’s
(see [?]) who derived the eponymous kinetic equation (here, we present it in a form suitable for
our purposes), called Vlasov equation,

∂tµt + divξ(X [µt]µt) = 0 with X [µ] =

∫
G(ξ, ξ′) dµ(ξ′). (5)

There are two classical ways for deriving (??). A first consists of using the concept of empirical

measure µe
t (ξ) = 1

N

∑N
i=1 δ(ξ − ξi(t)), which is a solution for (??), and then of taking the mean
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field limit. A second consists of using marginals of the solution of the Liouville equation associated
to the particle system, namely the equation satisfied by the pushforward of probability measures
on IR2Nd under the flow generated by the particle system. In the latter case one shows that the
first marginal of this pushforward, which is a probability measure on IR2d, satisfies at the limit
N → +∞ the Vlasov equation (??). The last step of this process, called the hydrodynamic limit,
starts from the observation that (??) preserves the stucture µt(ξ) = µt(q, p) = ν(t, q)δ(p− y(t, q))
leading to the so-called Euler system of equations satisfied by the pair (ν, y).

One of the main steps in the developments of the present article is to highlight that, after having
derived the Vlasov equation associated to (??) thanks to the trick consisting of parametrizing the
status of the index i as already mentioned, the associated Euler equation (not a system anymore
because the extra dynamical variables i remain at rest and thus give no kinetic part in the Euler
system) coincides with the graph limit equation associated to (??) – a nontrivial fact, even at the
conceptual level as discussed in Section ?? of the paper.

This article is devoted to unifying and generalizing, to some extent, the classical ways to pass
to the limit in families of particle systems. The mean field limit, even for distinguishable particles,
leads to the Vlasov equation. The hydrodynamic limit leads to the Euler equation. The Liouville
equation is a lift of the particle system in a space of probability measures. We analyze in detail the
various relationships between particle system, Vlasov, Liouville and Euler, showing how to pass
from one to another and deriving, under appropriate assumptions, some convergence estimates.
While some of the results are classical (or straightforward extensions of known results), most of
them are new and we hope that the overall study may serve to unify different viewpoints.

Let us point out a difference of methodology between the present paper and several previous
works concerning the case of indistinguishable particles: we do not estimate propagation of cou-
plings but we rather use direct estimates of the particles and Vlasov flows thanks to the use of a
convenient Wasserstein distance. This allows us to obtain, as a by-product of our main results,
quantitative mean-field limits for more general vector fields that in (??) and (??).

The last part of our paper deals somehow with the inverse path: given a general partial dif-
ferential equation (PDE), is is possible to construct explicitly an agent system of the form (??)
such that the corresponding graph limit equation coincides with the given PDE we started with?
Surprisingly, this happens to be true in a very general setting and this is a consequence of the
analysis done in the paper.

The question of whether some classes of PDEs are a “natural” limit of particle systems is
classical in fluid mechanics and certainly dates back to Euler: it is classical that the Euler fluid
equation can be seen, at least formally, as the limit of evolving “particles of fluids”. This has been
formalized in the famous article [?] where Arnol’d interpreted the Euler equation as a geodesic
equation in the space of diffeomorphisms, leading to a number of subsequent studies; we refer
to [?] (see also the references therein) for a survey on how to “cook up” appropriate groups of
diffeomorphisms (and thus, of particle systems) to generate classes of fluid PDEs, like Euler,
Camassa-Holm, etc. We also refer to [?] for a recent survey on microscopic, mesoscopic and
macroscopic scales for fluid dynamics.

But it is much less classical to show that other, more general PDEs can as well be obtained
by passing to the limit in some particle systems. For transport equations, the topic has been
extensively studied in [?, ?, ?]. Recently, thanks to the concept of graph limit elaborated in [?],
it has been possible to show that heat-like equations can as well be obtained as limits of particle
systems (see also [?, ?, ?, ?]). In [?], the authors provide a rigorous derivation from the kinetic
Cucker-Smale model to the macroscopic pressureless Euler system by hydrodynamic limit, using
entropy methods and deriving error estimates.

Actually, during the Leçons Jacques-Louis Lions given in our laboratory in the fall 2021 by
Dejan Slepcev, we were intrigued by his way of deriving heat-like equations from unusual particle
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systems, by taking not only the limit as the number N of agents tends to +∞, but also another
parameter ε tends to 0, at some precise scaling (see [?]). The role of ε is to smoothen the dynamics.
His striking exposition has been for us a great source of inspiration and has motivated the last
part of the present article.

In this last part, we provide for a large range of linear PDEs a natural and constructive way
for associating an agent system to them. Shortly, as a particular case of our analysis, considering
a general PDE

∂ty(t, x) =
∑
|α|⩽p

aα(x)∂
α
x y(t, x) = Ay(t, x), (6)

we show that (??) is the graph limit of (for example) the particle system (??) with

Gij(t, ξ, ξ
′) = Gε(t, i, j, ξ, ξ

′) = ξ′
∑
|α|⩽p

aα(x)∂
α
x′
e−

(x−x′)2
2ε

(πε)
1
2

in the limit N ≫ ε−1 → +∞, with some appropriate scalings. We establish convergence estimates
in Wasserstein distance in general, and in L2 norm under an additional (but general) semigroup
assumption.

Structure of the article. Section ?? is devoted to studying the passage from microscopic to
mesoscopic scale: in other words we show how to pass “from particle to Vlasov” by mean field limit.
In Theorem ??, we establish existence, uniqueness and stability properties for the Vlasov equation
(??) for distinguishable particles. We recall the classical Lagrangian and Eulerian viewpoints. For
the latter, we elaborate on the Liouville equation associated with the particle system. Theorems ??
and ?? are devoted to establish Wasserstein estimates quantifying the discrepancy, as N → +∞,
between the first marginal of the solution of the Liouville equation and the solution of the Vlasov
equation; in other words, these results show how Vlasov can be recovered from Liouville by taking
marginals and passing to the limit (propagation of chaos). We also give corollaries of the theorems
in the indistinguishable case, thus recovering known results.

Section ?? is devoted to studying the passage from mesoscopic to macroscopic scale: in other
words we show how to pass “from Vlasov to Euler” by hydrodynamic limit, mainly consisting of
taking the moment of order 1. Proposition ?? in that section is concerned with the well known
monokinetic approach, but we also investigate the moment of order 2, yielding some consensus
results.

Section ?? is devoted to studying the passage from microscopic to macroscopic scale: in other
words we show how to pass “from particle to Euler” by graph limit. Theorems ?? and ?? quantify
some convergence estimates in L∞ norm as N → +∞. We also discuss how Euler can be recovered
from Liouville by taking adequate moments.

Section ?? provides a synthetic summarize of all relationships that we have unraveled. In par-
ticular, Figure ?? illustrates the various two-ways passages between particle (microscopic) systems,
the Liouville (probabilistic) equation, the Vlasov (mesoscopic, mean field) equation, and the Euler
(macroscopic, graph limit) equation. This section can even be read as a motivating preliminary
before going ahead.

Finally, as announced, as a surprising byproduct built on the previous developments, we show
in Section ?? that general linear PDEs can be obtained by passing to the limit in explicit particle
systems, thanks to two asymptotic parameters.

In order to state all subsequent results, we recall in Section ?? hereafter some notations and
concepts that we use throughout, in particular the Wasserstein distance and another distance
obtained by disintegration of measures, and the concept of tagged partition that is classically used
in Riemann integration theory.
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We gather in Appendix ?? a number of useful results on the Wasserstein distance, empirical and
(so-called semi-empirical measures. Appendix ?? is devoted to proving some of the main theorems.

1.2 General notations

Let E be a Polish space, endowed with a distance dE .

Hölder and Lipschitz mappings. Let U be a subset of E. Let k ∈ IN∗ and let ∥ · ∥ be a
norm on IRk. Given any α ∈ (0, 1], we denote by C 0,α(U, IRk) the set of all continuous mappings
g ∈ C 0(U, IRk) that are α-Hölder continuous (with respect to the norm ∥ ∥), meaning that

Holα(g) = sup
y,y′∈U
y ̸=y′

∥g(y)− g(y′)∥
dE(y, y′)α

< +∞.

When α = 1, we speak of a Lipschitz mapping and we denote Lip(g) = Hol1(g). When U is
compact, C 0,α(U, IRk) is a Banach space endowed with the norm

∥g∥C 0,α(U,IRk) = max
y∈U

∥g(y)∥+Holα(g).

When k = 1 and α = 1, we denote Lip(U) = C 0,1(U, IR).

Probability Radon measures. We denote by P(E) the set of nonnegative probability Radon
measures on E. We also consider Pc(E), Pac(E), where the subscript c means “with compact
support” and the superscript acmeans “absolutely continuous with respect to a Lebesgue measure”
(in the case where E is equipped with a Lebesgue measure), and for every p ⩾ 1 the set Pp(E) stands
for the set of all µ ∈ P(E) that have a finite moment of order p, i.e.,

∫
E
dE(y0, y)

p dµ(y) < +∞
where y0 ∈ E is arbitrary. Given any Borel mapping ϕ : E → F where F is another Polish space
and given any µ ∈ P(E), the image (or pushforward) of µ under ϕ is ϕ∗µ = µ ◦ ϕ−1.

We denote by C 0(E) the set of continuous functions on E and by C 0
c (E) the set of continuous

functions of compact support on E. When E is a smooth manifold, we adopt similar notations
for the set C∞(E) of smooth functions on E. We recall that the topological dual (C 0

c (E))′ (resp.,
(C 0(E))′) is the set of all Radon measures on E (resp., with compact support). Endowed with the
total variation norm ∥ ∥TV which is the dual norm, it is a Banach space.

Throughout the paper, δ⋆ is the Dirac measure at ⋆.

Wasserstein distance. Given any p ⩾ 1, the Wasserstein distanceWp(µ1, µ2) of order p between
two probability measures µ1, µ2 ∈ P(E), with respect to the distance dE , is defined as the infimum
of the Monge-Kantorovich cost

∫
E2 dE(y1, y2)

p dΠ(y1, y2) over the set of probability measures Π ∈
P(E2) coupling µ1 with µ2, i.e., whose marginals on the two copies of E are µ1 and µ2:

Wp(µ1, µ2) = inf

{(∫
E2

dE(y1, y2)
p dΠ(y1, y2)

)1/p

| Π ∈ P(E2), (π1)∗Π = µ1, (π2)∗Π = µ2

}
(7)

where π1 : E2 → E and π2 : E2 → E are the canonical projections defined by π1(y1, y2) = y1 and
π2(y1, y2) = y2 for all (y1, y2) ∈ E × E. Equivalently,

Wp(µ1, µ2) = inf

{(
EdE(Y1, Y2)

p
)1/p

| law(Y1) = µ1, law(Y2) = µ2

}
(8)
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where the infimum is taken over all possible random variables Y1 and Y2 (defined on a same
probability space, with values in E) having the laws µ1 and µ2 respectively. Then, Wp is a
distance on Pp(E), which metrizes the weak convergence in Pp(E) in the following sense: given
µ ∈ Pp(E) and given a sequence (µj)j∈IN∗ in Pp(E), we have Wp(µj , µ) → 0 as j → +∞ if and only
if
∫
E
f dµj →

∫
E
f dµ for every continuous bounded function f on E and

∫
E
dE(y0, y)

p dµj(y) →∫
E
dE(y0, y)

p dµ(y) as j → +∞ for some (and thus any) y0 ∈ E (see [?, Chapter 5, Section 5.2]
or [?, Theorem 6.9]), if and only if

∫
E
f dµj →

∫
E
f dµ for every continuous function f on E such

that |f(y)| ⩽ C(1 + dE(y0, y)
p) for every y ∈ E, for some C > 0 and some (and thus any) y0 ∈ E

(see [?, Theorem 7.12]). It can be noted that, given any subset K ⊂ E of finite diameter, we have

1 ⩽ p1 ⩽ p2 ⇒ Wp1(µ1, µ2) ⩽ Wp2(µ1, µ2) ⩽ diamE(K)1−p1/p2Wp1(µ1, µ2)
p1/p2 (9)

for all µ1, µ2 ∈ Pc(E) of compact support contained in K (see [?, Chapter 5]), where diamE(K) is
the supremum of all dE(y, y

′) over all possible y, y′ ∈ K.
For p = 1, the duality formula for the Kantorovich-Rubinstein distance (see [?, Chapter 5])

gives the equivalent definition

W1(µ1, µ2) = sup

{∫
E

f d(µ1 − µ2) | f ∈ Lip(E), Lip(f) ⩽ 1

}
, (10)

valid for all µ1, µ2 ∈ P1(E).
For p = +∞, we set W∞(µ1, µ2) = limp→+∞ Wp(µ1, µ2) (see [?, Chapter 5, Section 5.5.1]).
Note that the infimum in (??), as well as in (??), is a minimum (i.e., there exists an optimal

coupling) and that the supremum in (??) is a maximum (see [?, Chapters 4 and 5] or [?, Chapter
3, Section 3.1.1]).

Disintegration. In this paper, we are going to consider measures on Ω × IRd, for d ∈ IN∗ (and
on Ωk × (IRd)k for k ∈ IN∗), where (Ω,dΩ) is a complete metric space and IRd is endowed with an
arbitrary norm ∥ · ∥. We endow Ω × IRd with the distance dΩ×IRd = dΩ + dIRd where dIRd is the

distance on IRd induced by the norm ∥ · ∥.
Denoting by π : Ω× IRd → Ω the canonical projection, given any µ ∈ P(Ω× IRd), in the sequel

we will always denote by ν the nonnegative probability Radon measure on Ω defined as the image
(pushforward) of µ under π,

ν = π∗µ = µ ◦ π−1, (11)

that is also the marginal of µ on Ω. Note that, since π is continuous, supp(ν) = π(supp(µ)). By
disintegration of µ with respect to ν, there exists a family (µx)x∈Ω of probability Radon measures
on IRd (uniquely defined ν-almost everywhere) such that µ =

∫
Ω
µx dν(x), i.e.,∫

Ω×IRd

h(x, ξ) dµ(x, ξ) =

∫
Ω

∫
IRd

h(x, ξ) dµx(ξ) dν(x)

for every Borel measurable function h : Ω× IRd → [0,+∞) (see, e.g., [?]). Moreover, we set µx = 0
whenever x ∈ Ω \ supp(ν).

When Ω is a smooth manifold, if µ ∈ Pac(Ω × IRd) with a density f ∈ L1(Ω × IRd), i.e.,
dµ

dx dξ (x, ξ) = f(x, ξ), then ν is absolutely continuous, of density dν
dx (x) =

∫
IRd f(x, ξ) dξ, and for

ν-almost every x ∈ Ω the probability measure µx has the density dµx

dξ (ξ) = f(x,ξ)∫
IRd f(x,ξ′) dξ′

.

Given any µ1, µ2 ∈ P1(Ω× IRd) having the same marginal ν on Ω, we define

L1
νWp(µ

1, µ2) =

∫
Ω

Wp(µ
1
x, µ

2
x) dν(x). (12)
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Obviously, L1
νWp is a distance on the subset denoted Pν

p (Ω×IRd) of elements of Pp(Ω×IRd) having

the same marginal ν. Note that W1(µ
1, µ2) ⩽ L1

νW1(µ
1, µ2) for all µ1, µ2 ∈ Pν

1 (Ω× IRd).1

Tagged partitions. Let ν ∈ P(Ω). We say that (AN , XN )N∈IN∗ is a family of tagged partitions
of Ω associated with ν if AN = (ΩN

1 , . . . ,ΩN
N ) is a N -tuple of disjoint subsets ΩN

i ⊂ Ω such that

Ω =

N⋃
i=1

ΩN
i with ν(ΩN

i ) =
1

N
and diamΩ(Ω

N
i ) ⩽

CΩ

Nr
∀i ∈ {1, . . . , N}, (13)

for some CΩ > 0 and r > 0 not depending on N , and XN = (xN
1 , . . . , xN

N ) is a N -tuple of points
xN
i ∈ ΩN

i . Here, diamΩ(Ω
N
i ) is the supremum of all dΩ(x, x

′) over all possible x, x′ ∈ ΩN
i .

Families of tagged partitions always exist when Ω is a compact n-dimensional smooth manifold
having a boundary or not and ν is a Lebesgue measure on Ω, with r = 1/n. For instance, when
Ω = [0, 1], we take ΩN

i = [aNi , aNi+1) for some subdivision 0 = aN1 < aN2 < · · · < aNN+1 = 1

satisfying (??); when dν(x) = dx, a natural choice is aNi = i−1
N , and xN

i = aNi or
aN
i +aN

i+1

2 , for
every i ∈ {1, . . . , N} (and then CΩ = 1 and r = 1 in this case). When Ω is a compact domain of
IRn, a family of tagged partitions is obtained by considering a family of meshes, as classically done
in numerical analysis, with r = 1/n.

The concept of tagged partition is used in Riemann (and more generally, Henstock-Kurzweil)
integration theory. We refer to [?] for (much more) general results. A real-valued function f on Ω,
of compact support, is said to be ν-Riemann integrable if it is bounded, ν-measurable, and if, for
any family (AN , XN )N∈IN∗ of tagged partitions, we have

N∑
i=1

∫
ΩN

i

|f(x)− f(xN
i )| dν(x) = o(1) (14)

and thus ∫
Ω

f dν =
1

N

N∑
i=1

f(xN
i ) + o(1) (15)

as N → +∞. A function f of essential compact support on Ω is ν-Riemann integrable if and only
if f is bounded and continuous ν-almost everywhere on Ω.

2 From microscopic to mesoscopic scale
(“from particle to Vlasov”, mean field limit)

2.1 Particle system

Let d ∈ IN∗ be fixed. Throughout the paper, we consider an arbitrary norm ∥ · ∥ on IRd. At the
microscopic level, given any N ∈ IN∗, we consider a system of N interacting “particles” or “agents”
ξNi (t) ∈ IRd, called the particle system (or multiagent system), of dynamics

ξ̇Ni (t) =
1

N

N∑
j=1

GN
ij

(
t, ξNi (t), ξNj (t)

)
, i = 1, . . . , N (16)

1Indeed,
∫
Ω×IRd f d(µ1 − µ2) =

∫
Ω

∫
IRd f(x, ξ) d(µ1

x − µ2
x) dν(x) ⩽

∫
Ω Lip(f(x, ·))W1(µ1

x, µ
2
x) dν(x) for every

f ∈ Lip(Ω× IRd), and if Lip(f) ⩽ 1 then Lip(f(x, ·)) ⩽ 1 for every x ∈ Ω. Then, take the supremum over all f .
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where GN
ij : IR× IRd × IRd → IRd stands for the interaction between the particles i and j. The dot

stands for the time derivative. The usual case, widely treated in the existing literature, is when the
particles are indistinguishable and the interaction mapping is the same for all pairs of particles and
moreover does not depend on N , i.e., GN

ij = G. We show here that there is no difficulty to treat
the more general situation where the particles are distinguishable and the interactions depend on
the agents. In (??), GN

ij depends on i, j,N .
Throughout the paper, we make the following crucial assumption:

(G) There exist a complete metric space (Ω,dΩ) and a continuous mapping

G : IR× Ω× Ω× IRd × IRd → IRd

(t, x, x′, ξ, ξ′) 7→ G(t, x, x′, ξ, ξ′)

locally Lipschitz with respect to (ξ, ξ′) uniformly with respect to (t, x, x′) on any compact
subset of IR× Ω× Ω, such that, for every N ∈ IN∗, there exist xN

1 , . . . , xN
N in Ω such that

G
(
t, xN

i , xN
j , ξ, ξ′

)
= GN

ij (t, ξ, ξ
′) ∀t ∈ IR ∀ξ, ξ′ ∈ IRd ∀i, j ∈ {1, . . . , N}. (17)

Under Assumption ??, for every N ∈ IN∗ the particle system (??) is equivalently written as

ẋN
i (t) = 0

ξ̇Ni (t) =
1

N

N∑
j=1

G
(
t, xN

i , xN
j , ξNi (t), ξNj (t)

)
, i = 1, . . . , N

(18)

The variables xN
i ∈ Ω are parameters, and a usual way to treat parameters in differential equations

is to treat them as state variables whose dynamics are zero, whence the dynamics ẋN
i (t) = 0 above.

For each index i, the variable xN
i can be seen as the “name” of the agent i, used to distinguish it

from the others.
Assumption ?? (in particular, (??)) is a kind a continuous interpolation of the mappings GN

ij .
The continuity assumption includes the idea of the existence of a limit system as N → +∞. In
some sense, this assumption is unavoidable: indeed, if G were not required to be continuous, then
completely different systems (??) could be considered as N varies and then no limit (at least, in
a strong sense) for large N could exist. Note anyway that, interestingly, the authors of [?] do
not assume ??, but in order to pass to the mean field limit they make another assumption of
uniform boundedness on their dynamics in order to have a weak star limit. However at the limit
the distinguishability of particles is lost. In contrast, in our paper we want to obtain strong (mean
field, hydrodynamic, graph) limits and to preserve distinguishability at the limit.

Note that Assumption ?? implies that the Lipschitz constants of the mappingsGN
ij are uniformly

bounded (with respect to i, j,N) on any compact.
In Assumption ??, the complete metric space Ω used for the parameters xN

i is arbitrary. For
instance we can take Ω = [0, 1], but we allow for more general sets, in view of deriving on Ω some
interesting classes of PDEs (see Section ??).

The choice of the possible values of the xN
i is not imposed in Assumption ??. If one wishes

moreover to fix some precise points xN
i , such as the natural ones xN

i = i
N when Ω = [0, 1], often

used in numerical analysis, then having (??) satisfied requires some compatibility conditions on
the mappings GN

ij .

Setting XN = (xN
1 , . . . , xN

N ) ∈ ΩN , the system (??) can also be written in the form

Ξ̇N (t) = Y N
(
t,XN ,ΞN (t)

)
(19)
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where ΞN (t) = (ξN1 (t), . . . , ξNN (t)). Here and in what follows, the time-dependent vector field
Y N (t,X, ·) on (IRd)N , depending on the parameter X ∈ ΩN , is defined by

Y N (t,X, ·) =
(
Y N
1 (t,X, ·), . . . , Y N

N (t,X, ·)
)

(20)

with

Y N
i (t,X,Ξ) =

1

N

N∑
j=1

G(t, xi, xj , ξi, ξj) ∀i ∈ {1, . . . , N} (21)

for all t ∈ IR, X = (x1, . . . , xN ) ∈ ΩN and Ξ = (ξ1, . . . , ξN ) ∈ (IRd)N . We denote by (ΦN (t,X, ·))t∈I

(I ⊂ IR) the local-in-time flow of diffeomorphisms of IRdN generated by the time-dependent vector
field Y N (t,X, ·): this flow, called the particle flow, is parametrized by X ∈ ΩN . We have ΞN (t) =
ΦN (t,XN ,ΞN (0)) for every t ∈ I.

Lemma 1. [Uniform maximal time] For any compact subset K of Ω× IRd, there exists a maximal
time Tmax(K) ∈ (0,+∞] such that, for any N ∈ IN∗, for any (X,Ξ(0)) ∈ KN ,2 the unique solution
t 7→ ΦN (t,X,Ξ(0)) of (??), of initial condition (X,Ξ(0)) at t = 0, is well defined on [0, Tmax(K)).
Moreover, for any T ∈ [0, Tmax(K)), the set ΦN ([0, T ]×KN ) is contained in a compact subset of
IRd depending on T but not on N .

Lemma ?? shows that, given a compact set K of initial conditions, the time Tmax(K) is uniform
with respect to N ∈ IN∗, and that, given any T ∈ (0, Tmax(K)), any solution of (??) on [0, T ],
starting in K at t = 0, is contained in a compact set that depends on T but not on N .

Lemma ?? straightforwardly follows from the usual proof of the Picard-Lindelöf theorem by a
fixed point argument (see [?, Chapter II]), using Assumption ?? and the fact that, for every T > 0,
on [0, T ]×KN the vector field Y N is uniformly bounded with respect to N and is Lipschitz with
respect to Ξ uniformly with respect to (t,X) on any compact, with a Lipschitz constant that is
uniform with respect to N . Note that, for a given N ∈ IN∗, the maximal time of definition of the
solution t 7→ ΦN (t,X,Ξ(0)) may be larger than Tmax(K); what is important in the lemma is the
uniform bound below with respect to N .

Of course, if G is globally Lipschitz with respect to (ξ, ξ′) ∈ IRd × IRd, uniformly with respect
to (t, x, x′) on any compact subset of [0,+∞) × Ω × Ω, then Tmax(K) = +∞ for any compact
K ⊂ Ω× IRd. But our framework is more general and allows for superlinearities.

Some examples covered by this general framework are in order.

Example 1. Consider the linear Hegselmann–Krause first-order consensus system (see [?]), mod-
eling for instance the propagation of opinions (studied in [?]), of dynamics

ξ̇Ni (t) =
1

N

N∑
j=1

σN
ij

(
ξNj (t)− ξNi (t)

)
, i = 1, . . . , N, (22)

with constant interaction coefficients σN
ij ⩾ 0 (not necessarily symmetric). Assumption ?? requires

that there exist Ω and a continuous function σ on Ω2 such that, for every N ∈ IN∗, there exist
distinct points xN

1 , . . . , xN
N in Ω such that σ(xN

i , xN
j ) = σN

ij . We have then G(t, x, x′, ξ, ξ′) =

σ(x, x′)(ξ′ − ξ) for all (t, x, x′, ξ, ξ′) ∈ IR× Ω2 × (IRd)2. More general models can be considered.

2With a slight abuse of notation, (X,Ξ(0)) ∈ KN means that (xi, ξi(0)) ∈ K for every i ∈ {1, . . . , N}, where
X = (x1, . . . , xN ) and Ξ(0) = (ξ1(0), . . . , ξN (0)).
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Example 2. Setting d = 2r and ξ = (q, p) ∈ IRr × IRr, the Cucker–Smale model (see [?]) is given
by

q̇Ni (t) = pNi (t), ṗNi (t) =
1

N

N∑
j=1

a(∥qNi (t)− qNj (t)∥)(pNj (t)− pNi (t)), i = 1, . . . , N,

for some potential function a on IR of class C 1. Assumption ?? is satisfied with G = (Gq, Gp)
where Gq(t, x, x

′, ξ, ξ′) = p and Gp(t, x, x
′, ξ, ξ′) = a(∥q − q′∥)(p′ − p) (not depending on (x, x′):

particles are indistinguishable).
Many variants of that model are covered by our framework, for instance the potential may

depend on i and j (distinguishable case), and other terms can be added to the dynamics of pi, for
instance self-propulsion and attraction-repulsion forces (like in [?]).

Example 3. Still with d = 2r and ξ = (q, p) ∈ IRr × IRr, given any N ∈ IN∗, consider the
Hamiltonian function

HN (q1, p1, . . . , qN , pN ) =
N∑
j=1

hN
j (qj , pj) +

1

N

N∑
j,k=1

hN
jk(qj , pj , qk, pk)

for some C1 functions hN
j and hN

jk. The Hamiltonian system of N particles, given by q̇i =
∂H
∂pi

,

ṗi = −∂H
∂qi

for i ∈ {1, . . . , N}, can be written as (??) with

GN
ij (t, ξ, ξ

′) =

(
∂2h

N
i (q, p) + ∂2h

N
ij (q, p, q

′, p′) + ∂4h
N
ji(q

′, p′, q, p)

−∂1h
N
i (q, p)− ∂1h

N
ij (q, p, q

′, p′)− ∂3h
N
ji(q

′, p′, q, p)

)

where ∂k denotes the partial derivative with respect to the kth-variable.
Having Assumption ?? satisfied requires at least that the Hamiltonians hN

j and hN
jk be uniformly

(wrt j, k,N) locally Lipschitz. Note that the Hamiltonian HN involves sums of “single” and of
“pairwise” Hamiltonians, but not of “triplewise” or more. Actually, many classical Hamiltonian
systems of N particles are written as above with Hamiltonians not depending on j, k,N .

When N becomes larger and larger, we want to pass to the limit in some sense and replace the
set of particles with a nonnegative Radon measure on Ω × IRd. With this objective in mind, two
classical viewpoints are the Lagrangian and the Eulerian one.

The Lagrangian viewpoint consists of keeping the trajectories of (??), taking the mean field
limit by embedding trajectories with an empirical measure on Ω × IRd to solutions of the Vlasov
equation (or continuity equation) in Ω× IRd. This is done in Section ??.

The Eulerian viewpoint consists of using the flow of diffeomorphisms of Y to propagate an
initial measure on ΩN × IRdN , thus obtaining the Liouville equation in ΩN × IRdN . This is done in
Section ??.

Hereafter, we elaborate in detail on these procedures and we then show in Section ?? how to
recover the Vlasov equation from the Liouville equation by taking adequate marginals, obtaining
convergence estimates in Wasserstein distance.

2.2 Lagrangian viewpoint: mean field limit and Vlasov equation

Within the Lagrangian viewpoint, the N particles at time t are embedded as Dirac masses to
the space of Radon measures, and their corresponding average, the empirical measure, converges
by the so-called mean field limit procedure, as N → +∞, to a probability Radon measure µ(t)
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on Ω × IRd satisfying the Vlasov equation. When µ(t) is absolutely continuous with respect to a
Lebesgue measure, its density f(t, x, ξ) is the density of particles having the parameter x at ξ at
time t.

In the existing literature, it is often said that, in order to pass to the mean field limit, it is
necessary that the particles be indistinguishable, and that the interaction mapping G must be the
same for all pairs of particles. Hereafter, we show that such an assumption is unnecessary and that
there is no difficulty to consider interactions depending on agents.

2.2.1 Mean field

Given any µ ∈ Pc(Ω×IRd), we define ν = π∗µ by (??) (marginal of µ on Ω) and we define the mean
field, also called interaction kernel, as the non-local time-dependent one-parameter (the parameter
is x ∈ Ω) vector field on IRd given by

X [µ](t, x, ξ) =

∫
Ω×IRd

G(t, x, x′, ξ, ξ′) dµ(x′, ξ′)

=

∫
Ω

∫
IRd

G(t, x, x′, ξ, ξ′) dµx′(ξ′) dν(x′) ∀(t, x, ξ) ∈ IR× Ω× IRd

(23)

Note that X [µ](t, x, ξ) is the expectation ofG(t, x, x′, ξ, ξ′) with respect to the measure µ, performed
with respect to (x′, ξ′) ∈ Ω × IRd (see Appendix ?? for more details and consequences of that
definition). Recall that G satisfies Assumption ??.

Example 4. In Example ?? (Hegselmann–Krause model), the mean field is

X [µ](t, x, ξ) =

∫
Ω×IRd

σ(x, x′)(ξ′ − ξ) dµ(x′, ξ′) ∀(t, x, ξ) ∈ IR× Ω× IRd,

and in Example ?? (Cucker–Smale model) it is given by

X [µ](t, x, ξ) =

(
p∫

Ω×IRr×IRr a(∥q − q′∥)(p′ − p) dµ(x′, ξ′)

)
∀(t, x, ξ) ∈ IR× Ω× IR2r,

2.2.2 Vlasov equation

We consider the Vlasov (or continuity) equation

∂tµ+ divξ(X [µ]µ) = 0 (24)

where the divergence3 acts only with respect to ξ. It is a nonlocal transport equation because the
velocity field X [µ] defined by (??) is nonlocal.

Given any interval I ⊂ IR, let C 0(I,Pc(Ω× IRd)) be the Banach space of continuous mappings
t ∈ I 7→ µ(t) ∈ Pc(Ω × IRd), with Pc(Ω × IRd) endowed with the weak topology (metrized by the
Wasserstein distance Wp, for any p ∈ [1,+∞), as recalled in Section ??).

We define C 0
comp(I,Pc(Ω× IRd)) as the set of all µ ∈ C 0(I,Pc(Ω× IRd)) that are equi-compactly

supported on any compact interval of I, meaning that for any t1, t2 ∈ I, there exists a compact
subset K ⊂ Ω × IRd such that supp(µ(t)) ⊂ K for every t ∈ [t1, t2]. There exist elements of
C 0(I,Pc(Ω×IRd)) that are not equi-compactly supported on any compact interval of I (for instance,
if I = [0, T ], take µ(t) = (1− e−1/t)δ0 + e−1/tδ1/t).

3Recall that div(Xµ) = LXµ (Lie derivative of the measure µ) is the measure defined by ⟨LXµ, f⟩ = −⟨µ,LX f⟩ =
−

∫
IRd X .∇f dµ for every f ∈ C∞

c (IRd).
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In view of obtaining existence and uniqueness of solutions of (??), we consider the following
concept of solution. Assuming that 0 ∈ I, by definition, a solution t 7→ µ(t) of (??) on I such that
µ(0) = µ0 ∈ Pc(Ω× IRd) is an element µ ∈ C 0

comp(I,Pc(Ω× IRd)) such that, denoting µt = µ(t),4

for every g ∈ C∞
c (Ω× IRd), the function t 7→

∫
g dµt is absolutely continuous on I and∫

Ω×IRd

g(x, ξ) dµt(x, ξ) =

∫
Ω×IRd

g(x, ξ) dµ0(x, ξ)

+

∫ t

0

∫
Ω×IRd

∫
Ω×IRd

⟨∇ξg(x, ξ), G(τ, x, x′, ξ, ξ′)⟩ dµτ (x
′, ξ′) dµτ (x, ξ) dτ (25)

for almost every t ∈ I.

Remark 1. Given any solution t 7→ µ(t) on [0, T ) of the Vlasov equation (??), the total mass
µ(t)(Ω × IRd) is constant with respect to t, i.e., µ(t) is a probability measure for every t ∈ [0, T ).
Also, the marginal ν = π∗µ(t) does not depend on t, because the Vlasov equation can be written
as ∂tµ + LX [µ]µ = 0 with the Lie derivative acting with respect to the variable ξ, and we have
π∗LX [µ] = 0.

Disintegrating µt = µ(t) as µt =
∫
Ω
µt,x dν(x) with respect to its marginal ν = π∗µt on Ω (which

does not depend on t by Remark ??), by uniqueness ν-almost everywhere of the disintegration,
(??) is equivalent to

∂tµt,x + divξ(X [µt](t, x, ·)µt,x) = 0 (26)

for ν-almost every x ∈ Ω. Note that the time evolution of µt,x = φµ0
(t, x, ·)∗µ0,x depends on the

whole µ0 and not only on µ0,x, since X [µt] involves an integral over all possible x′ ∈ Ω.

Theorem 1. [Existence, uniqueness and stability properties for the Vlasov equation (??)]
Recalling Assumption ??, let p ∈ [1,+∞) be arbitrary.

(A) Given any µ0 ∈ Pc(Ω× IRd), setting T0 = Tmax(supp(µ0)) (given by Lemma ??), there exists
a unique solution µ ∈ C 0

comp([0, T0),Pc(Ω × IRd)) of the Vlasov equation (??) (in the sense
(??)) such that µ(0) = µ0. Moreover, t 7→ µ(t) is locally Lipschitz with respect to t for the
distance Wp, and we have

µ(t) = φµ0(t)∗µ0, (27)

which is a notation meaning that µt,x = φµ0
(t, x, ·)∗µ0,x for every t ∈ [0, T0) and ν-almost

every x ∈ Ω, and where t 7→ φµ0
(t, x, ·) is the unique solution (Vlasov flow) of

∂tφµ0
(t, x, ·) = X [µ(t)](t, x, ·) ◦ φµ0

(t, x, ·) (28)

such that φµ0
(0, x, ·) = idIRd for ν-almost every x ∈ Ω. Moreover, if µ0 ∈ Pac

c (Ω× IRd) then

µ(t) ∈ Pac
c (Ω× IRd) for every t ∈ [0, T0). Furthermore:

(A1) Any solution of (??) depends continuously on its initial condition µ(0) ∈ Pc(Ω × IRd)
for the weak topology in the following sense: given any compact subset K ⊂ Ω × IRd,
given any µ(0) ∈ Pc(Ω × IRd) such that supp(µ(0)) ⊂ K, given any (equi-compactly
supported) sequence of measures µk(0) ∈ Pc(Ω × IRd) such that supp(µk(0)) ⊂ K for
every k ∈ IN∗, if µk(0) converges weakly to µ(0) (equivalently, Wp(µ

k(0), µ(0)) → 0) as
k → +∞, then µk(t) converges weakly to µ(t) (equivalently, Wp(µ

k(t), µ(t)) → 0) as
k → +∞, uniformly on any compact interval of [0, Tmax(K)).

4Note that, seeing µ as a measure on I × Ω × IRd, the marginal of µ on I is the Lebesgue measure and the
disintegration of µ is µ =

∫
I µt dt.
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(A2) For all solutions µ1, µ2 ∈ C 0
comp([0, T ],Pc(Ω× IRd)) of (??) (for some T > 0) such that

µ1(0), µ2(0) ∈ Pν
c (Ω× IRd) have the same marginal ν on Ω, setting5

Sµ1,µ2(τ) = supp(ν)×
(
φµ1

0
(τ, supp(µ1

0) ∪ supp(µ2
0)) ∪ supp(µ2(τ))

)
and defining

Cµ1,µ2(t) = exp

(
2

∫ t

0

ess sup
(x,ξ),(x′,ξ′)∈Sµ1,µ2 (τ)

∥(∂ξG, ∂ξ′G)(τ, x, x′, ξ, ξ′)∥ dτ
)
, (29)

we have

L1
νWp(µ

1(t), µ2(t)) ⩽ Cµ1,µ2(t)L1
νWp(µ

1(0), µ2(0)) ∀t ∈ [0, T ] (30)

(where L1
νWp is defined by (??)).

(B) Assume moreover that G is locally Lipschitz with respect to (x, x′, ξ, ξ′) uniformly with respect
to t on any compact interval. For all solutions µ1(·), µ2(·) ∈ C 0

comp([0, T ],Pc(Ω×IRd)) of (??)
(for some T > 0), setting

Sµ1,µ2(τ) =
(
supp(ν1) ∪ supp(ν2)

)
×
(
φµ1

0
(τ, supp(µ1

0) ∪ supp(µ2
0)) ∪ supp(µ2(τ))

)
and defining

Cµ1,µ2(t) = exp

(
2

∫ t

0

Lip(G(τ, ·, ·, ·, ·)|Sµ1,µ2 (τ)2) dτ

)
, (31)

we have
Wp(µ

1(t), µ2(t)) ⩽ Cµ1,µ2(t)Wp(µ
1(0), µ2(0)) ∀t ∈ [0, T ]. (32)

Theorem ?? is proved in Appendix ??. The statement ?? of Theorem ?? is a slight extension,
with parameter x, of [?, Theorem 2.3] (see also [?, ?, ?]) where it is assumed that G is globally
Lipschitz. Without parameter x, we recover the famous stability estimate obtained by Dobrushin
in [?] (see Corollary ?? further). The statement ?? seems to be new. Note that, in ??, the initial
measures µ1(0) and µ2(0) are required to have the same marginal (and thus, equivalently, µ1(t)
and µ2(t) have the same marginal for any t). On the contrary, in ?? and in ??, the measures
under consideration are not assumed to have the same marginal. In ??, the weak convergence
µk(0) ⇀ µ(0) implies the weak convergence νk ⇀ ν of marginals but it is wrong in general that
µk
x(0) ⇀ µx(0) for x ∈ Ω.
In the statement ??, the assumption that G is locally Lipschitz with respect to (x, x′, ξ, ξ′) is

much stronger than ??: in Example ?? (resp., Example ??) this requires σ (resp., a) to be locally
Lipschitz. In general, requiring that G be locally Lipschitz with respect to (x, x′) is not a natural
assumption for the particle system (??). Note that, under this stronger assumption, the unique
solution µ(·) in ?? is locally Lipschitz with respect to t for the Wasserstein distance W1.

Finally, in the usual statements existing in the literature, G is assumed to be globally Lipschitz.
Here, under the weaker assumption ??, we have a maximal time of definition of µ depending on the
compact support of µ0, according to Lemma ??. Note that, when G is bounded, we can consider
in Theorem ?? measures that are not of compact support.

5Note that Sµ1,µ2 (t) is compact, that φµ1
0
(t, supp(µ1

0)) = supp(µ1
t ) and supp(µ1(t)) ∪ supp(µ2(t)) ⊂ Sµ1,µ2 (t).
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Particular case: the indistinguishable case. We speak of the “indistinguishable case” when-
ever G does not depend on (x, x′). This is the classical case that has been much studied in the
existing literature. The mean field is then

X [µ̄](t, ξ) =

∫
IRd

G(t, ξ, ξ′) dµ(ξ) ∀(t, ξ) ∈ IR× IRd (33)

where µ̄ ∈ P(IRd) is denoted with an upper bar, to avoid any confusion with measures µ ∈
P(Ω× IRd).

We have the following corollary of Theorem ??, already well known in the existing literature
(famous Dobrushin estimate, see [?]).

Corollary 1. Assume that G does not depend on (x, x′). Let p ∈ [1,+∞) be arbitrary. Given any
µ̄0 ∈ Pc(IR

d), there exists a unique solution µ̄ ∈ C 0
comp([0, Tmax(supp(µ̄0))),Pc(IR

d)) of the Vlasov
equation (??) (without dependence on x), locally Lipschitz with respect to t for the distance Wp,
such that µ̄(0) = µ̄0, and we have

µ̄(t) = φµ0
(t, ·)∗µ̄0

where t 7→ φµ0
(t, ·) is the unique solution of ∂tφµ0

(t, ·) = X [µ(t)](t, ·)◦φµ0
(t, ·) such that φµ0

(0, ·) =
idIRd . Moreover, if µ̄0 ∈ Pac

c (IRd) then µ̄(t) ∈ Pac
c (IRd) for every t ∈ IR. Furthermore, we have

Wp(µ̄
1(t), µ̄2(t)) ⩽ Cµ̄1,µ̄2(t)Wp(µ̄

1(0), µ̄2(0)) ∀t ∈ [0, T ] (34)

for all locally Lipschitz solutions µ̄1(·) and µ̄2(·) of (??) on [0, T ] (for some T > 0) such that
µ̄1(0), µ̄2(0) ∈ Pc(IR

d). Here, Cµ̄1,µ̄2(t) is defined by (??) or (??) (without dependence on x).

Proof. Let ν̄ be an arbitrary probability measure on Ω. Given any µ̄ ∈ P(IRd), we define µ ∈
P(Ω × IRd) by µ = ν̄ ⊗ µ̄: the marginal of µ on Ω is ν̄ and the disintegration of µ =

∫
Ω
µx dν̄(x)

with respect to ν̄ is given by µx = µ̄ if x ∈ supp(ν̄) and µx = 0 if x ∈ Ω \ supp(ν̄).
This embedding allows us to recover Corollary ?? as a consequence of Theorem ??. Indeed,

obviously, µ̄(·) is solution of the Vlasov equation (??) without dependence on x if and only if
µ(·) = ν̄ ⊗ µ̄(·) is solution of the Vlasov equation (??). This gives the first part of the corollary.

To obtain (??), it suffices to take ν̄ = δx̄ for some x̄ ∈ Ω and to note that Wp(µ̄
1, µ̄2) =

Wp(ν̄ ⊗ µ̄1, ν̄ ⊗ µ̄2). Then, (??) follows from (??) or from (??).

2.2.3 Relationship between the particle system and the Vlasov equation

For every N ∈ IN∗, given any XN = (xN
1 , . . . , xN

N ) ∈ ΩN and any ΞN = (ξN1 , . . . , ξNN ) ∈ IRdN , we
define the empirical measure µe

(XN ,ΞN ) ∈ P(Ω× IRd) corresponding to (XN ,ΞN ) by

µe
(XN ,ΞN ) =

1

N

N∑
i=1

δxN
i
⊗ δξNi . (35)

The disintegration of µe
(XN ,ΞN ) with respect to its marginal νeΞN = π∗µ

e
(XN ,ΞN ) = 1

N

∑N
i=1 δxN

i

on Ω (that is itself an empirical measure corresponding to XN ) gives the family of conditional
measures defined by (µe

(XN ,ΞN ))x = δξNi if x = xN
i and 0 otherwise.

The relationship between the particle system (??) and the Vlasov equation (??) is given by the
result below. To simplify the notation, hereafter we denote µe

N = µe
(XN ,ΞN ) and νeN = νeΞN .
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Proposition 1. If t 7→ ΞN (t) = (ξN1 (t), . . . , ξNN (t)) ∈ IRdN is a solution on [0, T ] (for some T > 0)
of the particle system (??) with parameter XN = (xN

1 , . . . , xN
N ) ∈ ΩN , then

t 7→ µe
N (t) = φµe

N (0)(t)∗ µ
e
N (0) =

1

N

N∑
i=1

δxN
i
⊗ δξNi (t)

is a locally Lipschitz solution of the Vlasov equation (??) on [0, T ]. The converse is true if all xN
i

are distinct and all ξNi (t) are distinct.
Actually, t 7→ ΞN (t) is solution on [0, T ] of (??) with parameter XN if and only if

ξNi (t) = φµe
N (0)

(
t, xN

i , ξNi (0)
)

∀t ∈ [0, T ] ∀i ∈ {1, . . . , N}. (36)

Proof. The Vlasov equation (??) is written as ∂tµ + LX [µ]µ = 0 with the Lie derivative act-
ing with respect to the variable ξ. Hence, setting XN (t) = (xN

1 (t), . . . , xN
N (t)) and ΞN (t) =

(ξN1 (t), . . . , ξNN (t)), the mapping t 7→ µe
N (t) is a locally Lipschitz solution of the Vlasov equation

(??) if and only if, for any g ∈ C∞
c (Ω× IRd), we have ⟨∂tµe

N + LX [µe
N ]µ

e
N , g⟩ = 0, i.e.,

0 =
1

N

N∑
i=1

(
d

dt
g(xN

i (t), ξNi (t))− ∂ξg(x
N
i (t), ξNi (t)).

1

N

N∑
j=1

G(t, xN
i (t), xN

j (t), ξNi (t), ξNj (t))

)

which is satisfied if t 7→ (XN ,ΞN (t)) is solution of (??). If all xN
i are distinct and all ξNi (t) are

distinct, the converse is obtained by taking g localized around (xN
i , ξNi (t)).

To obtain the second part of the proposition, we note that

X [µe
N ](t, x, ξ) =

1

N

N∑
j=1

G(t, x, xN
j , ξ, ξNj )

and thus X [µe
N ](t, xN

i , ξNi ) = Yi(t,X
N ,ΞN ) for every i ∈ {1, . . . , N}. Therefore, (??) is equiv-

alent to ξ̇Ni (t) = X [µe
N (t)](t, xN

i , ξNi (t)) for every i ∈ {1, . . . , N}. Besides, by definition of
t 7→ φµe

N (0)(t, x
N
i , ·) (given in ?? in Theorem ??), we have

∂tφµe
N (0)(t, x

N
i , ξNi (0)) = X [µe

N (t)](t, xN
i , φµe

N (0)(t, x
N
i , ξNi (0)))

with φµe
N (0)(0, x

N
i , ξNi (0)) = ξNi (0). Then, (??) follows by Cauchy uniqueness.

This shows that there is no difficulty to consider the mean field limit of a system of interacting
particles in which the interactions depend on the agents, provided that there is a limit function
G satisfying Assumption ??: one just has to define additional variables xN

i , for i = 1, . . . , N , and
couple the dynamics of the ξNi to the inertial equation ẋN

i = 0. This idea originates from [?,
Section 5.2]. It seems that, in spite of its simplicity, such a generalization has not been considered
in the literature.

Therefore, as in the classical situation where the interaction mapping G does not depend on the
agents, any solution of the system of particles (??) can be embedded to a solution of the Vlasov
equation (??) by considering an empirical measure.

As a consequence of the statements ?? and ?? of Theorem ?? and of Proposition ??, we have
the following corollary (the last part of which is already well known in the indistinguishable case).

Corollary 2. Let K be a compact subset of Ω× IRd. Let p ∈ [1,+∞) be arbitrary. Let µ0 ∈ Pc(K)
and let t 7→ µ(t) = φµ0

(t, ·, ·)∗µ0 be the solution on [0, Tmax(K)) of the Vlasov equation (??) such
that µ(0) = µ0. Besides, for every N ∈ IN∗, let (XN ,ΞN

0 ) ∈ KN be such that the empirical measure
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µe
N (0) = 1

N

∑N
i=1 δxN

i
⊗δξNi (0) converges weakly (equivalently, in Wasserstein distance Wp) to µ0 as

N → +∞ (see Appendix ?? for general results). For every N ∈ IN∗, let t 7→ ΞN (t) be the solution
on [0, Tmax(K)) of the particle system (??) with parameter XN such that ΞN (0) = ΞN

0 .

Then, the empirical measure µe
N (t) = 1

N

∑N
i=1 δxN

i
⊗ δξNi (t) converges weakly (equivalently, in

Wasserstein distance Wp) to µ(t) as N → +∞, uniformly with respect to t on any compact interval
of [0, Tmax(K)).

If moreover G is locally Lipschitz with respect to (x, x′, ξ, ξ′) (uniformly with respect to t on any
compact), then

Wp(µ(t), µ
e
N (t)) ⩽ Cµ,µe

N
(t)Wp(µ0, µ

e
N (0))

for every t ∈ [0, Tmax(K)) (with Cµ,µe
N
(t) defined by (??)).

Lemmas ?? and ?? in Appendix ?? provide general results ensuring that Wp(µ0, µ
e
N (0)) → 0

as N → +∞, and Lemma ?? gives an estimate of convergence, at rate 1
Nr/p , within the framework

of tagged partitions.

Remark 2. Alternatively, instead of empirical measures, we may also consider semi-empirical
measures: setting

(µ0)
se
XN =

1

N

N∑
i=1

δxN
i
⊗ µ0,xN

i
,

the unique solution t 7→ µ̃N (t) = φ(µ0)se
XN

(t, ·, ·)∗(µ0)
se
XN of the Vlasov equation (??) such that

µ̃N (0) = (µ0)
se
XN is of the form µ̃N (t) = 1

N

∑N
i=1 δxN

i
⊗ µ̃N

t,xN
i

(it differs from the semi-empirical

measure µ(t)seXN = 1
N

∑N
i=1 δxN

i
⊗ µt,xN

i
). Its marginal on Ω is the empirical measure νeXN =

1
N

∑N
i=1 δxN

i
.

Lemma ?? in Appendix ?? provides results on the convergence of Wp(µ0, (µ0)
se
XN ) to 0, as well

as estimates with a rate of convergence under appropriate assumptions.

2.3 Eulerian viewpoint: Liouville equation

The Eulerian viewpoint consists of propagating, for any parameter X ∈ ΩN , an initial probability
measure in IRdN under the flow of diffeomorphisms ΦN (t,X, ·) of IRdN generated by the time-
dependent vector field Y N (t,X, ·) defined by (??).

Given N ∈ IN∗ fixed, we consider the (N -body) Liouville equation associated with the time-
dependent vector field Y N defined by (??), depending on the parameter XN ∈ ΩN , given by

∂tρ
N + divΞ(Y

NρN ) = 0 (37)

This is a usual transport equation on IRdN , parametrized by XN ∈ ΩN , where the divergence is
considered with respect to Ξ = (ξ1, . . . , ξN ), and we thus have the following standard result. Here,
it is understood that ρN (t) is a probability Radon measure on (Ω× IRd)N ≃ ΩN × IRdN .

Proposition 2. Let K be a compact subset of Ω × IRd. Let ρN0 ∈ Pc(Ω
N × IRdN ) be such that

all marginals of ρN0 on any copy of Ω × IRd are supported in the same compact K. There exists
a unique solution t 7→ ρN (t) of the Liouville equation (??) in C 0([0, Tmax(K)),Pc(Ω

N × IRdN )),
locally Lipschitz with respect to t for the distance L1

θW1 (where θ is defined below), such that
ρN (0) = ρN0 , given by

ρN (t) = ΦN (t)∗ρ
N
0 (38)

i.e., ρN (t) is the image (pushforward) of ρN0 under the particle flow.
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The notation (??) is slightly abusive. To explain it, let us make precise some notations and
in particular the disintegration procedure. Given any measure ρ ∈ P(ΩN × IRdN ), denoting by
π⊗N : ΩN × IRdN → ΩN the canonical projection, we will always denote by θ the probability
Radon measure on ΩN given by θ = (π⊗N )∗ρ (image of ρ under π⊗N ), that is the marginal of ρ
on ΩN . By disintegration of ρ with respect to θ, there exists a family (ρX)X∈ΩN of probability
Radon measures on IRdN such that ρ =

∫
ΩN ρX dθ(X).

With these notations, ρNt = ρN (t) is disintegrated as ρNt =
∫
ΩN ρNt,X dθN (X) with respect to its

marginal θN = (π⊗N )∗ρ
N (t) on ΩN . The marginal θN does not depend on t because (??) can be

written as ∂tρ
N + LY NρN = 0, with the Lie derivative acting with respect to the variable ξ, and

we have (π⊗N )∗LY N = 0. Finally, (??) means that

ρNt,X = (ΦN
t,X)∗ρ

N
0,X

for every t ∈ [0, Tmax(K)) and for θN -almost every X ∈ ΩN .

Remark 3. If ρN0 = δXN ⊗ δΞN
0

for some (XN ,ΞN
0 ) ∈ KN then ρN (t) = δXN ⊗ δΞN (t) where

t 7→ ΞN (t) is the solution on [0, Tmax(K)) of the particle system (??) with parameter XN such
that ΞN (0) = ΞN

0 . In other words, the solutions of the particle system are naturally embedded as
Dirac measures solutions of the Liouville system.

Hence, in some sense, the Liouville equation contains all possible solutions of the particle system.
But it contains more: considering the particle system (??), instead of taking a deterministic initial
condition ΞN (0) = ΞN

0 ∈ IRdN , one may want to take a distribution of initial conditions, for instance
one may want to consider all possible initial conditions that are distributed around ΞN

0 according
to a Gaussian law, in order to take into account noise or uncertainties in the initial conditions.
In such a way, the Liouville equation (??) has a probabilistic interpretation with respect to the
particle system (??).

If the probability measure ρN (t) on ΩN × IRdN has a density fN , then fN (t,X,Ξ) represents
the density of particles having the positions X = (x1, . . . , xN ) ∈ ΩN and respective momenta
Ξ = (ξ1, . . . , ξN ) ∈ IRdN . This is in contrast with the mean field procedure that consists of taking
the large N limit of the average over all particles but one. In the next section we show how to
recover Vlasov from Liouville by taking marginals.

2.4 Recovering Vlasov from Liouville by taking marginals

Compared with µ(t) that is a probability measure on Ω × IRd, ρN (t) is a probability measure on
(Ω× IRd)N ≃ ΩN × IRdN . It is thus tempting to search for a relationship between µ(t) and ρN (t)
by taking marginals of ρN (t). This is what has been done in [?] or in [?, ?] in the different context
of quantum mechanics. Adapted to the present situation, the method developed in [?], which
provides an explicit rate of convergence, consists of proving that the marginals of the solutions
ρ(t) of (??) are close, in Wasserstein topology, to solutions µ(t) of the Vlasov equation (??), as
established hereafter.

As we are going to see, this can be done by taking adequate initial conditions ρN0 for the
Liouville equation (??). We have to perform a symmetrization under permutations for the initial
condition ρN0 and also for the corresponding solution ρN (t), not only with respect to Ξ but also
with respect to the parameter variable X. Note that the symmetrization is not preserved by the
flow, so we have to consider the symmetrization ρN (t)s at any time t.

Given any ρ ∈ P(ΩN × IRdN ), we define the measure ρs ∈ P(ΩN × IRdN ), called the sym-
metrization under permutations of ρ (see Appendix ??), by∫

ΩN×IRdN

f(X,Ξ) dρs(X,Ξ) =
1

N !

∑
σ∈SN

∫
ΩN×IRdN

f(σ ·X,σ · Ξ) dρ(X,Ξ) (39)
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for every f ∈ C 0
c (Ω

N × IRdN ), where σ ·X = (xσ(1), . . . , xσ(N)) and σ · Ξ = (ξσ(1), . . . , ξσ(N)) for

all X ∈ ΩN and Ξ ∈ IRdN , and where SN is the group of permutations of N elements.
Now, given any k ∈ {1, . . . , N}, we denote by ρsN :k the kth-order marginal of ρs (not to be

confused with the symmetrization under permutations of the marginal, which we do not use),
which is, by definition, the image of ρs under the projection of ΩN × IRdN onto the product
Ωk × IRdk of the k first copies of Ω with the k first copies of IRd.

Since we are going to compute Wasserstein distances in (Ω × IRd)k ≃ Ωk × IRdk, we have to
choose a distance in that space. Recall that Ω×IRd is equipped with the distance dΩ×IRd = dΩ+dIRd

where dIRd is the distance on IRd induced by the norm ∥ · ∥ (which is arbitrary). Let q ∈ [1,+∞] be
arbitrary. Given any k ∈ IN∗, we endow (Ω× IRd)k with the ℓq distance based on dΩ×IRd , defined
by

d
[q]

(Ω×IRd)k
((X,Ξ), (X ′,Ξ′)) =

∥∥(dΩ×IRd((x1, ξ1), (x
′
1, ξ

′
1)), . . . ,dΩ×IRd((xk, ξk), (x

′
k, ξ

′
k)))

∥∥
ℓq

=


( k∑

i=1

(dΩ(xi, x
′
i) + ∥ξi − ξ′i∥)

q
)1/q

if q ∈ [1,+∞)

max
1⩽i⩽k

(dΩ(xi, x
′
i) + ∥ξi − ξ′i∥) if q = +∞

(40)

for all X = (x1, . . . , xk) and X ′ = (x′
1, . . . , x

′
k) in Ωk and for all Ξ = (ξ1, . . . , ξk) and Ξ′ =

(ξ′1, . . . , ξ
′
k) in IRdk. Note that, when k = 1, we have d

[q]

Ω×IRd = d
[1]

Ω×IRd = dΩ + dIRd .

Given any p, q ∈ [1,+∞], we denote by W
[q]
p the Wasserstein distance Wp on P(Ωk × (IRd)k)

with respect to the distance d
[q]

(Ω×IRd)k
.

We refer to the beginning of Appendix ?? and in particular to Remark ?? for comments on
the importance of choosing a distance on the product space (Ω × IRd)k and for remarks on the

Wasserstein distance W
[q]
p . In particular, by (??), we have W

[q2]
p ⩽ W

[q1]
p ⩽ k

1
q1

− 1
q2 W

[q2]
p if

1 ⩽ q1 ⩽ q2 ⩽ +∞ for any p ∈ [1,+∞].

In this section, we establish two ways for recovering Vlasov from Liouville by taking marginals.
Let µ0 ∈ Pc(Ω× IRd), disintegrated as µ0 =

∫
Ω
µ0,x dν(x) with respect to its marginal ν = π∗µ0

on Ω. Setting T0 = Tmax(supp(µ0)) (as given by Lemma ??), we consider the unique solution
t 7→ µ(t) = φµ0(t)∗µ0 in C 0

comp([0, T0),Pc(Ω×IRd)) of the Vlasov equation (??) such that µ(0) = µ0,
as given by Theorem ??. Recall that µt,x = φµ0

(t, x, ·)∗µ0,x for ν-almost every x ∈ Ω.

Hereafter, we propose two possible choices of ρN0 ∈ Pc(Ω
N × IRdN ), generating by Proposition

?? the solution ρN (t) = ΦN (t)∗ρ
N
0 of the Liouville equation (??) from which we recover at the

larger N limit the solution µ(t) of the Vlasov equation (??) by taking marginals.
In Theorem ??, we take ρN0 Dirac; in Theorem ??, we take ρN0 “semi-Dirac”. In both cases, we

prove that ρN (t)sN :k converges to µ(t)⊗k as N → +∞ and we establish convergence estimates in

Wasserstein distance W
[q]
p . The fact that the kth-order marginal ρN (t)sN :k of the symmetrization of

ρN (t), which is absolutely not a tensor product at time t = 0, becomes however the tensor product
µ(t)⊗k at the limit N → +∞, is usually referred to as propagation of chaos.

2.4.1 First way, with ρN0 Dirac

Given any fixed N ∈ IN∗, let (XN ,ΞN
0 ) ∈ supp(µ0)

N ⊂ ΩN × IRdN be arbitrary. Typically we may

want that the empirical measure µe
(XN ,ΞN

0 )
= 1

N

∑N
i=1 δxN

i
⊗ δξN0,i converges to µ0 in Wasserstein

distance as N → +∞ (see Appendix ?? for such conditions). Let t 7→ ΞN (t) = (ξN1 (t), . . . , ξNN (t))
be the solution on [0, T0) of the particle system (??) such that ΞN (0) = ΞN

0 . If µe
(XN ,ΞN

0 )
converges
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to µ0 then, by Corollary ??, the empirical measure µe
(XN ,ΞN (t)) =

1
N

∑N
i=1 δxN

i
⊗ δξNi (t) converges

to µ(t) in Wasserstein distance as N → +∞.
Defining ρN0 ∈ Pc(Ω

N×IRdN ) as the Dirac measure ρN0 = δXN ⊗δΞN
0
, by Remark ??, the unique

solution of the Liouville equation (??) such that ρN (0) = ρN0 , is given by the Dirac measure

ρN (t) = ΦN (t)∗ρ
N
0 = δXN ⊗ δΞN (t) ∀t ∈ [0, T0).

It is then easy to see that ρN (t)sN :1 = µe
(XN ,ΞN (t)) (see the proof of the theorem below). Therefore,

if µe
(XN ,ΞN

0 )
converges weakly to µ0 then ρN (t)sN :1 converges weakly to µ(t) as N → +∞. The

convergence is less obvious for the marginals of order k ⩾ 2.
Recall that G satisfies Assumption ??.

Theorem 2. We have the following statements, for any p ∈ [1,+∞) and q ∈ [1,+∞].

(A) If µe
(XN ,ΞN

0 )
converges weakly (equivalently, in Wasserstein distance Wp) to µ0 as N → +∞,

then, for every k ∈ IN∗, ρN (t)sN :k converges weakly (equivalently, in Wasserstein distance

W
[q]
p ) to µ(t)⊗k as N → +∞, uniformly with respect to t on any compact interval of [0, T0).

(B) Assuming that G is locally Lipschitz with respect to (x, x′, ξ, ξ′) (uniformly with respect to t
on any compact), setting

SN
µ (τ) = supp(µ(τ)) ∪ {(xN

i , ξNi (τ)) | i ∈ {1, . . . , N}} (41)

and defining

CN
µ (t) = exp

(
2

∫ t

0

Lip(G(τ, ·, ·, ·, ·)|SN
µ (τ)2) dτ

)
, (42)

for every N ∈ IN∗ and for every t ∈ [0, T0) we have ρN (t)sN :1 = µe
(XN ,ΞN (t)) =

1
N

∑N
i=1 δxN

i
⊗

δξNi (t) and

Wp

(
ρN (t)sN :1, µ(t)

)
⩽ CN

µ (t)Wp

(
µe
(XN ,ΞN

0 ), µ0

)
(43)

and, for every k ∈ IN∗ such that k2 ⩽ 2N ln
(
1 + 1

2p

)
,

W [q]
p

(
ρN (t)sN :k, µ(t)

⊗k
)
⩽ 2k1/q

(
k2

N

)1/p (
diamΩ(supp(ν)) + diamIRd(ΞN (t))

)
+ k1/qCN

µ (t)Wp

(
µe
(XN ,ΞN

0 ), µ0

)
(44)

where diamIRd(ΞN (t)) = max
1⩽i,j⩽N

∥ξNi (t)− ξNj (t)∥.

Theorem ?? is proved in Appendix ??.

In (??), diamΩ(supp(ν)) = max
x,x′∈supp(ν)

dΩ(x, x
′), and the Wasserstein distance W

[q]
p on Ωk ×

(IRd)k is computed with respect to the distance d
[q]

Ωk×(IRd)k
defined by (??). Since W

[q]
p ⩽ k

1
q W

[∞]
p

(by (??)), the strongest inequality (??) is obtained when q = +∞.
Lemmas ?? and ?? in Appendix ?? show that there always exists a sequence of empirical

measures µe
(XN ,ΞN

0 )
converging weakly to µ0. As alluded above, to obtain an interesting convergence

estimate from Item ?? of this theorem, we apply Lemma ?? in Appendix ??, which yields the

estimate Wp(µ
e
(XN ,ΞN

0 )
, µ0) ⩽ 1

Nr/p C
1/p

Ω×IRd diamΩ×IRd(supp(µ0))
1−1/p under the assumption of the

existence of a family of tagged partitions. As noted in this appendix, there exist plenty of results
quantifying the convergence of empirical measures to a given measure (see, e.g., [?]). Lemma ??
is a rough result.
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Corollary 3. In the context of Item ?? of Theorem ??, we assume moreover that there exists a
family of tagged partitions of supp(µ0) associated with µ0 (see Section ??), i.e., for every N ∈ IN∗

there exists a partition of supp(µ0) = ∪N
i=1F

N
i such that all subsets FN

i ⊂ Ω×IRd are µ0-measurable,
pairwise disjoint, satisfy µ0(F

N
i ) = 1

N and diamΩ×IRd(FN
i ) ⩽ CΩ×IRd/Nr for some CΩ×IRd > 0 and

r > 0 not depending on N , and N -tuples XN = (xN
1 , . . . , xN

N ) ∈ ΩN and ΞN
0 = (ξN0,1, . . . , ξ

N
0,N ) ∈

(IRd)N such that (xN
i , ξN0,i) ∈ FN

i for every i ∈ {1, . . . , N}. Then, for every t ∈ [0, T0),

Wp

(
ρN (t)sN :1, µ(t)

)
⩽

1

Nr/p
C

1/p

Ω×IRd diamE(supp(µ0))
1−1/p CN

µ (t)

and, for every k ∈ IN∗ such that k2 ⩽ 2N ln
(
1 + 1

2p

)
,

W [∞]
p

(
ρN (t)sN :k, µ(t)

⊗k
)
⩽ 2

(
k2

N

)1/p (
diamΩ(supp(ν)) + diamIRd(ΞN (t))

)
+

C
1/p

Ω×IRd

Nr/p
diamΩ×IRd(supp(µ0))

1−1/p CN
µ (t). (45)

When Ω is a n-dimensional manifold (thus dim(Ω× IRd) = n+ d), we have r = 1/(n+ d) < 1.

According to the estimate (??), ρN (t)sN :k converges to µ(t)⊗k in Wasserstein distance W
[∞]
p

as N → +∞, uniformly with respect to t on compact intervals of [0, T0), at rate 1/Nr/p if k ≪
N (1−r)/2 and at rate k2/p/N1/p if N (1−r)/2 ≪ k ≪ N1/2. The rate of convergence can be improved
if one uses better results for convergence of empirical measures.

Note that the assumption of a family of tagged partitions in Corollary ?? essentially entails
that µ0 be absolutely continuous with respect to a Lebesgue measure on Ω× IRd.

Particular case: the indistinguishable case. Recall that, in the indistinguishable case where
G does not depend on (x, x′), the mean field is given by (??). We have the following corollary of
Theorem ??.

Corollary 4. Assume that G does not depend on (x, x′). Let µ̄0 ∈ Pc(IR
d) and let t 7→ µ̄(t) be

the unique solution on [0, T0), with T0 = Tmax(supp(µ̄0)), of the Vlasov equation (??) (without
dependence on x) such that µ̄(0) = µ̄0 (see Corollary ??). Besides, let ρ̄N0 = δΞN

0
and let t 7→

ρ̄N (t) = δΞN (t) be the unique solution on [0, T0) of the Liouville equation (??) (without dependence

on X) such that ρ̄N (0) = ρ̄N0 . Then, for every t ∈ [0, T0),

Wp

(
ρ̄N (t)sN :1, µ̄(t)

)
⩽ CN

µ̄ (t)Wp

(
µ̄e
ΞN

0
, µ̄0

)
(46)

(and we note that ρ̄N (t)sN :1 = µe
ΞN (t)), where µ̄e

ΞN (t) = 1
N

∑N
i=1 δξNi (t) (empirical measure) and

where CN
µ̄ (t) is defined by (??) (without dependence on x, x′), and, for every k ∈ {2, . . . , N},

W [∞]
p

(
ρ̄N (t)sN :k, µ̄(t)

⊗k
)
⩽ 2

(
k2

N

)1/p

diamIRd(ΞN (t)) + CN
µ̄ (t)Wp

(
µ̄e
ΞN

0
, µ̄0

)
. (47)

Proof. Following the proof of Corollary ?? and choosing ν̄ = δx̄ for some arbitrary x̄ ∈ Ω, in
the indistinguishable case µ̄(·) is solution of the Vlasov equation (??) (without dependence on x)
if and only if µ(·) = δx̄ ⊗ µ̄(·) is solution of the Vlasov equation (??). We now define XN =
(x̄, . . . , x̄) ∈ ΩN , and we take ρN0 = δXN ⊗ δΞN

0
as initial condition for the Liouville equation in

Theorem ??, so that ρN (t) = δXN ⊗ ρ̄N (t) where ρ̄N (t) = δΞN (t). With these choices, we obviously

have ρN (t)sN :k = δ⊗k
x̄ ⊗ ρ̄N (t)sN :k, and then (??) and (??) straightforwardly follows from (??) and

(??), by applying Remark ?? in Appendix ??.
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2.4.2 Second way, with ρN0 “semi-Dirac”

Given any fixed N ∈ IN∗, let XN = (xN
1 , . . . , xN

N ) ∈ ΩN be arbitrary. We set δXN = δxN
1
⊗ · · · δxN

N

and ρN0,XN = µ0,xN
1
⊗ · · · ⊗ µ0,xN

N
. Defining ρN0 ∈ Pc(Ω

N × IRdN ) as the “semi-Dirac” measure

ρN0 = δXN ⊗ ρN0,XN , we consider the unique solution on [0, T0) of the Liouville equation (??) such

that ρN (0) = ρN0 , given by the “semi-Dirac” measure

ρN (t) = ΦN (t)∗ρ
N
0 = δXN ⊗ Φ(t,XN , ·)∗ρN0,XN = δXN ⊗ ρNt,XN .

Note indeed that the marginal θN = (π⊗N )∗ρ
N
t of ρNt = ρN (t) on ΩN is θN = δXN , and that

ρNt,XN = ΦN (t,XN , ·)∗ρN0,XN .
As a preliminary remark, we claim that, at t = 0, we have

(ρN0 )sN :1 =
1

N

N∑
i=1

δxN
i
⊗ µ0,xN

i
= (µ0)

se
XN (48)

(semi-empirical measure), which converges weakly to µ0 as N → +∞ under slight assumptions on
µ0, by Lemma ?? in Appendix ??. More generally, (ρN0 )sN :k converges weakly to µ⊗k

0 (in the proof
of the theorem hereafter, we give an explicit expression for (ρN0 )sN :k, using (??) in Appendix ??).
In the theorem below, we establish that this convergence is propagated in time.

Theorem 3. We assume that the norm ∥ · ∥ on IRd is induced by a scalar product on IRd. Let
p ∈ [1, 2] and q ∈ [1,+∞] be arbitrary.

(A) Assume that x 7→ µ0,x is ν-almost everywhere continuous for the Wasserstein distance Wp.
Then, for every k ∈ IN∗, ρN (t)sN :k converges weakly to µ(t)⊗k (equivalently, in Wasserstein

distance W
[q]
p ) as N → +∞, uniformly with respect to t on any compact interval of [0, T0).

(B) Assuming that G is locally Lipschitz with respect to (x, x′, ξ, ξ′) (uniformly with respect to t
on any compact), defining SN

µ (τ) by (??) and

Cµ(t) = 11
(
1 + 70 max

0⩽τ⩽t
diamΩ×IRd(supp(µ(t)))

)1/2
exp

(
2t max

0⩽τ⩽t
∥G(τ, ·, ·, ·, ·)|SN

µ (τ)2∥C 0,1

)
,

(49)
we have, for every N ∈ IN∗, for every k ∈ {1, . . . , N} such that k2 ⩽ 2N ln

(
3
2

)
,

W [q]
p

(
ρN (t)sN :k, µ(t)

⊗k
)

⩽ k1/qCµ(t)max

((
k2

N

)1/p

,
1

N
1
q−

1
2

, N1− 1
q

√
W1

(
(µ0)seXN , µ0

)
,Wp ((µ0)

se
XN , µ0)

)
(50)

for every t ∈ [0, T0) (for k = 1, without the first term in the above parenthesis).

Theorem ?? is proved in Appendix ??. Note that the p-Wasserstein distance at the left-hand
side of (??) is considered with p ⩽ 2, because in the proof we use in an instrumental way a variance-
type estimate, measuring the L2 discrepancy between the mean field and the particle vector field
(see Appendix ??). Besides, q ∈ [1,+∞] is arbitrary, but only the values q ∈ [1, 2) are meaningful.
The strongest estimate inferred from (??) is when q = 1, i.e., when one takes the ℓ1 distance on
Ωk × (IRd)k. This choice has no importance while k is small, but becomes important if one takes
for instance k = N1/4.

To obtain an interesting convergence result from this theorem, we apply the second item

of Lemma ?? of Appendix ??, which yields W1((µ0)
se
XN , µ0) ⩽ (L+1)CΩ

Nr and Wp((µ0)
se
XN , µ0) ⩽

diamΩ×IRd(supp(µ0))
1−1/p((L+ 1)CΩ/N

r)1/p under a regularity assumption on µ0.
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Corollary 5. In the context of Item ?? of Theorem ??, we assume moreover that, for every
N ∈ IN∗, there exists a tagged partition (AN , XN ) of Ω associated with ν satisfying (??) (see
Section ??), and that x 7→ µ0,x is Lipschitz for the Wasserstein distance W1, i.e., that there exists
L > 0 such that W1(µ0,x, µ0,y) ⩽ LdΩ(x, y) for ν-almost all x, y ∈ Ω. Then

W [q]
p

(
ρN (t)sN :k, µ(t)

⊗k
)
⩽ k1/q(L+ 1)CΩCµ(t)max

((
k2

N

)1/p

,
1

N
1
q−

1
2

,
1

N
r
2+

1
q−1

,
1

Nr/p

)
(51)

for every t ∈ [0, T0).

When Ω is a n-dimensional manifold, we have r = 1/n, hence, if we take q = 1 and p = 1, the
rate of convergence provided by (??) is k

N1/2n .
Note that the assumption of a family of tagged partitions in Corollary ?? essentially entails

that ν be absolutely continuous with respect to a Lebesgue measure on Ω.

Particular case: the indistinguishable case. We have the following corollary of Theorem ??
(still assuming that the norm ∥ · ∥ on IRd is induced by a scalar product on IRd, that p ∈ [1, 2] and
that q ∈ [1,+∞]).

Corollary 6. Assume that G does not depend on (x, x′). Let µ̄0 ∈ Pc(IR
d) and let t 7→ µ̄(t)

be the unique solution on [0, T0), with T0 = Tmax(supp(µ̄0)), of the Vlasov equation (??) (with-
out dependence on x) such that µ̄(0) = µ̄0 (see Corollary ??). Besides, let ρ̄N0 = µ̄⊗N

0 and let
t 7→ ρ̄N (t) = Φ(t, ·)∗ρ̄N0 be the unique solution on [0, T0) of the Liouville equation (??) (without
dependence on X) such that ρ̄N (0) = ρ̄N0 . Then, for every N ∈ IN∗, for every k ∈ {1, . . . , N}, we
have

W [q]
p

(
ρ̄N (t)sN :k, µ̄(t)

⊗k
)
⩽ k1/qCµ̄(t)max

((
k2

N

)1/p

,
1

N
1
q−

1
2

)
for every t ∈ [0, T0), where Cµ̄(t) is defined as in (??) (without dependence on x).

Proof. The proof is the same as the one of Corollary ??: we take ν̄ = δx̄ for an arbitrary x̄ ∈ Ω.
Then (µ0)

se
XN = δx̄ ⊗ µ̄0 and thus W1((µ0)

se
XN , µ0) = Wp((µ0)

se
XN , µ0) = 0.

Remark 4. Applying Corollary ?? to the kinetic plus potential Hamiltonian case where we have
G(t, (qi, pi), (qj , pj)) =

(
pi,∇V (qi − qj)

)
, we recover [?, Theorem 3.1]. The corollary can also be

applied to more general Hamiltonian systems, for example, G(t, (qi, pi), (qj , pj)) = (pi,−∇(V (qi −
qj) + (pi − A(qi))

2)), where a magnetic field associated to a vector potential A : IRd → IRd; or
to Cucker–Smale systems, for which G(t, (qi, pi), (qj , pj)) =

(
pi, F (|qi − qj |)(pi − pj)

)
, and gener-

alizations introduced in [?].

3 From mesoscopic to macroscopic scale
(“from Vlasov to Euler”, hydrodynamic limit)

Given any µ ∈ P(Ω × IRd), disintegrated as µ =
∫
Ω
µx dν(x), the three macroscopic quantities

that are usually considered in the hydrodynamic limit procedure are the three first moments of the
measure µ with respect to ξ (see, e.g., [?]), leading to define, for ν-almost every x ∈ Ω:

� the total mass ρ(x) ⩾ 0 of µx by

ρ(x) =

∫
IRd

dµx(ξ) = µx(IR
d),

(moment of order 0) which is here assumed to be equal to 1 for ν-almost every x ∈ Ω;
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� the “speed” y(x) ∈ IRd by

ρ(x)y(x) =

∫
IRd

ξ dµx(ξ),

(moment of order 1) which is also the expectation of any random law of probability distri-
bution µx;

� and the “temperature” T (x) ⩾ 0 by

dρ(x)T (x) =

∫
IRd

∥ξ − y(x)∥2 dµx(ξ)

(moment of order 2) which is a variance, or equivalently, if ∥ · ∥ is the Euclidean norm, by

1

2
ρ(x)∥y(x)∥2 + d

2
ρ(x)T (x) =

1

2

∫
IRd

∥ξ∥2 dµx(ξ).

Let t 7→ µ(t) be a fixed locally Lipschitz solution of the Vlasov equation (??) (recall that the
mean field X [µ] is defined by (??)). According to Remark ??, its marginal ν(t) = ν on Ω does not
depend on t. Following the hydrodynamic limit procedure recalled above (see also, e,g. [?, ?, ?]),
for every t ∈ IR and for ν-almost every x ∈ Ω, we define the three first moments ρ(t, x), y(t, x) and
T (t, x) of µ(t). The moment ρ(t, x) of order 0 does not depend on t and is equal to 1 for ν-almost
every x ∈ Ω and 0 otherwise. Let us study the moments of order one and two.

3.1 Moment of order 1: Euler equation

Given any solution t 7→ µ(t) of the Vlasov equation (??) on [0, T ) (for some T > 0), of marginal ν
on Ω, using the disintegration of µ with respect to ν we define

y(t, x) =

∫
IRd

ξ dµt,x(ξ) (52)

for ν-almost every x ∈ Ω, and y(t, x) = 0 for every x ∈ Ω \ supp(ν), for every t ∈ [0, T ). Using
(??) (or, rather, (??)), we have

∂ty(t, x) = ⟨∂tµt,x, ξ 7→ ξ⟩ =
〈
µt,x, LX [µt](t,x,·)(ξ 7→ ξ)

〉
=

∫
IRd

X [µt](t, x, ξ) dµt,x(ξ)

which is a kind of “mean” mean field, since the mean field is now averaged under µt,x. Hence

∂ty(t, x) =

∫
IRd

∫
Ω×IRd

G(t, x, x′, ξ, ξ′) dµt(x
′, ξ′) dµt,x(ξ). (53)

It is remarkable that, for some classes of functions G, we obtain a “closed” equation in y:

3.1.1 Hegselmann–Krause model: linear Euler equation

Proposition 3. In the Hegselmann–Krause (opinion propagation) model given in Example ??, we
have G(t, x, x′, ξ, ξ′) = σ(x, x′)(ξ′ − ξ) and

∂ty(t, x) = (Ay(t)) (x) (54)

(Euler equation), where A is the bounded operator on L2
ν(Ω, IR

d) defined by

(Ay)(x) =

∫
Ω

σ(x, x′)(y(x′)− y(x)) dν(x′) ∀y ∈ L2
ν(Ω, IR

d) (55)

and ν is the marginal of µ(t) on Ω (not depending on t).
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Proof. Using the disintegration of the measure, we infer from (??) that

∂ty(t, x) =

∫
IRd

dµt,x(ξ)︸ ︷︷ ︸
=1

∫
Ω

σ(x, x′)

∫
IRd

ξ′ dµt,x′(ξ′)︸ ︷︷ ︸
=y(t,x′)

dν(x′)

−
∫
IRd

ξ dµt,x(ξ)︸ ︷︷ ︸
=y(t,x)

∫
Ω

σ(x, x′)

∫
IRd

dµt,x′(ξ′)︸ ︷︷ ︸
=1

dν(x′)

and the result follows.

Remark 5. If µ(0) = 1
N

∑N
i=1 δxN

i
⊗ δξNi (0) = µe

(XN ,ΞN
0 )

as in Proposition ??, then µ(t) =

µe
(XN ,ΞN (t)) whose marginal on Ω is ν = νeXN = 1

N

∑N
i=1 δxN

i
and whose disintegration with respect

to ν is µt,x = δξNi (t) if x = xN
i for i ∈ {1, . . . , N} and 0 otherwise. In this case, in the context of

Proposition ??, we have then y(t, x) = ξNi (t) if x = xN
i for i ∈ {1, . . . , N} and 0 otherwise, and

the differential equation (??) exactly coincides with the particle system (??).

3.1.2 Open issue: how to obtain a closed equation?

In Section ??, in the Hegselmann-Krause model the operator A is linear. More generally, the proof
of Proposition ?? shows that, when G is linear with respect to (ξ, ξ′), we obtain for y(t, x) a linear
Euler equation: we obtain directly a “closed” equation.

This simple argument does not seem to work as soon as G is nonlinear with respect to (ξ, ξ′). An
open question is to characterize the functions G so that, for any solution µ of (??), the function y
defined by (??) satisfies an “Euler equation”, possibly nonlinear, ∂ty(t, ·) = A(y(t, ·)). We face here
with the classical problem in kinetic theory of considering the three first moments of a solution µ
of the Vlasov equation, and searching how to close the moment system since a priori the equations
depend on higher-order moments. Suitable closure assumptions are not known so far, in general
(see [?] for interesting comments, see also Section ?? further). This is why it is usual to consider
a monokinetic ansatz for µ, as explained in the following section.

3.1.3 The ν-monokinetic case: general nonlinear Euler equation

In this section, we assume that Ω is compact. Let us consider specific solutions µ of the Vlasov
equation (??), that are ν-monokinetic, meaning that µ is delta-valued in the ξ variable and has
the marginal ν on Ω. Given any ν ∈ P(Ω) and any measurable function y : Ω → IRd, we define the
ν-monokinetic measure µν

y on Ω× IRd by

µν
y = ν ⊗ δy(·). (56)

We have y(x) =
∫
Ω
ξ d(µν

y)x(ξ) for ν-almost every x ∈ Ω (as in (??)), where the disintegration of
µν
y with respect to its marginal ν on Ω is given by the family of conditional measures defined by

(µν
y)x = δy(x).

Proposition 4. Recall that Ω is assumed to be compact. Let ν ∈ P(Ω). Let T > 0 and let
t 7→ y(t, ·) ∈ L∞

ν (Ω, IRd) be a locally Lipschitz mapping on [0, T ].
The mapping t 7→ µ(t) = µν

y(t,·) ∈ Pc(Ω × IRd), of marginal ν on Ω, is a (ν-monokinetic)

solution on [0, T ] of the Vlasov equation (??) with the general mean field (??) if and only if the
mapping t 7→ y(t, ·) ∈ L∞

ν (Ω, IRd) is a solution on [0, T ] of the (nonlinear) Euler equation

∂ty(t, ·) = A(t, y(t, ·)) (57)
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where A : IR× L∞
ν (Ω, IRd) → L∞

ν (Ω, IRd) is the nonlinear operator (depending on ν) defined by

A(t, y)(x) =

∫
Ω

G(t, x, x′, y(x), y(x′)) dν(x′) (58)

(recall that G satisfies Assumption ??) for every t ∈ IR and for every y ∈ L∞
ν (Ω, IRd).

Proof. When µt = µν
y(t,·), (??) gives X [µt](t, x, ξ) =

∫
Ω
G(t, x, x′, ξ, y(t, x′)) dν(x′). The proof is

then straightforward, and we can note that A(t, y)(x) = X [µν
y ](t, x, y(x)).

Remark 6. In turn, Proposition ?? gives the following result. Assume that Ω is compact. Let
ν ∈ P(Ω) and let y0 ∈ L∞

ν (Ω, IRd). We denote by K ′ = ess.im(y0) its essential range (it is a
compact subset of IRd) and we set K = Ω×K ′ (compact). Since the unique solution of the Vlasov
equation (??) such that µ(0) = µν

y0 = ν ⊗ δy0(·) is well defined on [0, Tmax(K)) (by Theorem ??)

and is given by µ(t) = µν
y(t,·) (by Proposition ??), it follows that the nonlinear Euler equation (??)

has a unique solution on [0, Tmax(K)) such that y(0, ·) = y0(·).

Remark 7. When Ω is not compact, the above results remain true provided that there exists a
compact subset Ω1 of Ω such that G(t, x, x′, ξ, ξ′) = 0 for every x ∈ Ω \ Ω1 and all (t, x′, ξ, ξ′) ∈
IR × Ω × IRd × IRd, and the initial condition y0 for the Euler equation satisfies y0(x) = 0 for
ν-almost every x ∈ Ω \ Ω1. Indeed, in this case the solution of the Euler equation is supported in
Ω1. Alternatively, we can also assume that supp(ν) ⊂ Ω1.

When µt is not of the form µν
y(t,·), t 7→ y(t, ·) fails in general to satisfy a “closed” equation (i.e.,

∂ty(t, ·) may not be expressible only in function of y(t, ·)). Instead, there may be a full hierarchy
of equations coupling all the moments of µt,x (see Section ??). Anyway, when convergence to
consensus holds, we expect that any solution µ of (??) is asymptotically of the form µν

y(t,·).

Relationship between the particle system (??) and the Euler equation (??). If the
mapping t 7→ ΞN (t) = (ξN1 (t), . . . , ξNN (t)) is a locally Lipschitz solution of the particle system (??),
then the mapping t 7→ y(t, ·), where y(t, x) is defined as the moment of order 1 (i.e., by (??)) of

the empirical measure µe
(XN ,ΞN (t)) (whose marginal is νeXN = 1

N

∑N
i=1 δxN

i
), is a locally Lipschitz

solution of the Euler equation (??) where the operator A is defined by (??) with the measure
νeXN . Note that, in this embedding from (??) into (??), we have y(t, x) = ξNi (t) if x = xN

i for
i ∈ {1, . . . , N} and 0 otherwise, and ν is purely atomic.

Conversely, if ν = νeXN = 1
N

∑N
i=1 δxN

i
and if the mapping t 7→ y(t) is a locally Lipschitz

solution of the Euler equation (??), then the mapping t 7→ ΞN (t) = (ξN1 (t), . . . , ξNN (t)), with
ξNi (t) = y(t, xN

i ) for i ∈ {1, . . . , N}, is a locally Lipschitz solution of the particle system (??). Note
that, however, we may have y(t, x) ̸= 0 for x /∈ {xN

1 , . . . , xN
N}. This is a kind of projection.

This general equivalence works because, when ν = νeXN = 1
N

∑N
i=1 δxN

i
and y(t, xN

i ) = ξNi (t),
the ν-monokinetic measure µν

y(t,·) coincides with the empirical measure µe
(XN ,ΞN (t)). Indeed,

µν
y(t,·) =

1

N

N∑
i=1

δxN
i
⊗ δy(t,·) =

1

N

N∑
i=1

δxN
i
⊗ δy(t,xN

i ) =
1

N

N∑
i=1

δxN
i
⊗ δξNi (t) = µe

(XN ,ΞN (t)).

3.2 Moment of order 2

In this section, we assume that ∥ · ∥ is the Euclidean norm. We define

T (t, x) =
1

d

∫
IRd

∥ξ − y(t, x)∥2 dµt,x(ξ)
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for ν-almost every x ∈ Ω. Note that T (t, x) = 0 for ν-almost every x ∈ Ω \ supp(ν). Using (??)
(or, rather, (??)) and noting that

∫
IRd⟨ξ − y(t, x), ∂ty(t, x)⟩IRd dµt,x(ξ) = 0, we compute

∂tT (t, x) =
2

d

∫
IRd

⟨ξ − y(t, x),X [µt](t, x, ξ)⟩IRd dµt,x(ξ). (59)

Proposition 5. In the Hegselmann–Krause model given in Example ??, we have G(t, x, x′, ξ, ξ′) =
σ(x, x′)(ξ′ − ξ) and

∂tT (t, x) = −2S(x)T (t, x)

where S(x) =
∫
Ω
σ(x, x′) dν(x′) for ν-almost every x ∈ Ω. Hence t 7→ T (t, x) = T (0, x)e−2tS(x)

decreases exponentially to 0 as t → +∞ for ν-almost every x ∈ Ω such that S(x) > 0.

Proof. We have X [µt](t, x, ξ) =
∫
Ω

∫
IRd σ(x, x′)(ξ′ − ξ) dµt,x′(ξ′) dν(x′) in the Hegselmann–Krause

model (see Example ??), and thus

X [µt](t, x, ξ) = −S(x)

∫
IRd

(ξ − y(t, x)) dµt,x′(ξ′) +

∫
Ω

∫
IRd

σ(x, x′)(ξ′ − y(t, x)) dµt,x′(ξ′) dν(x′).

Since the second term does not depend on ξ, using again the fact that
∫
IRd(ξ− y(t, x)) dµt,x(ξ) = 0

by definition, and using (??), the result follows.

Remark 8. We will see in Remark ?? in Section ?? that, in the Hegselmann–Krause model, all
moments of order ⩾ 2 satisfy the same differential equation, and thus, decrease exponentially to
0 as t → +∞ as soon as S(x) > 0 for ν-almost every x ∈ Ω. This shows that, under the latter
assumption, the solution t 7→ µ(t) of the Vlasov equation (??) is such that µt,x is exponentially
close (in Wasserstein distance) to the Dirac measure δy(t,x) as t → +∞.

In [?], convergence to consensus is proved for the Euler equation under the assumptions that
dν(x) = dx, that S(x) ⩾ δ > 0 for almost every x ∈ Ω and that the (infinite-dimensional) graph
associated with σ be strongly connected. This remark shows that the result of [?] may be slightly
generalized by relaxing the assumption on S to the assumption that S(x) > 0 for ν-almost every
x ∈ Ω.

For general functions G, the question to know whether T is the solution of some “closed”
equation is open.

In the ν-monokinetic case, i.e., assuming that µ is of the form (??) and is a locally Lipschitz
solution of (??), we have T (t, x) = 0. This is expected since T (t, x) is the variance and thus
measures the distance to the average y(t, x).

3.3 Generalization: coupled equations of moments

More generally, assuming d = 1 to simplify, let us set, formally,

G(t, x, x′, ξ, ξ′) = G(t, x, x′, y(t, x), y(t, x′)) +
∑

i+j⩾1

gij(t, x, x
′)(ξ − y(t, x))i(ξ′ − y(t, x′))j

where y(t, x) =
∫
IR
ξ dµt,x(ξ) is the moment of order 1 of µt,x (recall that the moment of order 0 is

y0(t, x) =
∫
IR
dµt,x(ξ) = 1). Defining the central moment of order i by

yi(t, x) =

∫
IR

(ξ − y(t, x))i dµt,x(ξ) ∀i ∈ IN
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(note that y0(t, x) = 1 and y1(t, x) = 0), we have

X [µt](t, x, ξ) =

∫
Ω×IR

G(t, x, x′, ξ, ξ′) dµt(x
′, ξ′)

=

∫
Ω

G(t, x, x′, y(t, x), y(t, x′)) dν(x′)

+
∑

i+j⩾1

(ξ − y(t, x))i
∫
Ω

gij(t, x, x
′)yj(t, x

′) dν(x′)

and thus, using (??),

X [µt](x, ξ) = (A(t, y(t)))(x) +
∑

i+j⩾1

(ξ − y(t, x))i
∫
Ω

gij(t, x, x
′)yj(t, x

′) dν(x′)

It is interesting to see that, in the above formal expansion of X [µt](x, ξ) using the centered mo-
ments, the first term is (A(t, y(t)))(x).

Therefore, we have

∂ty(t, x) =

∫
IR

X [µt](x, ξ) dµt,x(ξ)

= (A(t, y(t)))(x) +
∑

i+j⩾1

(∫
Ω

gij(t, x, x
′)yj(t, x

′) dν(x′)

)
yi(t, x)

(actually since y1 = 0 the above sum can be taken over all pairs (i, j) such that i+ j ⩾ 2) and, for
every k ∈ IN \ {0, 1},

∂tyk(t, x) = ⟨µt,x, LX [µt].(ξ 7→ (ξ − y(t, x))k)⟩ − ⟨µt,x, k(ξ − y(t, x))k−1∂ty(t, x)⟩

= k

∫
IR

(ξ − y(t, x))k−1 (X [µt](x, ξ)− ∂ty(t, x)) dµt,x(ξ)

= k

∫
IR

(ξ − y(t, x))k−1

(
X [µt](x, ξ)−

∫
IR

X [µt](x, ξ
′) dµt,x(ξ

′)

)
dµt,x(ξ)

= k
∑

i+j⩾1

(∫
Ω

gij(t, x, x
′)yj(t, x

′) dν(x′)

)∫
IR

(ξ − y(t, x))k−1
(
(ξ − y(t, x))i − yi(t, x)

)
dµt,x(ξ)

= k
∑

i+j⩾1

(∫
Ω

gij(t, x, x
′)yj(t, x

′) dν(x′)

)(
yk−1+i(t, x)− yk−1(t, x)yi(t, x)

)
(actually since y1 = 0 the pair (i = 0, j = 1) does not occur in the above sum). In full generality,
all equations of moments are coupled and we have no closed system.

Closing the hierarchy of equations satisfied by all the moments yi(t, x), for i ∈ IN∗, might be
done by adding a small parameter ε. This is an open question.

Remark 9. In the Hegselmann–Krause model given in Example ??, we have G(t, x, x′, ξ, ξ′) =
σ(x, x′)(ξ′ − ξ) and thus gij = 0 if i + j ⩾ 2 and g01 = −g10 = σ. We recover the facts that
the equation in y is closed and that ∂ty2(t, x) = −2S(x)y2(t, x). Moreover, a straightforward
computation shows that

1

k
∂tyk(t, x) = −S(x)yk(t, x) ∀k ∈ IN \ {0, 1},

thus generalizing the case k = 2 studied in Proposition ??. Therefore, yk(t, x) = yk(0, x)e
−tS(x).
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4 From microscopic to macroscopic scale
(“from particle to Euler”, graph limit)

We have seen in the previous section that the passage from micro to macro is very general and
that, instead of considering Riemann sums, one can observe that it results from the coincidence of
the empirical measure with the ν-monokinetic measure.

Anyway, in this section we are going to explore the point of view of Riemann sums, in order to
derive error estimates mainly resulting from the discrepancy between an integral and a Riemann
sum, building on the concept of graph limit introduced in [?].

For second-order systems like the celebrated Cucker–Smale system, the authors of [?] considered
the three scales (micro, meso and macroscopic). Recently, in [?], the authors provide a rigorous
derivation from the kinetic Cucker-Smale model to the macroscopic pressureless Euler system by
hydrodynamic limit, using entropy methods and deriving error estimates.

By combining the various possibilities to derive the macroscopic quantities, we show how to
obtain explicit error estimates for the direct derivation of the graph limit (i.e., the macroscopic
model) from the microscopic model by first taking the mean field limit and obtaining the (kinetic)
Vlasov equation, and then by taking the hydrodynamic limit. The price to pay is that we obtain
estimates in weak topology (Wasserstein distance) instead of estimates in L2 or L∞ norm as
provided by the graph limit methods, but the gain is to have an explicit O(1/N) rate of convergence.

We have seen in Section ?? that it is not always possible to pass from the mesoscopic to the
macroscopic scale, because the equation obtained for the moment of order 1 may not be closed.
However, we have seen in Proposition ?? that, for the Hegselmann–Krause model, the equation in
y is closed and is linear.

4.1 Convergence estimates for the graph limit

Throughout this section, we assume that Ω is compact. Let ν ∈ P(Ω). We consider the general
nonlinear Euler equation (??), with the nonlinear operator A defined by (??). Recall that G
satisfies Assumption ??.

We also assume that there exists a family (AN , XN )N∈IN∗ of tagged partitions associated with
ν satisfying (??) (see Section ??), with AN = (ΩN

1 , . . . ,ΩN
N ) and XN = (xN

1 , . . . , xN
N ). We have

the following two theorems.

Theorem 4. Let y0 be a bounded and ν-almost everywhere continuous function on Ω (thus, ν-
Riemann integrable), with values in IRd.
On the one part, we consider the unique solution t 7→ y(t, ·) ∈ L∞(Ω, IRd) on [0, Tmax(K)) of the
(nonlinear) Euler equation (??) such that y(0, ·) = y0(·), where K = Ω× ess.im(y0) (compact) and
ess.im(y0) ⊂ IRd is the essential range of y0.
On the other, for any N ∈ IN∗, we consider the unique solution t 7→ ΞN (t) = (ξN1 (t), . . . , ξNN (t)) ∈
IRdN on [0, Tmax(K)) of the particle system (??) such that ξNi (0) = y0(xN

i ) for every i ∈ {1, . . . , N},
and we set

yN (t, x) =

N∑
i=1

ξNi (t)1ΩN
i
(x) ∀(t, x) ∈ IR× Ω (60)

where 1ΩN
i

is the characteristic function of ΩN
i , defined by 1ΩN

i
(x) = 1 if x ∈ ΩN

i and 0 otherwise.

� For every t ∈ [0, Tmax(K)), y(t, ·) is bounded and continuous ν-almost everywhere on Ω, with
the same continuity set as y0, and

∥y(t, ·)− yN (t, ·)∥L∞(Ω,IRd) = o(1) (61)
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as N → +∞, where the remainder term o(1) is uniform with respect to t on any compact interval
of [0, Tmax(K)). In particular,

max
i∈{1,...,N}

∥y(t, xN
i )− ξNi (t)∥ = o(1). (62)

� Assume that there exists α ∈ (0, 1] such that y0 ∈ C 0,α(Ω, IRd) and G is locally α-Hölder contin-
uous with respect to (x, x′, ξ, ξ′) (uniformly with respect to t on any compact). Then, for every
t ∈ [0, Tmax(K)), we have y(t, ·) ∈ C 0,α(Ω, IRd) with

Holα(y(t, ·)) ⩽ etLy(t) (1 + Holα(y(0, ·))) (63)

and, for every N ∈ IN∗,

max
i∈{1,...,N}

∥y(t, xN
i )− ξNi (t)∥ ⩽

Cα
Ω

Nrα

(
1 + Holα(y

0)
)
e2tL

N
y (t) (64)

and actually,

∥y(t, ·)− yN (t, ·)∥L∞(Ω,IRd) ⩽ 2
Cα

Ω

Nrα

(
1 + Holα(y

0)
)
e2tL

N
y (t) (65)

where CΩ is given by (??). The constant LN
y (t) in (??) and (??) is defined by

LN
y (t) = max

0⩽τ⩽t
Holα(G(τ, ·, ·, ·, ·)|Ω2×SN

y (τ)2) + max
x,x′∈Ω
0⩽τ⩽t

Lip(G(τ, x, x′, ·, ·)|SN
y (τ)2) (66)

where SN
y (τ) ⊂ IRd is the (compact) convex closure of all y(τ, x) for x ∈ Ω and all ξNi (τ) for

i ∈ {1, . . . , N}. The constant Ly(t) in (??) is defined as LN
y (t) but with SN

y (τ) replaced by Sy(τ)

that is the convex closure of all y(τ, x) for x ∈ Ω, i.e., like SN
y (τ) but without the ξNi (τ). We have

Ly(t) ⩽ LN
y (t).

Theorem ?? is proved in Appendix ??. Note that, by Lemma ??, given any T ∈ [0, Tmax(K)),
the sets SN

y (t) and thus the scalars LN
y (t) are uniformly bounded with respect to t ∈ [0, T ] and to

N ∈ IN∗.

Remark 10. Theorem ?? can be extended to the case where Ω is not compact, under the following
additional assumptions:

� the family of tagged partitions is such that the points xN
i remain in a compact subset of Ω;

� the initial condition y0 is of compact essential support;

� the set SN
y (τ) ⊂ Ω × IRd is defined as the compact closure of all (x, y(τ, x)) for x ∈

ess supp(y(τ, ·)) (essential support) and all (xN
i , ξNi (τ)) for i ∈ {1, . . . , N}.

The above assumptions imply that y(t, ·) is of compact essential support, for every t ⩾ 0, and that
LN
y (t) is well defined.

Theorem 5. Let K ′ be a compact subset of IRd. Given any N ∈ IN∗, let ΞN
0 ∈ (K ′)N . We set

K = Ω×K ′.
On the one part, we consider the unique solution t 7→ ΞN (t) = (ξN1 (t), . . . , ξNN (t)) ∈ IRdN on

[0, Tmax(K)) of the particle system (??) such that ΞN (0) = ΞN
0 , and we define yN (t, x) by (??).
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On the other part, we consider the unique solution t 7→ yN (t, ·) ∈ L∞(Ω, IRd) on [0, Tmax(K))
of the Euler equation (??) such that yN (0, ·) = yN (0, ·) (i.e., yN (0, x) = ξNi (0) if x ∈ ΩN

i ). Then,
for every t ∈ [0, Tmax(K)),

∥yN (t, ·)− yN (t, ·)∥L∞(Ω,IRd) = o(1) (67)

as N → +∞, where the remainder term o(1) is uniform with respect to t on any compact interval of
[0, Tmax(K)). If moreover G is locally α-Hölder continuous with respect to (x, x′, ξ, ξ′) (uniformly
with respect to t on any compact), then, for every N ∈ IN∗ and every t ∈ [0, Tmax(K)),

∥yN (t, ·)− yN (t, ·)∥L∞(Ω,IRd) ⩽ 2
Cα

Ω

Nrα
e2tL

N
yN

(t) ∀t ⩾ 0, (68)

where LN
yN

(t) is defined by (??) (with y replaced by yN ).

Theorem ?? is proved in Appendix ??. Note that, by Lemma ??, given any T ∈ [0, Tmax(K)),
the scalars LN

yN
(t) are uniformly bounded with respect to t ∈ [0, T ] and to N ∈ IN∗.

Note that, in particular, taking x = xi in (??), we have

max
i∈{1,...,N}

∥yN (t, xN
i )− ξNi (t)∥ ⩽ 2

Cα
Ω

Nrα
e2tL

N
yN

(t),

which improves the estimates obtained in [?].

Remark 11. In Appendix ??, we provide estimates on the discrepancy between empirical measures
and ν-monokinetic measures. Lemma ?? of that appendix, combined with Theorem ?? and with the
proof of that proposition, yields estimates on the discrepancy of the empirical measure µe

(XN ,ΞN (t))

with respect to the ν-monokinetic measures µν
y(t,·) or µ

ν
yN (t,·).

Remark 12. The proofs of Theorems ?? and ?? that we provide in Appendices ?? and ?? are
direct, but actually one can also prove these propositions by applying Corollary ?? with µ(t) =
µν
y(t,·) = ν ⊗ δy(t,·) (the ν-monokinetic measure) and use Lemma ?? of Appendix ??.

4.2 Additional remarks: from Liouville to Euler

In Section ?? we considered the direct passage from the particle system (??) to the Euler (graph
limit) equation (??) through the system of ODEs defining the particle dynamics and in the previous
Sections ?? and ?? we also reached the same Euler equation via the Vlasov equation in the pure
mean field paradigm.

The Liouville equation (??) being the transport equation lifting the particle system (??), a
natural question is to wonder whether there exists a direct way to pass from Liouville to Euler.
Our objective in this section is to provide a quantity cooked up out of the solution ρ(·) of the
Liouville equation (??), converging to the solution of the Euler equation as N → +∞. The
question may fill a gap in the general micro-meso-macroscopic landscapes.

Let us explain how this can be done. Considering a system of N particles, each of them
living in a phase space Ω × IRd, the meaning of the solution ρ(t) ∈ P(Ω × IRd) of the Liouville
equation (??) is the following, when it has a density with respect to the Lebesgue measure: for any
X = (x1, . . . , xN ) ∈ ΩN and any Ξ = (ξ1, . . . , ξN ) ∈ IRdN , ρ(X,Ξ) is the joint probability that, for
every i ∈ {1, . . . , N}, the ith particle has position and momentum (xi, ξi). In Section ?? we have
shown that, for appropriate initial conditions ρ(0), we recover the mean field limit by taking the
limit N → +∞ of the average over all particles but one and then by taking marginals.

The Liouville paradigm enlarges the moment setting to a probabilistic one: every agent has a
moment, but it hesitates randomly between several values that can be assigned to it. Of course the
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monokinetic case through the Vlasov equation exhausts this random feature by assigning a single
moment. But it is quite remarkable, and one has to say still mysterious for us, that, for the opinion
propagation model outside monokineticity, the marginal of the full density, namely a probability
“average over all particles but one” leads through, and after the large N limit, its first moment to
the same limit as the fundamentally different “discrete to continuous” passage emblematic to the
graph limit.

It is therefore interesting to remove this “after the large N limit” and pass directly from
Liouville to Euler and answer the aforementioned question: what is the solution to the graph limit
equation the large N limit of? Hereafter, we describe a way to pass directly from the Liouville
equation (??) to the Euler equation (??), without having to consider the Vlasov equation. Given
any ρ ∈ P(ΩN × IRdN ), we define the probability measure M1[ρ] ∈ P(Ω) by∫

Ω

f d(M1[ρ]) =

∫
Ω×IRd

f(x)ξ dρsN :1(x, ξ)

for every f ∈ C 0
c (Ω).

Lemma 2. As in Theorem ??, let y0 be a bounded and ν-almost everywhere continuous function
on Ω, with values in IRd, and let t 7→ y(t, ·) ∈ L∞(Ω, IRd) be the unique solution on [0, Tmax(K))
of the (nonlinear) Euler equation (??) such that y(0, ·) = y0(·), where K = Ω× ess.im(y0).

Besides, for any N ∈ IN∗, let ΞN
0 = (ξN0,1, . . . , ξ

N
0,N ) ∈ (IRd)N be such that ξN0,i = y0(xN

i ) for
every i ∈ {1, . . . , N}.

As in Theorem ??, we set ρN0 = δXN ⊗ δΞN
0

and we consider the unique solution t 7→ ρN (t) =

δXN ⊗ δΞN (t) of the Liouville equation (??) on [0, Tmax(K)) such that ρN (0) = ρN0 .

Then M1[ρ
N (t)] converges weakly to y(t, ·) ν as N → +∞, uniformly with respect to t on com-

pact intervals, with convergence estimates in Wasserstein distance W1 under additional regularity
assumptions on G as in Theorem ??.

Proof. In Theorem ??, we have proved that ρN (t)sN :1 is asymptotically (weakly) close to µ(t) as
N → +∞. Since µ(t) =

∫
Ω
µt,x dν(x) and y(t, x) =

∫
Ω
ξ dµt,x(ξ), the lemma follows.

5 Summary: relationships between various scales

In the previous sections, we have investigated the following three scales (recall that G satisfies
Assumption ??):

� The microscopic model, which is the particle system

ξ̇Ni (t) =
1

N

N∑
j=1

G(t, xN
i , xN

j , ξNi (t), ξNj (t)), i = 1, . . . , N. (69)

When extending this system by setting ẋN
i (t) = 0, in some sense we perform an extension of

the particle system to the phase space.

� The mesoscopic model, which is the (kinetic) Vlasov equation

∂tµ+ divξ(X [µ]µ) = 0 (70)

where X [µ](t, x, ξ) =
∫
Ω×IRd G(t, x, x′, ξ, ξ′) dµ(x′, ξ′) for all (t, x, ξ) ∈ IR× Ω× IRd, obtained

by mean field limit.
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� the macroscopic model, which is the Euler equation

∂ty(t, x) = (A(t, y(t)))(x) =

∫
Ω

G(t, x, x′, y(t, x), y(t, x′)) dν(x′) (71)

where ν ∈ P(Ω), obtained by graph limit.

Additionally, we have also considered the Liouville equation, having a probabilistic interpretation,

∂tρ
N + divΞ(Y

NρN ) = 0 (72)

where Y N is the vector field in IRdN representing the system of all particles.

Figure ?? illustrates the various relationships that we have investigated in the paper, and that
we comment hereafter.

particle system

Liouville

embedding

first−order moment

embedding

(opinion model or

and mean field limit

empirical embedding

appropriate moment

∂tρ + divΞ(Y ρ) = 0

ρ(t)sN :n ⇀ µ(t)⊗n

N → +∞

graph limit N → +∞
ξi(0) = y(0, xi)

(ẋi = 0)

ξ̇i =
1

N

N∑
i=1

G(t, xi, xj, ξi, ξj)

ν = 1
N

∑N
i=1 δxi

y(t, xi) = ξi(t)

Vlasov

∂tµ + divξ(X [µ]µ) = 0

Euler

∂ty = A(y)

y(t, x) =
∫
IRd ξ dµt,x(ξ)Dirac

embedding

ρ(t) = δX ⊗ δΞ(t)

specific ρ(0)

N → +∞
ν-monokinetic

ν-monokinetic case)

µ(t) = ν ⊗ δy(t,x)

µ(t) = 1
N

∑N
i=1 δxi ⊗ δξi(t)

specific ρ(0)

Figure 1: Relationships between particle (microscopic) system, Liouville (probabilistic) equation,
Vlasov (mesoscopic, mean field) equation, Euler (macroscopic, graph limit) equation. We do not
write the upperscript N in the various formulas to keep a better readability.

Particle to Liouville. Any solution ΞN (·) of the particle system (??) can be embedded as a
Dirac measure ρN (·) = δXN ⊗ δΞN (·) that is a solution of the Liouville equation (??).
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Particle to Vlasov. By Proposition ??, any solution ΞN (·) of the particle system (??) can be

embedded to an empirical measure µ(·) = µe
(XN ,ΞN (·)) = 1

N

∑N
i=1 δxN

i
⊗ δξNi (·) that is a solution

of the Vlasov equation (??). Conversely if an empirical measure µ(·) = µe
(XN ,ΞN (·)) (with distinct

points) is a solution of the Vlasov equation (??) then ΞN (·) must be a solution of (??).
In this context, the mean field limit consists of taking the limit N → +∞.

Particle to Euler. Any solution ΞN (·) of the particle system (??) can be embedded to a solution

of the general nonlinear Euler equation (??) by setting ν = νeXN = 1
N

∑N
i=1 δxN

i
, y(t, x) = ξNi (t)

if x = xN
i for some i ∈ {1, . . . , N} and 0 otherwise. Conversely, if ν = νeXN = 1

N

∑N
i=1 δxN

i
and if

t 7→ y(t, ·) is a locally Lipschitz solution of the Euler equation (??), then ΞN (·) = (ξN1 (·), . . . , ξNN (·),
with ξNi (·) = y(·, xN

i ) for every i ∈ {1, . . . , N}, is a locally Lipschitz solution of the particle system
(??). Note however that y(t, x) may not be zero for x ∈ Ω \ {xN

1 , . . . , xN
N}.

Alternatively and much more interestingly, to pass from the microscopic to the macroscopic
scale, by Theorems ?? and ??, one can take the graph limit of the particle system and thus obtain
the Euler equation, with estimates of convergence as N → +∞.

Liouville to Vlasov. By Theorems ?? or ??, one can recover the solutions of the Vlasov equation
(??) from those of the Liouville equation (??), for some appropriate initial conditions ρ(0), by
taking marginals and taking the limit N → +∞.

Euler to Vlasov. By Section ??, given any ν ∈ P(Ω) and any solution t 7→ y(t, ·) of the Euler
equation (??), the ν-monokinetic measure mapping t 7→ µ(t) = µν

y(t,·) = ν ⊗ δy(t,·) defined by (??)

is a solution of the Vlasov equation (??). This embedding from the macroscopic to the mesoscopic
scale is completely general and is valid for the general mean field X [µ] defined by (??) and for the
general nonlinear operator A defined by (??).

Vlasov to Euler. Here, and only here, we assume, first, that we are in the Hegselmann–Krause
model given in Example ??, i.e., G(t, x, x′, ξ, ξ′) = σ(x, x′)(ξ′ − ξ); or more generally we assume
that G is linear with respect to (ξ, ξ′). Proposition ?? says that, given any solution t 7→ µ(t) of
the Vlasov equation (??), defining ν = π∗µ(t) (marginal of µ(t), which does not depend on t),
the moment mapping t 7→ y(t, ·) of order 1, defined by y(t, x) =

∫
IRd ξ dµt,x(ξ), is a solution of the

Euler equation (??) (which is linear in this case).
As discussed in Section ??, there is a second way, still not general, of passing from Vlasov to

Euler, by assuming that the solution µ(·) of the Vlasov equation is ν-monokinetic. In this case, its
moment y of order 1 is solution of the nonlinear Euler equation (??).

This projection from the mesoscopic to the macroscopic scale is not general because, in general,
y does not satisfy a closed equation.

Liouville to Euler. Lemma ?? in Section ?? shows how to pass from Liouville to Euler, for
specific initial conditions ρN (0), by taking an adequate moment of ρN (t) and then passing to the
limit N → +∞.

Finally, all above relationships are general (i.e., valid for a general interaction mapping G)
except the transition from the mesoscopic (kinetic, mean field) model to the macroscopic (Euler)
model, which is valid if G is linear with respect to (ξ, ξ′) but fails in general. The graph limit
procedure is of a different nature and rather relies on the usual limit in Riemann integration
theory, as explained in Section ??.

Anyway, what is interesting in the above arguments is that it may not be relevant to place the
mesoscopic level in-between the microscopic level and the macroscopic one.
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6 Finite particle approximations of evolution equations

6.1 Setting

Considering the complete metric space (Ω,dΩ) of Assumption ??, throughout this section, we
assume either that:

(O1) Ω is the compact closure of a bounded open subset of IRn with a Lipschitz boundary, dΩ is
the induced Euclidean distance, and ν is the restriction to Ω of the Lebesgue measure of IRn;

or that:

(O2) Ω is a smooth compact Riemannian manifold of dimension n, dΩ is its Riemannian distance,
and ν is the canonical Riemannian measure.

In the case ??, Ω is usually called a Lipschitz compact domain of IRn (of interior denoted by Ω̊).
In the case ??, for example Ω may be the sphere or the torus of dimension n.

Without loss of generality, we assume that the volume |Ω| of Ω is equal to 1, so that ν, hereafter,
is the probability Lebesgue measure on Ω (with dν

dx = 1 in local coordinates).
Under ?? or ??, there always exist families of tagged partitions associated with ν satisfying

(??) with r = 1/n (see Section ??), indexed by N ∈ IN∗.
In the sequel, we denote by Ω̊ the interior of Ω (in the case ?? we have Ω̊ = Ω).

Let X be a Banach functional space containing C∞
c (Ω̊, IRd) as a dense subspace (for instance,

X = L2(Ω, IRd)). We consider the abstract linear evolution equation

∂ty = Ay (73)

where, for all t ⩾ 0 and ξ ∈ IRd, A is a linear operator on X, continuous from C∞
c (Ω̊, IRd) to the

distributional space C∞
c (Ω̊, IRd)′. The latter general assumption ensures that A has a Schwartz

kernel [A] ∈ C∞
c (Ω̊ × Ω̊, IRd)′, i.e., Ay(x) =

∫
Ω
[A](x, x′)y(x′) for every y ∈ C∞

c (Ω̊, IRd) where the
integral is understood as ⟨[A](x, ·), y⟩ with the distribution bracket.

Assuming that t 7→ y(t) ∈ X is a solution of (??), since y(t), as an element of the functional
space X, is a function on Ω, in the sequel we denote indifferently y(t)(x) = y(t, x) for all t ⩾ 0 and
x ∈ Ω.

Our objective is to prove that, under appropriate assumptions, regular solutions t 7→ y(t) of
(??) can be approximated by the solutions of a family of finite particle systems.

Particle approximations are well known for some classes of PDEs, like fluid equations: for fluid
Euler or Navier-Stokes equations, one often speaks of “fluid particles”, in accordance with the
classical Eulerian or Lagrangian viewpoints. In this section, we show that particle approximations
can be achieved for general linear PDEs and even for abstract evolution systems like (??).

The idea relies on Theorem ?? in Section ??, which shows that the solutions of Euler equations
(??), with A defined by (??) with a continuous interaction mapping G, can be approximated with
the solutions of the family of particle systems (??) (indexed by N) corresponding to G. A linear
PDE, with an unbounded operator, cannot be written as the Euler equation (??) because, with a
continuous mapping G, one cannot generate by (??) an unbounded operator A. This is why we
are going to introduce, in addition to the parameter N , another (small) parameter ε, in order to
approximate unbounded operators A by a family of bounded operators Aε to which we can then
apply the particle approximation result of Theorem ??.
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Preliminaries and strategy. We have seen in Proposition ?? in Section ?? that, taking
G(t, x, x′, ξ, ξ′) = σ(x, x′)(ξ′−ξ) (Hegselmann–Krause model), we obtain the linear Euler equation
(??) with A defined by (??).

Actually, when G(t, x, x′, ξ, ξ′) = σ(x, x′)ξ′, setting y(x′) =
∫
IRd ξ′ dµx′(ξ′) as in Section ??

(moment of order 1 of µ), the mean field X [µ](t, x, ξ), defined by (??), does not depend on (t, ξ)
and is given by

X [µ](x) =

∫
Ω

σ(x, x′)y(x′) dν(x′) = (Ay)(x)

which thus defines the Hilbert-Schmidt operator A of kernel σ with respect to ν. Following Section
??, if t 7→ µ(t) is solution of the Vlasov equation (??) then its moment of order one t 7→ y(t, ·) is
solution of the linear Euler equation ∂ty = Ay.

The above operator A is bounded, but replacing σ with a general distributional Schwartz kernel
[A] and having in mind the Schwartz kernel theorem, one is led to consider a general linear operator
Ay(x) =

∫
Ω
[A](x, x′)y(x′). For instance if [A](x, x′) = δ′x, the distributional derivative of the Dirac

measure δx at x, then A = −∂x. The differential equation ∂ty = Ay is then the transport equation
∂ty + ∂xy = 0.

Let us use the above example as a paradigm to approximate arbitrary unbounded operators,
by designing a sufficiently smooth approximation σε of an arbitrary Schwartz kernel [A]. Following
this idea, we set

Gε(t, x, x
′, ξ, ξ′) = σε(x, x

′) ξ′ (74)

where ε > 0 is a small parameter. Recalling that ν is here the probability Lebesgue measure on
Ω, given any ε ∈ (0, 1] we consider the Euler equation corresponding to (??), given by

∂tyε(t) = Aεyε(t) (75)

where

Aεf(x) =

∫
Ω

σε(x, x
′)f(x′) dx′ ∀f ∈ C∞(Ω̊) ∀x ∈ Ω. (76)

Here σε is the density of the Schwartz kernel [Aε] of Aε with respect to the Lebesgue measure. In
what follows we are going to design an adequate interaction function σε such that Aε defined by
(??) converges to A defined by (??) as ε → 0, in an appropriate sense. For instance, if σε(x, ·) is
a smooth function (not depending on (t, ξ)) approximating the distributional derivative δ′x of the
Dirac measure at x, then Aε → A = −∂x and hence at the limit ε → 0 we recover the transport
equation ∂ty + ∂xy = 0.

Now, given any ε ∈ (0, 1], let us introduce the particle approximation of (??). Let (AN , XN )N∈IN∗

be a family of tagged partitions associated with ν satisfying (??) with r = 1/n (see Section ??),
with AN = (ΩN

1 , . . . ,ΩN
N ) and XN = (xN

1 , . . . , xN
N ). We consider the particle system corresponding

to (??), given for every N ∈ IN∗ by

ξ̇Nε,i(t) =
1

N

N∑
j=1

σε

(
xN
i , xN

j

)
ξNε,j(t) ∀i ∈ {1, . . . , N}. (77)

Denoting by t 7→ ΞN
ε (t) = (ξNε,1(t), . . . , ξ

N
ε,N (t)) an arbitrary solution of (??) (well defined and

smooth on IR), we set

yNε (t, x) =

N∑
i=1

ξNε,i(t)1ΩN
i
(x) ∀(t, x) ∈ IR× Ω. (78)
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Note that yNε is C∞ in t and piecewise constant in x, and that yNε (t, xN
i ) = ξNε,i(t) for every

i ∈ {1, . . . , N}.
The particle system (??) is expected to provide a particle approximation of the evolution

equation (??), in the sense that it is expected that solutions y of (??) are limits of yNε as N → +∞
and ε → 0. However, since the particle system (??) does not have any (classical) limit as ε → 0,
in order to derive convergence estimates we will have to let N tend to +∞ and ε to 0 at some
appropriate scale. Our strategy will be in two steps:

1. Design a family of bounded operators Aε of the form (??) and, given a solution y of (??),
derive a convergence estimate of solutions yε of the “ε-Euler” equation (??) to y. In the
context of semigroups developed in Section ??, this essentially amounts to applying the
Duhamel formula.

2. For any ε fixed, by Theorem ?? in Section ??, derive a convergence estimate as N → +∞
of the particle approximation yNε defined by (??) to yε, with constants keeping track of the
dependence with respect to ε and N .

The convergence estimates of particle solutions of (??) to solutions of (??) are then obtained by
the triangular inequality. They depend on ε and N , but as already alluded the estimates blow up
when ε → 0 with N being fixed and thus the limits must be taken at some appropriate scaling.

Structure of the section. In Section ?? we give a general particle approximation result for the
abstract evolution equation (??). The main result is Theorem ??.

Although very general, these results are however abstract and not constructive. In Section ??,
we consider linear PDEs defined with classical differential operators, and thanks to convolution we
design explicit finite particle approximations. In this section, the main result is Theorem ??.

6.2 A general abstract result within semigroup theory

In this section, we use semigroup theory to derive in a very simple way a general approximation
theorem. We consider the abstract linear evolution equation

∂ty = Ay. (79)

Semigroup assumption. We assume that the operator A on the Banach space X is defined on
a dense domain D(A) ⊂ X and generates a C0 semigroup (etA)t⩾0 in X. In particular, there exist
M ⩾ 1 and β ∈ IR such that

∥etA∥L(X) ⩽ Meβt ∀t ⩾ 0. (80)

Given y0 ∈ D(A), there exists a unique solution y ∈ C0([0,+∞), D(A)) ∩ C1((0,+∞), X) of (??)
such that y(0) = y0, which is y(t) = etAy0 (see [?]). In what follows we are going to approximate
this solution y by finite particles.

Bounded operator approximation. We assume that there exists a family of bounded opera-
tors Aε on X, indexed by ε ∈ (0, 1], satisfying the following properties:

� Denoting by etAε the usual exponential of a bounded operator, we have

∥etAε∥L(X) ⩽ Meβt ∀t ⩾ 0 ∀ε ∈ (0, 1]. (81)

� There exist a Banach subspace Z ⊂ X, dense in X, CA > 0 and a continuous function
χ : [0, 1] → [0,+∞), satisfying χ(0) = 0, such that

∥(Aε −A)z∥X ⩽ CA χ(ε)∥z∥Z ∀z ∈ Z ∀ε ∈ (0, 1]. (82)
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� For any ε ∈ (0, 1], the kernel σε of Aε (defined by (??), i.e., Aεf(x) =
∫
Ω
σε(x, x

′)f(x′) dx′

for every f ∈ C∞(Ω̊) and every x ∈ Ω) is Lipschitz continuous on Ω× Ω.

An example of bounded approximation operator Aε satisfying (??), not explicit but fully general,
is given by the Yosida approximant

Aε = JεA where Jε = (id− εA)
−1

,

which indeed satisfies (??) (see [?, ?]). The assumption (??) entails two things: first, since it
will be applied to the solution y of (??), it requires that y be sufficiently regular; second, (??)
refers to convergence estimates, which are often proved by explicit approximation constructions
(see also [?] for finite-dimensional approximations with error estimates), as we will do hereafter.
For instance when X = L2(Ω, IRd), the Banach space Z may be a subspace of functions of X having
a certain number of bounded derivatives. The third assumption is related to the regularity of Aε;
for instance if A is a differential operator then it is satisfied by iterating the Yosida approximation,
taking Aε = Jj

εA for j large enough. Of course, if A is unbounded then ∥σε∥L∞(Ω2)+Lip(σε) → +∞
as ε → 0. All in all, the first assumption (??) (which is classical in the Trotter-Kato theorem) is
the most stringent; it is usually established in practice by means of dissipativity properties, and
this is also what we will do in the explicit construction hereafter.

Given any ε ∈ (0, 1], the “ε-Euler” equation (??) becomes

∂tyε(t) = Aεyε(t) (83)

and any solution of (??) is given by yε(t) = etAεyε(0). Besides, for any N ∈ IN∗, the particle
system (??) is autonomous and is written as

ξ̇Nε,i(t) =
1

N

N∑
j=1

σε(x
N
i , xN

j )ξNε,j(t) ∀i ∈ {1, . . . , N}. (84)

Theorem 6. Let T > 0 be arbitrary. In addition to the above semigroup and bounded approxi-
mation operator assumptions, we assume that y0 = y(0) ∈ Lip(Ω, IRd) and that y ∈ L1([0, T ], Z).
For any ε ∈ (0, 1] and any N ∈ IN∗, let t 7→ ΞN

ε (t) = (ξNε,1(t), . . . , ξ
N
ε,N (t)) be the unique solution of

(??) such that ξNε,i(0) = y0(xN
i ) for every i ∈ {1, . . . , N}, and let yNε be defined by (??).

(i) If there exists a continuous and dense embedding L∞(Ω, IRd) ↪→ X, i.e., if there exists C∞ > 0
such that ∥z∥X ⩽ C∞∥z∥L∞ for any z ∈ L∞(Ω, IRd), then

∥yNε − y∥C 0([0,T ],X) ⩽ CAMeβTχ(ε)∥y∥L1([0,T ],Z)

+
2

N1/n
C∞CΩ(1 + Lip(y0)) exp

(
2T∥σε∥L∞ + 2T∥y0∥L∞ Lip(σε)e

2T∥σε∥L∞
)

(85)

for every N ∈ IN∗ and every ε ∈ (0, 1].

(ii) If there exists a continuous and dense embedding X ↪→ L∞(Ω, IRd), i.e., if there exists C∞ > 0
such that ∥z∥L∞ ⩽ C∞∥z∥X for any z ∈ X, then

∥yNε − y∥L∞([0,T ]×Ω) ⩽ C∞CAMeβTχ(ε)∥y∥L1([0,T ],Z)

+ 2
CΩ

N1/n
(1 + Lip(y0)) exp

(
2T∥σε∥L∞ + 2T∥y0∥L∞ Lip(σε)e

2T∥σε∥L∞
)

(86)

for every N ∈ IN∗ and every ε ∈ (0, 1].
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Proof. Given any ε ∈ (0, 1], the unique solution of (??) such that yε(0) = y0 is given by yε(t) =
etAεy0.

The proof, which is easy, is done in three steps: in the first, we establish that yε converges to
y; in the second, we apply Theorem ?? (see Section ??) to prove that yε is approximated by the
solutions of the particle system (??); we conclude by the triangular inequality.

First step: convergence of yε towards y. Given any ε ∈ (0, 1], writing that ∂t(yε − y) =
Aεyε −Ay = Aε(yε − y) + (Aε −A)y and integrating, we obtain (Duhamel formula)

yε(t)− y(t) =

∫ t

0

e(t−τ)Aε(Aε −A)y(τ) dτ,

and using the Jensen inequality and the estimates (??) and (??), we infer that

∥yε(t)− y(t)∥X ⩽
∫ t

0

∥∥∥e(t−τ)Aε(Aε −A)y(τ)
∥∥∥
X

dτ

⩽
∫ t

0

Meβ(t−τ)∥(Aε −A)y(τ)∥X dτ ⩽ CAMeβtχ(ε)∥y∥L1([0,t],Z) (87)

for every t ∈ [0, T ].

Second step: particle approximation. Given any ε ∈ (0, 1], since yε(0) = y0 ∈ L∞(Ω, IRd)

and since ∂tyε(t, ·) =
∫
Ω
σε(·, x′)yε(t, x

′) dx′ and ξ̇Nε,i(t) = 1
N

∑N
j=1 σε(x

N
i , xN

j )ξNε,j(t), estimating
roughly and integrating we get that

max
(
∥ΞN

ε (t)∥∞, ∥yε(t)∥L∞(Ω,IRd)

)
⩽ et∥σε∥L∞(Ω2)∥y0∥L∞(Ω,IRd) ∀t ⩾ 0. (88)

Since y0 ∈ Lip(Ω, IRd), it follows from the estimates (??) and (??) of Theorem ?? in Section ??
that yε(t) ∈ Lip(Ω, IRd) and Lip(yε(t)) ⩽ etLε(t)(1 + Lip(y0)) for every t ⩾ 0, and

∥yNε (t)− yε(t)∥L∞(Ω,IRd) ⩽
2CΩ

N1/n
(1 + Lip(y0))e2tLε(t) ∀t ⩾ 0, (89)

where, using (??) and the particular form of the mapping Gε defined by (??), Lε(t) is given by

Lε(t) = ∥σε∥L∞ + Lip(σε)e
t∥σε∥L∞ ∥y0∥L∞ . (90)

Conclusion. In case ??, we have ∥yNε (t)− yε(t, ·)∥X ⩽ C∞∥yNε (t)− yε(t)∥L∞ . Using the trian-
gular inequality, we infer from (??) and (??) that, for every t ∈ [0, T ] and every ε ∈ (0, 1],

∥y(t)− yNε (t)∥X ⩽ CAMeβTχ(ε)∥y∥L1([0,T ],Z) +
2

N1/n
C∞CΩ(1 + Lip(y0))e2TLε(T )

and (??) follows, using (??).
In case ??, we have ∥yε(t)− y(t)∥L∞ ⩽ C∞∥yε(t)− y(t)∥X . Using the triangular inequality, we

infer from (??) and (??) that, for every t ∈ [0, T ] and every ε ∈ (0, 1],

∥y(t)− yNε (t)∥L∞ ⩽ C∞CAMeβTχ(ε)∥y∥L1([0,T ],Z) +
2

N1/n
CΩ(1 + Lip(y0))e2TLε(T )

and (??) follows, using (??).

38



Remark 13 (Comments on Theorem ??.). To illustrate and understand the convergence estimates
(??) and (??), let us assume that χ(ε) ∼ ε and that ∥σε∥L∞ +Lip(σε) ∼ 1

εk
for some k ∈ IN∗ (this

will be the case in the explicit construction hereafter), as ε → 0. Then, ignoring constants, the
right-hand side of (??) or (??) is of the order of

ε+
1

N1/n
exp

(
1

εk
exp

(
1

εk

))
.

In order to pass to the limit as N → +∞ and ε → 0, it is appropriate to choose parameters such
that this term tends to 0. An optimization argument shows that the best choice for ε in function
of N is

εN ∼
(

1

ln lnN

) 1
k

as N → +∞, and in this case the estimate (??) (applied, typically, with X = L2(Ω, IRd)) gives

∥yNεN − y∥C 0([0,T ],X) ⩽ Cst

(
Cst

ln lnN

) 1
k

(1 + o(1)).

Such estimates are reminiscent of those found in [?] concerning the linear Boltzmann and the
(hydrodynamic limit) heat equation.

The above double exponential (or double logarithm) is a general estimate that can be improved
under additional assumptions. Indeed, the estimate (??) is very rough and can be improved for
example if the norm of etAε as a bounded linear operator on L∞(Ω) is uniformly bounded with
respect to ε on compact intervals of time.

6.3 Application to linear PDEs and explicit construction

In local coordinates x on Ω, we denote Dα = ∂α1
1 · · · ∂αn

n where ∂i is the partial derivative with
respect to the ith variable of x (which we do not denote by xi because the notation is already used
for the tagged partitions), where α = (α1, . . . , αn) ∈ INn and we set |α| =

∑n
i=1 αi.

Let p ∈ IN∗ be arbitrary. Throughout the section, we assume that X = L2(Ω, IRd) and that

A =
∑
|α|⩽p

aα(·)Dα ∀(t, ξ) ∈ IR× IRd, (91)

i.e., we consider the linear partial differential equation

∂ty(t, x) =
∑
|α|⩽p

aα(x)D
αy(t, x) (92)

with some prescribed conditions at the boundary of Ω when Ω has a boundary. Here, for every
α ∈ INk such that |α| ⩽ p, aα(·) ∈ W 1,∞(Ω).

As an application of Theorem ??, our objective is to prove that, under appropriate assumptions,
the solutions of (??) can be approximated by the solutions of a family of finite particle systems,
of which we design an explicit construction.

For every k ∈ [1,+∞], we denote by W p,k(Ω) the Sobolev space of functions f on Ω whose
partial (distributional) derivatives up to order p are identified with functions of Lk(Ω), endowed
with the norm

∥f∥Wp,k(Ω) = max
|α|⩽p

∥Dαf∥Lk(Ω).

For k = 2, we denote Hp(Ω) = W p,2(Ω).
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6.3.1 Main result

Semigroup assumption. We assume that the operator A on L2(Ω, IRd) is defined on a domain
D(A) ⊂ Hp(Ω, IRd), dense in L2(Ω, IRd), which may encode some Dirichlet or Neumann like bound-
ary conditions, maybe of higher order, and that there exists β ⩾ 0 such that A−β id generates a C0

semigroup of contractions in L2(Ω, IRd). Hence we have M = 1 in the inequality (??) and, by the
Lumer-Phillips theorem, A− β id is m-dissipative (see [?]), which means that it is dissipative (i.e.,
⟨(A−β id)f, f⟩L2(Ω) ⩽ 0 for every f ∈ D(A)) and that Ran((β+1) id−A) = ((β+1) id−A)D(A) =
L2(Ω).

Particle approximation. Let η ∈ C∞
c (IRn) be a nonnegative symmetric smooth function on

IRn, of compact support contained in the closed unit ball B(0, 1), such that
∫
IRn η(x) dx = 1. Here,

symmetric means that η(x) = η(−x) for every x ∈ IRn. We set Cη =
∫
IRn ∥x∥η(x) dx. For example,

we can take

η(x) =

{
c e1/(∥x∥

2−1) if ∥x∥ < 1,
0 otherwise,

where c > 0 is a normalization constant. Given any ε ∈ (0, 1], we denote by ηε ∈ C∞
c (IRn) the

(mollifier) function given by

ηε(x) =
1

εn
η
(x
ε

)
∀x ∈ IRn

and we define σε by

σε(x, x
′) =

∑
|α|⩽p

∫
Ω

ηε(x− z)aα(z)(D
αηε)(z − x′) dz ∀x, x′ ∈ Ω× Ω. (93)

We have σε ∈ C∞(Ω× Ω) (it is smooth up to the boundary) and

∥σε∥L∞(Ω2) ⩽
CL

εn+p
and Lip(σε) ⩽

CL

εn+p+1

for some constant CL > 0 depending on η and on the Lipschitz constants of the coefficients aα but
not depending on ε. Recall that Gε(x, x

′, ξ′) = σε(x, x
′)ξ′.

Theorem 7. Let T > 0. We assume that y ∈ L1([0, T ],W p+1,∞(Ω, IRd)) is a solution of (??) such
that y(0, ·) ∈ Lip(Ω, IRd). For any ε ∈ (0, 1] and any N ∈ IN∗, let t 7→ ΞN

ε (t) = (ξNε,1(t), . . . , ξ
N
ε,N (t))

be the unique solution of the particle system (??) such that ξNε,i(0) = y(0, xN
i ) for every i ∈

{1, . . . , N}, and let yNε be defined by (??).
Then there exists C > 0 such that, for every N ∈ IN∗ and every ε ∈ (0, 1],

∥yNε − y∥C 0([0,T ],L2(Ω,IRd)) ⩽ C

(
ε+

1

N1/n
exp

(
C

εn+p+1
exp

(
C

εn+p

)))
(94)

except in case ?? when n = 1, in which case the first term ε in the parenthesis at the right-hand
side of (??) must be replaced with

√
ε.

As a consequence, taking εN ∼
(

C
ln lnN

) 1
n+p as N → +∞ (see Remark ??), (??) gives

∥yNεN − y∥C 0([0,T ],L2(Ω,IRd)) ⩽

(
C

ln lnN

) 1
n+p

(95)
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6.3.2 Proof of Theorem ??

We are going to apply the item ?? of Theorem ?? with X = L2(Ω, IRd), Z = W p+1,∞(Ω, IRd),
C∞ = 1 (because |Ω| = 1), M = 1.

Recall that the operator Aε is defined by (??), i.e., Aεy(x) =
∫
Ω
σε(x, x

′)f(x′) dx′ for every

f ∈ C∞(Ω̊) and every x ∈ Ω. We have to prove that the assumptions (??) and (??) are satisfied,
and we are going to compute CA and χ(ε). To do that, we first express Aε using an unusual
convolution that we introduce next.

Definition and properties of a convolution operator. Given any k ∈ [1,+∞) and any
f ∈ Lk(Ω), let us define and give some properties of the smooth approximation ηε ⋆Ω f ∈ C∞(Ω̊)
of f for any ε ∈ (0, 1].

In the case ??, i.e., when Ω is a smooth compact Riemannian manifold of dimension n, using
a smooth partition of unity over an atlas of Ω, we can always write f =

∑m
i=1 fi for some m ∈ IN∗

and for some functions fi ∈ Lk(Ω) whose essential support is contained in a chart of the atlas. In
each chart, ηε ⋆fi can thus be defined as the standard convolution in IRn for every ε > 0 sufficiently
small. At the global level, this defines the function ηε ⋆Ω f ∈ C∞(Ω̊).

In the case ??, i.e., when Ω is the compact closure of a bounded open subset of IRn with a
Lipschitz boundary, we have to be careful with the boundary. Given any f ∈ L2(Ω), for any
ε ∈ (0, 1], we define the function ηε ⋆Ω f on Ω by

ηε ⋆Ω f(x) =

∫
Ω

ηε(x− x′)f(x′) dx′ ∀x ∈ Ω

but we stress that this is not a usual convolution (the integral is performed on Ω only) and thus
the usual properties of the convolution cannot be used directly. This is why, hereafter, we relate
this unusual convolution with the usual one, by extending functions on Ω to IRn by 0 outside of
Ω. Given any f ∈ L2(Ω), we denote by f̃ = f 1Ω the extension of f to IRn by 0. For any ε ∈ (0, 1],
we consider the function ηε ⋆ f̃ ∈ C∞

c (IRn) defined by the usual convolution

(ηε ⋆ f̃)(x) =

∫
IRn

ηε(x− x′)f̃(x′) dx′ =

∫
Ω

ηε(x− x′)f(x′) dx′ ∀x ∈ IRn,

whose support satisfies supp(ηε ⋆ f̃) ⊂ Ω+B(0, ε). We have

ηε ⋆Ω f = (ηε ⋆ f̃)|Ω,

i.e., ηε ⋆Ω f is the restriction of ηε ⋆ f̃ to Ω. Hence ηε ⋆Ω f ∈ C∞(Ω): it is smooth up to the
boundary of the compact domain Ω. We also have ηε ⋆Ω f = (f̃ ⋆ ηε)|Ω. Finally, as a consequence
of the properties of the usual convolution, we have ηε ⋆Ω f → f in L2(Ω) as ε → 0.

More generally, for every α = (α1, . . . , αn) ∈ INn, the functions Dα(ηε ⋆Ω f), Dα(ηε) ⋆Ω f and
ηε ⋆ΩDαf (provided that Dαf ∈ L2(Ω) in the latter case) are smooth on Ω and are the restrictions
to Ω of the smooth functionsDα(ηε⋆f̃), D

α(ηε)⋆f̃ and ηε⋆D
αf̃ on IRn, respectively.6 In particular,

the function A(ηε ⋆Ω f) is the restriction to Ω of A(ηε ⋆ f̃).
With these definitions, in both cases ?? and ??, for every α = (α1, . . . , αn) ∈ INn we have

Dα(ηε ⋆Ω f) = (Dαηε) ⋆Ω f = ηε ⋆Ω Dαf for every f ∈ L2(Ω) (such that Dαf ∈ L2(Ω) for the last
equality) and Dα(ηε ⋆Ω f) → Dαf in L2(Ω) as ε → 0 if Dαf ∈ L2(Ω). Note that the function σε

defined by (??) is also given by

σε(x, x
′) =

(
ηε ⋆Ω

∑
|α|⩽p

aα(·)(Dαηε)(· − x′)
)
(x) ∀x, x′ ∈ Ω.

6There is a small subtlety for defining the latter one, removed by noting that Dαf̃ = D̃αf a.e. if Dαf ∈ L2(Ω).

41



Expressing Aε with the convolution operator ηε⋆Ω.

Lemma 3. Given any ε ∈ (0, 1] and any f ∈ C∞(Ω̊), we have7

Aεf = ηε ⋆Ω A(ηε ⋆Ω f) =
(
ηε ⋆

(
A(ηε ⋆ f̃)1Ω

))
|Ω
.

Proof. For x ∈ Ω fixed, we have, using that Dαηε ⋆Ω f = Dα(ηε ⋆Ω f),

(Aεf)(x) =

∫
Ω

σε(x, x
′)f(x′) dx′ =

(
ηε ⋆Ω

∑
|α|⩽p

aαD
αηε ⋆Ω f

)
(x) =

(
ηε ⋆Ω A(ηε ⋆Ω f)

)
(x),

thus giving the lemma.

Uniform stability property (??). Thanks to Lemma ??, we can now establish (??).

Lemma 4. For all f, g ∈ L2(Ω), we have ⟨ηε ⋆Ω g, f⟩L2(Ω) = ⟨g, ηε ⋆Ω f⟩L2(Ω).

Proof. Using that ηε ⋆Ω g = (ηε ⋆ g̃)|Ω and that f̃ = 0 on IRn \ Ω, we have ⟨ηε ⋆Ω g, f⟩L2(Ω) =

⟨ηε ⋆ g̃, f̃⟩L2(IRn). Now, using the fact that ηε is symmetric, i.e., that ηε(z) = ηε(−z) for any
z ∈ IRn, and that this property ensures that the usual convolution by ηε is symmetric in L2(IRn),
we infer that ⟨ηε ⋆Ω g, f⟩L2(Ω) = ⟨g̃, ηε ⋆ f̃⟩L2(IRn). But the latter term is equal to ⟨g, ηε ⋆Ω f⟩L2(Ω).
The lemma is proved.

Lemma 5. Like the operator A − β id, the operator Aε − β id is m-dissipative on L2(Ω, IRd), for
any ε ∈ (0, 1]. As a consequence, we have

∥etAε∥L(L2(Ω,IRd)) ⩽ eβt and ∥etA∥L(L2(Ω,IRd)) ⩽ eβt ∀t ⩾ 0 ∀ε ∈ (0, 1].

Therefore (??) is satisfied (with M = 1).

Proof. Given any f ∈ C∞(Ω̊), applying Lemma ?? to g = (A− β id)(ηε ⋆Ω f), we have

⟨(Aε − β id)f, f⟩L2(Ω) = ⟨ηε ⋆Ω (A− β id)(ηε ⋆Ω f), f⟩L2(Ω) = ⟨(A− β id)(ηε ⋆Ω f), ηε ⋆Ω f⟩L2(Ω) ⩽ 0

because A−β id is dissipative. Since Aε is bounded, we have D(Aε) = L2(Ω), and thus its adjoint
A∗

ε is bounded and D(A∗
ε) = L2(Ω). Therefore, obviously, A∗

ε − β id is also dissipative. The
conclusion now follows from the Lumer-Phillips theorem (see [?, Chapter II, Corollary 3.17] or [?,
Chapter 1, Theorem 4.3]).

Remark 14. Lemma ?? is the key step where we use the particular form Aεf = ηε ⋆Ω A(ηε ⋆Ω f),
in order to ensure dissipativity. It would not work if we had chosen Aεf = A(ηε ⋆Ω f). Note
that, as mentioned in Section ??, (??) is always satisfied when choosing the Yosida approximant

Aε = (id− εA)
−1

A. The interest of the above construction is that it is fully explicit.

A first convergence property of Aε.

Lemma 6. Given any f ∈ C∞(Ω̊), we have Aεf → Af in L2(Ω) as ε → 0.

7The function A(ηε ⋆Ω f) is the restriction of A(ηε ⋆ f̃) to Ω and, denoting by gε = A(ηε ⋆ f̃)1Ω the extension
to IRn by 0 of the function A(ηε ⋆Ω f), the function ηε ⋆Ω A(ηε ⋆Ω f) is the restriction to Ω of the function ηε ⋆ gε.
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Proof. By the triangular inequality, using the expression of Aε given by Lemma ??,

∥Aεf −Af∥L2(Ω) ⩽ ∥ηε ⋆Ω (A(ηε ⋆Ω f)−Af)∥L2(Ω) + ∥ηε ⋆Ω Af −Af∥L2(Ω).

The second term at the right-hand side of that inequality converges to 0 as ε → 0, because Af ∈
L2(Ω). To handle the first term, we use the Young inequality ∥g⋆h∥Lr(IRn) ⩽ Bp,q∥g∥Lp(IRn)∥h∥Lq(IRn)

with g = ηε, h = r̃ε where rε = A(ηε ⋆Ω f)−Af , and with r = 2, p = 1 and q = 2, obtaining

∥ηε ⋆Ω rε∥L2(Ω) = ∥(ηε ⋆ r̃ε)|Ω∥L2(IRn) ⩽ ∥ηε ⋆ r̃ε∥L2(IRn) ⩽ B1,2∥ηε∥L1(Ω)∥r̃ε∥L2(IRn) = B1,2∥rε∥L2(Ω)

because ∥ηε∥L1(Ω) = 1, and we conclude that Aεf → Af in L2(Ω) by noticing that rε → 0 in
L2(Ω) because

A(ηε ⋆Ω f) =
∑
|α|⩽p

aαD
α(ηε ⋆Ω f) =

∑
|α|⩽p

aα ηε ⋆Ω Dαf −→
∑
|α|⩽p

aαD
αf = Af

in L2(Ω) as ε → 0.

In terms of Schwartz kernels, the kernel of Aε is obtained by convoluting to the left and “to the
right” (in some sense) the Schwartz kernel of A with ηε, and that, for every x ∈ Ω fixed, the function

x′ 7→ σε(x, x
′) converges in the distributional sense to the distribution

∑
|α|⩽p(−1)|α|aαδ

(α)
x as

ε → 0 (where δ
(α)
x is a distributional derivative of the Dirac δx at x), which is the Schwartz kernel

[A](x, ·) of A.
The convergence property stated in Lemma ?? is not enough to get (??). We need to refine

the analysis and establish some error estimates. We start by refining our analysis of the unusual
convolution operator introduced previously.

Convergence estimates for the convolution operator ηε⋆Ω. Set Ca = max|α|⩽p ∥aα∥W 1,∞(Ω).
We introduce the following notation: in the case ??, for any ε ∈ (0, 1] we define the compact

subset Ωε of Ω̊ by

Ωε = {x ∈ Ω | dΩ(x, ∂Ω) ⩾ ε} = IRn \ (IRn \ Ω+B(0, ε)) .

There exists a constant C∂Ω > 0 such that

|Ω \ Ωε| ⩽ C∂Ω εn ∀ε ∈ (0, 1].

In the case ?? we simply set Ωε = Ω and C∂Ω = 0.
We will also need to use extension operators in the case ??: according to [?, Chap. VI, Sec.

3, Theorem 5] (see also [?, Chap. 12]), there exist CE > 0 and a linear continuous operator E
mapping functions on Ω to functions on IRn, such that the restriction of Ef to Ω coincides with
f and ∥Ef∥W j,k(IRn) ⩽ CE∥f∥W j,k(Ω) for every f ∈ W j,k(Ω) and for every j ∈ IN and every
k ∈ [1,+∞] (Stein extension). In the case ??, accordingly, we set CE = 1.

Lemma 7. Given any ε ∈ (0, 1], we have

∥ηε ⋆Ω f − f∥L∞(Ω) ⩽ 2∥f∥L∞(Ω) ∀f ∈ L∞(Ω),

|ηε ⋆Ω f(x)− f(x)| ⩽ CECηε∥f∥W 1,∞(Ω) ∀x ∈ Ωε ∀f ∈ W 1,∞(Ω).
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Proof. The first inequality is obviously obtained by using that ∥ηε⋆f̃∥L∞(IRn) ⩽ ∥f̃∥L∞(IRn) because
∥ηε∥L1(IRn) = 1.

Let x ∈ Ωε be arbitrary. Since supp(ηε) ⊂ B(0, ε) and thus supp(ηε(x− ·)) ⊂ B(x, ε) ⊂ Ω, we
have

∫
Ω
ηε(x− x′) dx′ =

∫
IRn ηε(x− x′) dx′ = 1, hence f(x) =

∫
Ω
ηε(x− x′)f(x) dx′ and

|ηε ⋆ f(x)− f(x)| ⩽
∫
Ω

ηε(x− x′)|f(x′)− f(x)| dx′ ⩽
∫
IRn

ηε(x− x′)|Ef(x′)− Ef(x)| dx′

where Ef is the Stein extension of f , defined above (actually the latter inequality is even an
equality because ηε(x− x′) = 0 for any x′ ∈ IRn \Ω, since x ∈ Ωε). It follows from the mean value
theorem that

|Ef(x′)− Ef(x)| ⩽ ∥Ef∥W 1,∞(IRn)∥x− x′∥ ⩽ CE∥f∥W 1,∞(Ω)∥x− x′∥.

Hence

|ηε ⋆ f(x)− f(x)| ⩽ CE∥f∥W 1,∞(Ω)

∫
IRn

1

εn
η

(
x− x′

ε

)
∥x− x′∥ dx′ = CECηε∥f∥W 1,∞(Ω)

by using the change of variable x′ = x− εs.
Note that, in the above argument, we have used a W 1,∞ extension of f (and not the extension

by 0, which is not in W 1,∞(IRn)) in order to use the mean value theorem, because, in the case ??,
Ω may not be convex.

Convergence properties (??) of Aε. We are now in a position to establish (??).

Lemma 8. Given any ε ∈ (0, 1], we have

∥(Aε −A)f∥L∞(Ω) ⩽ 4np+1Ca∥f∥Wp,∞(Ω) ∀f ∈ W p,∞(Ω), (96)

|(Aε −A)f(x)| ⩽ 2np+1CECηCaε∥f∥Wp+1,∞(Ω) ∀x ∈ Ωε ∀f ∈ W p+1,∞(Ω). (97)

As a consequence,

∥(Aε −A)f∥L2(Ω) ⩽ 2np+1Ca

√
C2

EC
2
ηε

2 + 4C∂Ωεn∥f∥Wp+1,∞(Ω) ∀f ∈ W p+1,∞(Ω), (98)

and therefore (??) is satisfied with CA = 2np+1Ca and χ(ε) =
√

C2
EC

2
ηε

2 + 4C∂Ωεn.

Note that, in the case ??, we have C∂Ω = 0 and then the above estimate is in ε. Actually, in
both cases ?? and ?? the estimate is in ε as ε → 0 except in the case ?? when moreover n = 1, in
which case the estimate is in

√
ε.

Proof. For any α ∈ INk such that |α| ⩽ p, noting that Dα(ηε ⋆Ω f − f) = ηε ⋆Ω Dαf −Dαf , we
infer from Lemma ?? applied to Dαf that

∥Dα(ηε ⋆Ω f − f)∥L∞(Ω) ⩽ 2∥f∥Wp,∞(Ω)

|Dα(ηε ⋆Ω f − f)(x)| = |ηε ⋆Ω (Dαf)(x)−Dαf(x)| ⩽ CECηε∥f∥W 1+|α|,∞(Ω) ∀x ∈ Ωε

and thus, using that A =
∑

|α|⩽p aαD
α and that ∥aα∥L∞(Ω) ⩽ Ca, and since the number of α ∈ INn

such that |α| ⩽ p is 1 + n+ · · ·+ np = np+1−1
n−1 ⩽ np+1, we obtain

∥A(ηε ⋆Ω f − f)∥L∞(Ω) ⩽ 2np+1Ca∥f∥Wp,∞(Ω)
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|A(ηε ⋆Ω f − f)(x)| ⩽ np+1CECηCaε∥f∥Wp+1,∞(Ω) ∀x ∈ Ωε.

Besides, we infer from Lemma ?? applied to A(ηε ⋆Ω f), using that ∥aα∥W 1,∞(Ω) ⩽ Ca, that

∥ηε ⋆Ω A(ηε ⋆Ω f)−A(ηε ⋆Ω f)∥L∞(Ω) ⩽ 2∥A(ηε ⋆Ω f)∥L∞(Ω)

⩽ 2np+1Ca∥ηε ⋆Ω f∥Wp,∞(Ω) ⩽ 2np+1Ca∥f∥Wp,∞(Ω)

and

|ηε ⋆Ω A(ηε ⋆Ω f)(x)−A(ηε ⋆Ω f)(x)| ⩽ CECηε∥A(ηε ⋆Ω f)∥W 1,∞(Ω)

⩽ np+1CECηCaε∥ηε ⋆Ω f∥Wp+1,∞(Ω) ⩽ np+1CECηCaε∥f∥Wp+1,∞(Ω) ∀x ∈ Ωε

where we have used that ∥ηε⋆g∥L∞(IRn) ⩽ ∥g∥L∞(IRn) for any g ∈ L∞(IRn) (note that ∥ηε∥L1(IRn) =
1). Finally, by the triangular inequality, we have

|(Aε −A)f(x)| ⩽ |ηε ⋆Ω A(ηε ⋆Ω f)(x)−A(ηε ⋆Ω f)(x)|+ |A(ηε ⋆Ω f − f)(x)|

and the estimates (??) and (??) follow.
To establish (??), we write

∥(Aε −A)f∥2L2(Ω) =

∫
Ωε

|(Aε −A)f(x)|2 dx+

∫
Ω\Ωε

|(Aε −A)f(x)|2 dx.

Using (??), the first term is estimated by∫
Ωε

|(Aε −A)f(x)|2 dx ⩽ 4n2(p+1)C2
EC

2
ηC

2
aε

2∥f∥2Wp+1,∞(Ω),

and using (??), the second term is estimated by∫
Ω\Ωε

|(Aε −A)f(x)|2 dx ⩽ ∥(Aε −A)f∥2L∞(Ω)|Ω \ Ωε| ⩽ 16n2(p+1)C2
a∥f∥2Wp,∞(Ω)C∂Ω εn,

and the conclusion follows.

6.4 Further remarks

In this section, we show that the particle approximation result stated in Theorem ?? can be
extended to some cases where the operator does even not generate a semigroup, like the case of
the backward heat equation ∂ty = −△y.

We have seen in Section ?? that the strategy to approximate a given solution y of (??) goes
in two steps: first, find an adequate bounded approximation Aε of A, and yε of y; second, take
the particle approximation yNε of yε. The second step is an automatic consequence of Theorem
?? in Section ?? and is thus general. The first step has been performed in Sections ?? and ??
by applying the Duhamel formula, within the semigroup context, which required the instrumental
uniform stability estimate (??): this is in such a way that, in the first step of the proof of Theorem
??, we have established the inequality (??), i.e.,

∥yε(t)− y(t)∥X ⩽ Cχ(ε)∥y∥L1([0,T ],Z) ∀t ∈ [0, T ] (99)

for some C > 0. But this first step, requiring the demanding estimate (??), can be dropped if one
is able to design a bounded approximation Aε of A and an approximation yε of y such that the
estimate (??) is satisfied. And indeed this can often be done, without requiring any semigroup
property. Let us give some examples.
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Backward heat equation. Consider the backward heat equation ∂ty = −△y and its approxi-
mation ∂tyε = −△εyε where △ε is a bounded approximation of △ as done in the previous sections.
Assuming that y(0) = et△f for some f ∈ L2(Ω, IRd), we have y(t) = e(T−t)△f for every t ∈ [0, T ].
Now, we take yε(0) = et△εf and we have as well yε(t) = e(T−t)△εf for every t ∈ [0, T ]. Then,
obviously, the Duhamel formula gives (??).

Of course, this works because we have considered a very regular initial condition. More gen-
erally, the argument works for operators with constant coefficients, taking Fourier transforms and
considering initial conditions whose Fourier transform has a compact support.

Variational inequalities. There exists a wide existing literature on variational inequalities,
with the objective of establishing the existence of a solution to a nonlinear equation ∂ty = A(y) by
approximating the nonlinear unbounded operator A with a bounded operator Aε. The estimate
(??) can then obtained from energy considerations, or from Galerkin approximation considerations,
etc. Most of known equations having a physical meaning enter in such a framework.

More generally, we think that our result can be extended to quasilinear or nonlinear evolution
equations, in an appropriate nonlinear semigroup context. This is an open question on which we
are currently working.

Acknowledgment. We are indebted to Claude Bardos, Julien Barré, Arnaud Debussche, Nico-
las Fournier, Isabelle Gallagher, Thierry Gallay, Alain Joye, Benôıt Perthame and Laure Saint-
Raymond for useful discussions.

A Appendix

Let E be a Polish space, endowed with a distance dE .

A.1 Some general facts on the Wasserstein distance

Choice of a distance on Ek. Let q ∈ [1,+∞] be arbitrarily fixed. Given any k ∈ IN∗, we endow
Ek with the ℓq distance based on dE , defined by

d
[q]

Ek(y, y
′) = ∥(dE(y1, y′1), . . . ,dE(yk, y′k))∥ℓq =


( k∑

i=1

dE(yi, y
′
i)

q

)1/q

if 1 ⩽ q < +∞

max
1⩽i⩽k

dE(yi, y
′
i) if q = +∞

(100)

for all y = (y1, . . . , yk) and y′ = (y′1, . . . , y
′
k) in Ek.

Fixing such a choice has an impact on the computation of the Wasserstein distance Wp between
two probability measures on Ek. Indeed, this means that the distance (??) is used in the definition
(??) of Wp, and that, in the definition (??) of W1, the Lipschitz constants must be computed with
the distance (??). The lemma below is thus important to compute Lipschitz constants.

Lemma 9. Let f ∈ Lip(Ek). Then, for any y2, . . . , yk ∈ E, the mapping y1 7→ f(y1, y2, . . . , yk)
is Lipschitz, of Lipschitz constant less than Lip(f). We set Lipy1

(f) = max{Lip(f(·, y2, . . . , yk)) |
y2, . . . , yk ∈ E}. All other Lipyi

(f) are defined similarly, for i = 2, . . . , k. We have

Lip(f) = ∥(Lipy1
(f), . . . ,Lipyk

(f))∥ℓq′ =


( k∑

i=1

Lipyi
(f)q

′
)1/q′

if q′ < +∞

max
1⩽i⩽k

Lipyi
(f) if q′ = +∞
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where q′ ∈ [1,+∞] is defined by 1
q + 1

q′ = 1.

Proof. It suffices to write

|f(y1, . . . , yk)− f(y′1, . . . , y
′
k)|

⩽ |f(y1, y2 . . . , yk)− f(y′1, y2, . . . , yk)|+ · · ·+ |f(y′1, . . . , y′k−1, yk)− f(y′1, . . . , y
′
k−1, y

′
k)|

⩽
k∑

i=1

Lipyi
(f) dE(yi, y

′
i)

and to use the Hölder inequality.

Remark 15. The choice of a distance d
[q]

Ek on the tensor product Ek (i.e., the choice of q ∈ [1,+∞])

is far from being insignificant because, although all norms are equivalent in Ek, comparing them
gives constants depending on k. The choice thus becomes particularly meaningful when k is large.

Another remark is that the definition (??) is based on the usual ℓq norm, for q ∈ [1,+∞].
Other choices are possible, but in order to keep many of the statements further the convexity of
the norm is important.

Notation W
[q]
p . For all p, q ∈ [1,+∞], following Remark ??, hereafter we denote by W

[q]
p the

Wasserstein distance Wp on P(Ek) (defined by (??)) with respect to the distance d
[q]

Ek on Ek.

It follows from the usual inequalities for ℓq norms in IRk that q 7→ d
[q]

Ek is decreasing and

1 ⩽ q1 ⩽ q2 ⩽ +∞ ⇒ d
[q2]

Ek ⩽ d
[q1]

Ek ⩽ k
1
q1

− 1
q2 d

[q2]

Ek

and thus
1 ⩽ q1 ⩽ q2 ⩽ +∞ ⇒ W [q2]

p ⩽ W [q1]
p ⩽ k

1
q1

− 1
q2 W [q2]

p (101)

for any p ∈ [1,+∞]. These inequalities complement (??). For p fixed, in the family of distances

W
[q]
p , for q ∈ [1,+∞], the ℓ1 distance W

[1]
p is the weakest one. This is an important point because,

in the existing literature, very often the ℓ2 distance W
[2]
p is used, but in this work the use of q = 1

is crucial for some parts.

In all subsections hereafter, we fix an arbitrary p ∈ [1,+∞). The case p = +∞ is obtained by
taking the limit when it makes sense. We also fix an arbitrary q ∈ [1,+∞].

A.1.1 Convexity

Lemma 10 ((Wp)
p is convex). Given any µ1, µ2, µ

′
1, µ

′
2 ∈ P(E) and any λ ∈ [0, 1], we have

Wp(λµ1 + (1− λ)µ2, λµ
′
1 + (1− λ)µ′

2)
p ⩽ λWp(µ1, µ

′
1)

p + (1− λ)W1(µ2, µ
′
2)

p.

Proof. This result is a particular case of [?, Part I, Chapter 4, Theorem 4.8]. Let Πi be an optimal
coupling between µi and µ′

i, for i = 1, 2. Then Π = λΠ1 + (1− λ)Π2 couples λµ1 + (1− λ)µ2 and
λµ′

1 + (1− λ)µ′
2 (maybe not optimally). Hence

Wp(λµ1 + (1− λ)µ2, λµ
′
1 + (1− λ)µ′

2)
p ⩽

∫
E

dE(x, x
′)p dΠ(x, x′)

= λ

∫
E

dE(x, x
′)p dΠ1(x, x

′)+(1−λ)

∫
E

dE(x, x
′)p dΠ2(x, x

′) = λWp(µ1, µ
′
1)

p+(1−λ)W1(µ2, µ
′
2)

p

and the lemma follows.
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Lemma 11. Let µ1, µ2, β ∈ P(E) and let ε ∈ (0, 1] be such that µ1 = (1 + ε)µ2 − εβ. Then

Wp(µ1, µ2) ⩽ ε1/pWp(µ1, β)

and, assuming that ε < 1,

Wp(µ1, µ2) ⩽
ε1/p

1− ε1/p
Wp(µ2, β).

In the particular case p = 1, we have W1(µ1, µ2) = εW1(µ2, β).

Proof. We have µ2 = 1
1+εµ1 + ε

1+εβ (convex combination), and applying Lemma ?? we get
Wp(µ1, µ2)

p ⩽ ε
1+εWp(µ1, β)

p ⩽ εWp(µ1, β)
p, and the first inequality follows. The second in-

equality is obtained by using the triangular inequality Wp(µ1, β) ⩽ Wp(µ1, µ2)+Wp(µ2, β). When
p = 1, given any f ∈ C 0

c (E), we have
∫
E
f d(µ1 −µ2) = ε

∫
E
f d(µ2 − β), and taking (in two steps)

the supremum over all f such that Lip(f) ⩽ 1, we get W1(µ1, µ2) = εW1(µ2, β).

A.1.2 Symmetrization

Let N ∈ IN∗ be arbitrary. Given any µ ∈ P(EN ), the measure µs ∈ P(EN ), called the symmetriza-
tion under permutations of µ, is defined by

µs =
1

N !

∑
σ∈SN

σ∗µ (102)

where the measure σ∗µ is defined by ⟨σ∗µ, f⟩ = ⟨µ, σ∗f⟩ and (σ∗f)(y) = f(σ · y), with σ · y =
(yσ(1), . . . , yσ(N)) for every y ∈ EN and for every σ ∈ SN , where SN is the group of permutations
of N elements. Here, ⟨ , ⟩ is the duality bracket. Equivalently,∫

EN

f(y) dµs(y) =
1

N !

∑
σ∈SN

∫
EN

f(σ · y) dµ(y) ∀f ∈ C 0
c (E

N ).

Lemma 12. Given any µ1, µ2 ∈ P(EN ), we have

W [q]
p (µs

1, µ
s
2) ⩽ W [q]

p (µ1, µ2).

In this lemma, the Wasserstein distance Wp is computed with respect to the ℓq distance d
[q]

EN .

Proof. This follows from Lemma ??, since µs is written as the convex combination (??), noting

that W
[q]
p (σ∗µ1, σ∗µ2) = W

[q]
p (µ1, µ2) for any σ ∈ SN because the distance d

[q]

EN defined by (??)
is itself symmetric and because, for any Π coupling µ1 and µ2 and for any σ ∈ SN , (σ ⊗ σ)∗Π
couples σ∗µ1 and σ∗µ2.

A.1.3 Marginals

Let N ∈ IN∗ be arbitrary. Given any µ ∈ P(EN ) and any k ∈ {1, . . . , N}, the kth-order marginal
µN :k ∈ P(Ek) of µ is the image of µ under the canonical projection πk : EN = Ek ×EN−k → Ek.

Lemma 13. Given any µ1, µ2 ∈ P(EN ) and any k ∈ {1, . . . , N}, we have

W [q]
p ((µ1)N :k, (µ2)N :k) ⩽ W [q]

p (µ1, µ2). (103)

The Wasserstein distance at the left-hand (resp., right-hand) side of (??) is computed with

respect to the ℓq distance d
[q]

Ek (resp., d
[q]

EN ). We will establish in Lemma ?? in Appendix ?? a
stronger estimate when µ1 and µ2 are symmetric.
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Proof. Let Π be an optimal coupling between µ1 and µ2. Then, obviously, (πk)∗Π couples (maybe
not optimally) (πk)∗µ1 = (µ1)N :k and (πk)∗µ2 = (µ2)N :k. Therefore

W [q]
p ((µ1)N :k, (µ2)N :k)

p ⩽
∫
Ek

d
[q]
Ek

((y1, . . . , yk), (y
′
1, . . . , y

′
k))

p d(πk)∗Π((y1, . . . , yk), (y
′
1, . . . , y

′
k))

⩽
∫
EN

d
[q]
Ek

(πk(y), πk(y
′))p dΠ(y, y′)

⩽
∫
EN

d
[q]
EN

(y, y′)p dΠ(y, y′) = W [q]
p (µ1, µ2)

p

where we have used that d
[q]
Ek

(πk(y), πk(y
′)) ⩽ d

[q]
EN

(y, y′).

A.1.4 Tensor product

Let k ∈ IN∗. For every i ∈ {1, . . . , k}, let Ei be a Polish space, endowed with a distance dEi
. We

endow the product space E1 × · · · × Ek with the distance

d
[q]
E1×···×Ek

(y, y′) = ∥(dE1
(y1, y

′
1), . . . ,dEk

(yk, y
′
k))∥ℓq =


( k∑

i=1

dEi(yi, y
′
i)

q

)1/q

if 1 ⩽ q < +∞

max
1⩽i⩽k

dEi(yi, y
′
i) if q = +∞

(104)
for all y = (y1, . . . , yk), y

′ = (y′1, . . . , y
′
k) ∈ E1 × · · · × Ek.

Lemma 14. Given any µ1, µ
′
1 ∈ P(E1), . . ., µk, µ

′
k ∈ P(Ek), we have, for every j ∈ {1, . . . , k},

Wp(µj , µ
′
j) ⩽ W [q]

p

(
k
⊗
i=1

µi ,
k
⊗
i=1

µ′
i

)
⩽ max

(
k

1
q−

1
p , 1
)( k∑

i=1

Wp(µi, µ
′
i)

p

)1/p

(105)

and the right-hand side inequality in (??) is an equality if p = q.
Taking Ei = E, dEi = dE, µi = µ and µ′

i = µ′ for every i ∈ {1, . . . , n}, we have the slightly
stronger inequality

W [q]
p (µ⊗k, (µ′)⊗k) ⩽ k1/q Wp(µ, µ

′) (106)

and the inequality is an equality if p = q.

Lemma ?? can be found in [?].
The Wasserstein distance Wp at the left-hand side of (??) is computed with respect to the

distance dEj
. The Wasserstein distance W

[q]
p in the middle of (??) is computed with respect to

the distance d
[q]
E1×···×Ek

defined by (??).

The Wasserstein distance W
[q]
p at the left-hand side of (??) is computed with respect to the

distance d
[q]

Ek defined by (??). Recall that q ∈ [1,+∞] has been chosen arbitrarily to define this

distance. At the right-hand side of (??), if q = +∞ then k1/q = 1.

Remark 16. As a particular case of (??), taking k = 2 and µ2 = µ′
2 = µ, we have

Wp(µ1, µ
′
1) ⩽ W [q]

p (µ1 ⊗ µ, µ′
1 ⊗ µ) = W [q]

p (µ⊗ µ1, µ⊗ µ′
1) ⩽ max

(
2

1
q−

1
p , 1
)
Wp(µ1, µ

′
1).

In particular, if p ⩽ q then Wp(µ1, µ
′
1) = W

[q]
p (µ1 ⊗ µ, µ′

1 ⊗ µ) = W
[q]
p (µ⊗ µ1, µ⊗ µ′

1).
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Proof. We have Wp(µj , µ
′
j) ⩽ W

[q]
p

( k
⊗
i=1

µi ,
k
⊗
i=1

µ′
i

)
for every i ∈ {1, . . . , k}: this is proved like in

Lemma ?? because µj is the marginal on Ej of the measure
k
⊗
i=1

µi on E, and similarly for µ′
j .

Therefore the left-hand side inequality in (??) follows.
Let us now establish the right-hand side inequality in (??), for q < +∞. For every i ∈ {1, . . . , k},

let Πi be an optimal coupling between µi and µ′
i. Then, obviously, Π =

k
⊗
i=1

Πi couples (maybe not

optimally)
k
⊗
i=1

µi and
k
⊗
i=1

µ′
i. Therefore

W [q]
p

(
k
⊗
i=1

µi ,
k
⊗
i=1

µ′
i

)p

⩽
∫
E1×E1

· · ·
∫
Ek×Ek

( k∑
i=1

dEi
(yi, y

′
i)

q

)p/q

dΠk(yk, y
′
k) · · · dΠ1(y1, y

′
1).

If p ⩾ q, using the convexity inequality (|a1| + · · · + |ak|)r ⩽ kr−1 (|a1|r + · · ·+ |ak|r) for r ⩾ 1
(with equality for r = 1), we obtain

W [q]
p

(
k
⊗
i=1

µi ,
k
⊗
i=1

µ′
i

)p

⩽ k
p
q−1

k∑
i=1

Wp(µi, µ
′
i)

p

and the inequality is an equality if p = q because in this case Π is an optimal coupling. If p ⩽ q,
using the inequality (|a1|+ · · ·+ |ak|)1/r ⩽ |a1|1/r + · · ·+ |ak|1/r for r ⩾ 1, we obtain

W [q]
p

(
k
⊗
i=1

µi ,
k
⊗
i=1

µ′
i

)p

⩽
k∑

i=1

Wp(µi, µ
′
i)

p.

All in all, we have established (??).
To prove (??), using the definition (??) of Wp, we note that

W [q]
p (µ⊗k, (µ′)⊗k)p ⩽ E

( k∑
i=1

dE(Y, Y
′)q
)p/q

= kp/q EdE(Y, Y ′)p = kp/q Wp(µ, µ
′)p

where Y and Y ′ are random variables (with values in E) of laws µ and µ′, such that Wp(µ, µ
′)p =

EdE(Y, Y ′)p.

A.1.5 Diameter of the support

Lemma 15. Given any µ1, µ2 ∈ Pc(E), we have

Wp(µ1, µ2) ⩽ diamE(supp(µ1) ∪ supp(µ2)) = max{dE(y, y′) | y, y′ ∈ supp(µ1) ∪ supp(µ2)}.

Proof. By (??), since Wp(µ1, µ2)
p is the infimum of

∫
E2 dE(y, y

′)p dΠ(y, y′) over all probability
measures Π on E2 coupling µ1 and µ2, we haveWp(µ1, µ2) ⩽ max{dE(y1, y2) | y1 ∈ supp(µ1), y2 ∈
supp(µ2)}, and the result follows.

A.1.6 Propagation

In this section, we assume that E is a Banach space, endowed with a norm ∥·∥E . Let also Λ (space
of parameters) be a Polish space, endowed with a distance dΛ. The space Λ× E is endowed with
the distance dΛ×E = dΛ + dE , where dE is the distance on E induced by the norm ∥ · ∥E .
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Lemma 16. For i = 1, 2, let Y i(t, λ, ·) be a continuous time-varying vector field on E, depending
on the parameter λ ∈ Λ, locally Lipschitz with respect to (λ, y) ∈ Λ×E uniformly with respect to t
on any compact interval, generating a flow (Φi(t, t0, λ, ·))t∈IR (assumed to be well defined for every
t ∈ IR) for any t0 ∈ IR, that is,

∂tΦ
i(t, t0, λ, y) = Y i(t, λ,Φi(t, t0, λ, y))

Φi(t0, t0, λ, y) = y

for all t, t0 ∈ IR, y ∈ E and λ ∈ Λ. Given any t0 ∈ IR and any µ1(t0), µ
2(t0) ∈ Pc(Λ × E),

we set µi
t = µi(t) = Φi(t, t0)∗µ

i(t0) for every t ⩾ t0, for i = 1, 2; this notation means, denoting
by νi the (constant in time) marginal of µi(t) on Λ and disintegrating µi

t =
∫
Λ
µi
t,λ dν

i(λ), that

µi
t,λ = Φi(t, t0, λ, ·)∗µi(t0) for νi-almost every λ ∈ Λ. For every p ∈ [1,+∞), we have

Wp(µ
1(t), µ2(t)) ⩽ e(t−t0)L([t0,t])Wp(µ

1(t0), µ
2(t0)) +M([t0, t])

e(t−t0)L([t0,t]) − 1

L([t0, t])
(107)

for every t ⩾ t0, where
8

L([t0, t]) = max
t0⩽τ⩽t

Lip
(
Y 1(τ, ·, ·)|S(τ)

)
, (108)

S(t) = (supp(ν1) ∪ supp(ν2))× Φ1(t, t0, supp(µ
1(t0)) ∪ supp(µ2(t0))) ∪ supp(µ2(t)),

M([t0, t]) = max{∥Y 1(τ, λ, y)− Y 2(τ, λ, y)∥E | t0 ⩽ τ ⩽ t, (λ, y) ∈ supp(µ2(τ))}. (109)

Alternatively, the second term at the right-hand side of (??) can be replaced by

Mp([t0, t])(t− t0)
1/p

(
e(t−t0)p

′L([t0,t]) − 1

p′L([t0, t])

)1/p′

(110)

where 1
p + 1

p′ = 1 and

Mp([t0, t]) = max
t0⩽τ⩽t

(∫
Λ×E

∥Y 1(τ, λ, y)− Y 2(τ, λ, y)∥pE dµ2
τ (λ, y)

)1/p

. (111)

Some remarks are in order:
– In (??) (and in (??)), it is understood that if L([t0, t]) = 0 then e(t−t0)L([t0,t])−1

L([t0,t])
is replaced by

t−t0. Lemma ?? extends [?, Proposition 4] to the case with parameters and to the local Lipschitz
case; also, the alternative (not usual) estimate with (??) is useful to derive some results of this
paper.

– If Y 1 = Y 2 then M(·) = 0.
– When t0 = 0, we denote Φi(t, λ, y) = Φi(t, 0, λ, y), L(t) = L([0, t]) and M(t) = M([0, t]).
– Finally, it is interesting to observe that, in Lemma ??, actually only the first vector field Y 1 is

required to be locally Lipschitz. Concerning the second, it is only required that Y 2 is regular
enough so that (??) is well defined, and also that the flow Φ2 is well defined.

Proof. Given any (λ1, y1) ∈ supp(µ1(t0)) and (λ2, y2) ∈ supp(µ2(t0)), using (??) we have

∂t
∥∥Φ1(t, t0, λ1, y1)− Φ1(t, t0, λ2, y2)

∥∥
E

⩽ ∥Y 1(t, λ1,Φ
1(t, t0, λ1, y1))− Y 1(t, λ2,Φ

1(t, t0, λ2, y2))∥E
⩽ L([t0, t])

(
dΛ(λ1, λ2) +

∥∥Φ1(t, t0, λ1, y1)− Φ1(t, t0, λ2, y2)
∥∥
E

)
8Note that S(t) is compact and that Φi(t, t0, supp(µi(t0))) = supp(µi(t)).
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because Φ1(t, t0, λ1, y1) ∈ Φ1(t, t0, supp(µ
1(t0))) and Φ1(t, t0, λ2, y2)) ∈ Φ1(t, t0, supp(µ

2(t0))) (this
motivates the definition of S(t)), and by integration we get that

dΛ(λ1, λ2) +
∥∥Φ1(t, t0, λ1, y1)− Φ1(t, t0, λ2, y2)

∥∥
E
⩽ e(t−t0)L([t0,t]) (dΛ(λ1, λ2) + ∥y1 − y2∥E)

(112)
for every t ⩾ t0, for i = 1, 2 (we have used the fact that t 7→ L([t0, t]) is nondecreasing).

Taking an optimal coupling Πt0 ∈ P((Λ×E)2) between µ1(t0) and µ2(t0), the probability mea-
sure Πt = (Φ1(t, t0) ⊗ Φ2(t, t0))∗Πt0 couples (maybe not optimally) µ1(t) with µ2(t).9 Therefore,
using the definition (??) of Wp,

Wp(µ
1(t), µ2(t))p

⩽
∫
(Λ×E)2

(dΛ(λ1, λ2) + ∥y1 − y2∥E)p dΠt(λ1, y1, λ2, y2)

=

∫
(Λ×E)2

(
dΛ(λ1, λ2) + ∥Φ1(t, t0, λ1, y1)− Φ2(t, t0, λ2, y2)∥E

)p
dΠt0(λ1, y1, λ2, y2)

⩽
∫
(Λ×E)2

(
dΛ(λ1, λ2) + ∥Φ1(t, t0, λ1, y1)− Φ1(t, t0, λ2, y2)∥E

+ ∥Φ1(t, t0, λ2, y2)− Φ2(t, t0, λ2, y2)∥E
)p

dΠt0(λ1, y1, λ2, y2)

and thus, and using the triangular inequality in Lp, we get

Wp(µ
1(t), µ2(t))

⩽

(∫
(Λ×E)2

(
dΛ(λ1, λ2) + ∥Φ1(t, t0, λ1, y1)− Φ1(t, t0, λ2, y2)∥E

)p
dΠt0(λ1, y1, λ2, y2)

)1/p

+

(∫
(Λ×E)2

∥Φ1(t, t0, λ2, y2)− Φ2(t, t0, λ2, y2)∥pE dΠt0(λ1, y1, λ2, y2)

)1/p

(113)

Using (??), the first term of the sum at the right-hand side of (??) is less than or equal to

e(t−t0)L([t0,t])

(∫
(Λ×E)2

(dΛ(λ1, λ2) + ∥y1 − y2∥E)p dΠt0(λ1, y1, λ2, y2)

)1/p

= e(t−t0)L([t0,t])Wp(µ
1(t0), µ

2(t0)),

the latter equality being because Πt0 is an optimal coupling between µ1(t0) and µ2(t0).
To treat the second term, we first observe that, for (λ, y) ∈ supp(µ2(t0)),

∂t∥Φ1(t, t0, λ, y)− Φ2(t, t0, λ, y)∥E ⩽ ∥Y 1(t, λ,Φ1(t, t0, λ, y))− Y 1(t, λ,Φ2(t, t0, λ, y))∥E
+ ∥Y 1(t, λ,Φ2(t, t0, λ, y))− Y 2(t, λ,Φ2(t, t0, λ, y))∥E

⩽ L([t0, t])∥Φ1(t, t0, λ, y)− Φ2(t, t0, λ, y)∥E
+ ∥Y 1(t, λ,Φ2(t, t0, λ, y))− Y 2(t, λ,Φ2(t, t0, λ, y))∥E

where we have used (??), noting that (λ,Φ1(t, t0, λ, y)) ∈ S(t) and (λ,Φ2(t, t0, λ, y)) ∈ S(t), and
thus, using the Gronwall lemma and the fact that τ 7→ L([t0, τ ]) is nondecreasing,

∥Φ1(t, t0, λ, y)− Φ2(t, t0, λ, y)∥E

⩽
∫ t

t0

e(t−τ)L([t0,t])∥Y 1(τ, λ,Φ2(τ, t0, λ, y))− Y 2(τ, λ,Φ2(τ, t0, λ, y))∥E dτ. (114)

9Indeed, denoting by πi the projection of (Λ×E)2 onto the ith-copy of Λ×E, we have πi ◦ (Φ1 ⊗Φ2) = Φi ◦ πi.
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Using the definition (??) of M([t0, t]) and the fact that Φ2(τ, t0, supp(µ
2(t0))) = supp(µ2(τ)), we

get

∥Φ1(t, t0, λ, y)− Φ2(t, t0, λ, y)∥E ⩽ M([t0, t])
e(t−t0)L([t0,t]) − 1

L([t0, t])
.

Therefore, the second term of the sum at the right-hand side of (??) is estimated by

(∫
(Λ×E)2

∥Φ1(t, t0, λ2, y2)− Φ2(t, t0, λ2, y2)∥pE dΠt0(λ1, y1, λ2, y2)

)1/p

=

(∫
Λ×E

∥Φ1(t, t0, λ, y)− Φ2(t, t0, λ, y)∥pE dµ2
t0(λ, y)

)1/p

⩽ M([t0, t])
e(t−t0)L([t0,t]) − 1

L([t0, t])

where we have used that the second marginal of Πt0 is µ2
t0 = µ2(t0). The estimate (??) follows.

To obtain the alternative estimate with the term (??), we apply the Hölder inequality to the
right-hand side of (??), obtaining

∥Φ1(t, t0, λ, y)− Φ2(t, t0, λ, y)∥E

⩽

(
ep

′(t−t0)L([t0,t]) − 1

p′L([t0, t])

)1/p′(∫ t

t0

∥Y 1(τ, λ,Φ2(τ, t0, λ, y))− Y 2(τ, λ,Φ2(τ, t0, λ, y))∥pE dτ

)1/p

.

Therefore, the second term of the sum at the right-hand side of (??) is estimated by(∫
(Λ×E)2

∥Φ1(t, t0, λ2, y2)− Φ2(t, t0, λ2, y2)∥pE dΠt0(λ1, y1, λ2, y2)

)1/p

=

(∫
Λ×E

∥Φ1(t, t0, λ, y)− Φ2(t, t0, λ, y)∥pE dµ2
t0(λ, y)

)1/p

⩽

(
ep

′(t−t0)L([t0,t]) − 1

p′L([t0, t])

)1/p′ (∫ t

t0

∫
Λ×E

∥Y 1(τ, λ,Φ2(τ, t0, λ, y))

− Y 2(τ, λ,Φ2(τ, t0, λ, y))∥pE dµ2
t0(λ, y) dτ

)1/p

⩽

(
ep

′(t−t0)L([t0,t]) − 1

p′L([t0, t])

)1/p′ (∫ t

t0

∫
Λ×E

∥Y 1(τ, λ, y)− Y 2(τ, λ, y)∥pE dµ2
τ (λ, y) dτ

)1/p

⩽

(
ep

′(t−t0)L([t0,t]) − 1

p′L([t0, t])

)1/p′

(t− t0)
1/pMp([t0, t])

The lemma is proved.

Lemma 17. Let Y (t, λ, ·) be a continuous time-varying vector field on E, depending on the param-
eter λ ∈ Λ, locally Lipschitz with respect to y ∈ E uniformly with respect to (t, λ) on any compact,
generating a flow (Φ(t, t0, λ, ·))t∈IR (assumed to be well defined for every t ∈ IR) for any t0 ∈ IR (as
in Lemma ??). Given any t0 ∈ IR and any µt0 ∈ Pc(Λ × E), we set µ(t) = Φ(t, t0)∗µt0 for every
t ⩾ t0. For every p ∈ [1,+∞), we have

Wp(µ(t), µ(t0)) ⩽ M([t0, t])|t− t0| ∀t ⩾ t0

where M([t0, t]) = max {∥Y (τ, λ, y)∥ | t0 ⩽ τ ⩽ t, (λ, y) ∈ supp(µ(τ))}.
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Proof. It would suffice to apply Lemma ?? with Y 1 = 0 and Y 2 = Y , if Y were also Lipschitz
with respect to λ (or, to adapt this lemma to vector fields that depend only continuously on λ).
Without this assumption, let us give a quick proof. We first establish the following general result.

Lemma 18. Let F be a Polish space, endowed with a distance dF , let µ ∈ Pc(F ) and let ϕ : F → F
be a measurable mapping. For every p ∈ [1,+∞), we have

Wp(ϕ∗µ, µ) ⩽

(∫
F

dF (y, ϕ(y))
p dµ(y)

)1/p

Proof of Lemma ??. With a slight abuse of notation, we define Π ∈ P(F × F ) by Π(y, y′) =
µ(y) δy′=Φ(y). Since we also have Π = (Φ∗µ)(y

′) δy′=Φ(y), it follows that Π couples µ and ϕ∗µ.
Therefore Wp(ϕ∗µ, µ)

p ⩽
∫
F 2 dF (y, y

′)p dΠ(y, y′) =
∫
F
dF (y, ϕ(y))

p dµ(y). Lemma ?? is proved.

Applying Lemma ?? with F = Λ× E, µ = µt0 and ϕ = Φ(t, t0), we have

Wp(µ(t), µ(t0))
p ⩽

∫
Λ×E

dΛ×E((λ, y), (λ,Φ(t, t0, λ, y)))
p dµt0(λ, y)

and we note that dΛ×E((λ, y), (λ,Φ(t, t0, λ, y))) = ∥Φ(t, t0, λ, y) − y∥. Now, since Φ(t, t0, λ, y) =

y +
∫ t

t0
Y (τ, λ,Φ(τ, t0, λ, y)) dτ and supp(µ(t)) = Φ(t, t0, supp(µt0)), Lemma ?? easily follows.

A.1.7 Moment of order one

Let Ω be a polish space and let d ∈ IN∗.

Lemma 19. For i = 1, 2, let µi ∈ Pc(Ω× IRd), disintegrated as µi =
∫
Ω
(µi)x dνi(x) with respect to

its marginal νi on Ω, and let yi be the moment of order one of µi, defined by yi(x) =
∫
IRd ξ d(µi)x(ξ)

for νi-almost every x ∈ Ω. Then

W1(y1ν1, y2ν2) ⩽ W1(µ1, µ2).

Proof. By the definition (??) of W1, we have W1(y1ν1, y2ν2) =
∫
Ω
y1g dν1−

∫
Ω
y2g dν2 for some g ∈

Lip(Ω) such that Lip(g) ⩽ 1. Hence W1(y1ν1, y2ν2) =
∫
Ω×IRd f d(µ1 − µ2) where f(x, ξ) = g(x)ξ.

Since f ∈ Lip(Ω× IRd) and Lip(f) ⩽ 1, the result follows.

A.2 More precise facts on the marginals of a symmetrization

Let N ∈ IN∗ be arbitrary. Recall that the symmetrization of a measure is defined by (??) (see
Appendix ??).

A.2.1 First marginal of the symmetrization

For every i ∈ {1, . . . , N}, we denote by pi the projection of EN onto the ith copy of E, i.e., in
coordinates, pi(y) = yi.

Lemma 20. Let µ ∈ P(EN ) be arbitrary.

� The first marginal µs
N :1 = p1∗µ

s of the symmetrization µs of µ is given by

µs
N :1 =

1

N

N∑
i=1

pi∗µ

where pi∗µ is the image of µ under the projection pi. In other words, µs
N :1 is the average of

the marginals of µ on the copies of E.
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� We have pi∗µ
s =

1

N

N∑
j=1

pj∗µ
s for every i ∈ {1, . . . , N} and thus pi∗µ

s does not depend on i.

In other words, the marginals of a symmetric measure on the copies of E are all equal; the
same is true for the marginals of higher order.

Proof. Given any f ∈ C 0
c (E), we have

⟨µs
N :1, f⟩ = ⟨p1∗µs, f⟩ = ⟨µs, (p1)∗f⟩ = 1

N !

∑
σ∈SN

⟨σ∗µ, (p
1)∗f⟩ = 1

N !

∑
σ∈SN

⟨µ, σ∗(p1)∗f⟩

=
1

N !

∑
σ∈SN

∫
EN

f ◦ p1(σ · y) dµ(y) = 1

N !

∑
σ∈SN

∫
EN

f(yσ(1)) dµ(y)

When designing a permutation σ ∈ SN , we have N choices for σ(1), among {1, . . . , N}, and the
rest is a permutation of N − 1 elements. Since card(SN−1) = (N − 1)!, we get that

⟨µs
N :1, f⟩ =

1

N

N∑
i=1

∫
EN

f(yi) dµ(y) =
1

N

N∑
i=1

∫
EN

f ◦ pi(y) dµ(y) = 1

N

N∑
i=1

⟨pi∗µ, f⟩

whence the first item.
The second item is proved in the same way, replacing µ by µs.

A.2.2 Marginals of symmetric measures

We have seen in Lemma ?? (Appendix ??) that W
[q]
p ((µ1)N :k, (µ2)N :k) ⩽ W

[q]
p (µ1, µ2), for every

k ∈ {1, . . . , N}, for any µ1, µ2 ∈ P(EN ). We have a stronger estimate when µ1 and µ2 are
symmetric, i.e., when µ1 = µs

1 and µ2 = µs
2.

Lemma 21. Let µ1, µ2 ∈ P(EN ) be symmetric measures. Then, for any k ∈ {1, . . . , N},

W [q]
p ((µ1)N :k, (µ2)N :k) ⩽

(
k

N

)1/q

W [q]
p (µ1, µ2). (115)

In (??), the W
[q]
p distances are computed with respect to the ℓq distances d

[q]

Ek and d
[q]

EN defined
by (??).

Proof. Assume that q < +∞ (for q = +∞, it suffices to take limits). Let Π ∈ P((EN )2) be an

optimal coupling between µ1 and µ2 for the W
[q]
p distance, i.e., using the definitions (??) and (??)

of W
[q]
p ,

W [q]
p (µ1, µ2)

p =

∫
(EN )2

(
N∑
i=1

dE(y
1
i , y

2
i )

q

)p/q

dΠ(y1, y2) = E

(
N∑
i=1

dE(Y
1
i , Y

2
i )

q

)p/q

where yj = (yj1, . . . , y
j
N ) for j = 1, 2, and where the Y j

i are random variables of laws the respective
marginals of Π. Using that the cost is symmetric, without loss of generality we assume that Π is
symmetric, i.e., Π = (σ ⊗ σ)∗Π for every σ ∈ SN (the symmetrization is performed in each copy
EN of (EN )2). By an obvious adaptation of Lemma ?? in Appendix ??, the marginals of Π (which
are, accordingly, probability measures on E2, by considering the product of the ith copy of E with
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the ith copy of E) are all equal. The same is true for the marginals of higher order. It follows that
Y 1
i and Y 2

i do not depend on i and thus

W [q]
p (µ1, µ2)

p = Np/q EdE(Y
1
1 , Y

2
1 )

p = Np/q

∫
E2

dE(y
1
1 , y

2
1)

p dΠN :1(y
1
1 , y

2
1)

=

(
N

k

)p/q

E

(
k∑

i=1

dE(Y
1
i , Y

2
i )

q

)p/q

=

(
N

k

)p/q ∫
(Ek)2

d
[q]

Ek(y
1, y2)p dΠN :k(y

1, y2)

for every k ∈ {1, . . . , N}. The latter quantity is greater than or equal to W
[q]
p ((µ1)N :k, (µ2)N :k)

p

because ΠN :k couples (µ1)N :k and (µ2)N :k. The lemma follows.

A.2.3 A technical lemma towards propagation of chaos

Lemma 22. Let µ1, . . . , µN ∈ P(E), and let ρ ∈ P(EN ) be defined by

ρ = µ1 ⊗ · · · ⊗ µN .

The symmetrization of ρ is given by

ρs =
1

N !

∑
σ∈SN

µσ(1) ⊗ · · · ⊗ µσ(N). (116)

The first marginal ρsN :1 ∈ P(E) of ρs is

ρsN :1 =
1

N

N∑
i=1

µi (117)

and, for every k ∈ {2, . . . , N}, its kth-order marginal ρsN :k ∈ P(E) is

ρsN :k = (1 + εk) (ρ
s
N :1)

⊗k − εkβk (118)

where

εk =
Nk(N − k)!

N !
− 1 ∈

[
0, e

k2

2N − 1
]

(119)

and

βk =
1

εk

(N − k)!

N !

∑
µi1 ⊗ · · · ⊗ µik ∈ P(Ek) (120)

where the sum in (??) is taken over all k-tuples (i1, . . . , ik) ∈ {1, . . . , N}k for which at least two
elements are equal. For every p ∈ [1,+∞), for every k ∈ IN∗ such that k2 ⩽ 2N ln

(
1 + 1

2p

)
, we

have

W [q]
p

(
ρsN :k, (ρ

s
N :1)

⊗k
)
⩽ 2

(
k2

N

)1/p

W [q]
p

(
(ρsN :1)

⊗k, βk

)
(121)

and therefore, assuming moreover that µ1, . . . , µN ∈ Pc(E),

W [q]
p

(
ρsN :k, (ρ

s
N :1)

⊗k
)
⩽ 2k1/q

(
k2

N

)1/p

diamE

(
N⋃
i=1

supp(µi)

)
. (122)
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In (??) and (??), the Wasserstein distance W
[q]
p is computed with respect to the ℓq distance

d
[q]

Ek . The estimate (??) is used several times in the proofs of our main results, in an instrumental

way to express that, for N large, the kth-order marginal ρsN :k of the symmetric measure ρs is close
to the tensor power (ρsN :1)

⊗k, with an error that is precisely estimated.
The first part of the lemma, in particular the formulas (??) and (??), are certainly known by

experts and can be found, e.g., in [?, Section 3], for Dirac measures.

Proof. The formula (??) straightforwardly follows from (??), and the formula (??) follows from
Lemma ?? in Appendix ?? because pi∗ρ = µi.

Let us now compute the kth-order marginal ρsN :k of ρs, for every k ∈ {2, . . . , N}. Let INk be
the set of all k-tuples (i1, . . . , ik) consisting of distinct integers chosen in {1, . . . , N}. We have
card(INk ) = N !

(N−k)! . Denoting by Si1,...,ik
N the set of all σ ∈ SN such that (σ(1), . . . , σ(k)) =

(i1, . . . , ik), we have card(Si1,...,ik
N ) = (N − k)!. Now, since∑

σ∈SN

µσ(1) ⊗ · · · ⊗ µσ(N) =
∑

(i1,...,iN )∈IN
k

µi1 ⊗ · · · ⊗ µik ⊗
∑

σ∈S
i1,...,ik
N

µσ(n+1) ⊗ · · · ⊗ µσ(N)

we infer that

ρsN :k =
(N − k)!

N !

∑
(i1,...,ik)∈IN

k

µi1 ⊗ · · · ⊗ µik . (123)

Now, writing INk = {1, . . . , N}k \
(
{1, . . . , N}k \ INk

)
, we write the sum in (??) as a sum over

{1, . . . , N}k minus a sum over {1, . . . , N}k \ INk (where at least two of the indices are equal). For
the first sum, we have

∑
(i1,...,ik)∈{1,...,N}k

µi1 ⊗ · · · ⊗ µik =

( N∑
i=1

µi

)⊗k

= Nk (ρsN :1)
⊗k

. (124)

We infer from (??) and (??) that

ρsN :k =
Nk(N − k)!

N !
(ρsN :1)

⊗k − (N − k)!

N !
β

where
β =

∑
(i1,...,ik)∈{1,...,N}k\IN

k

µi1 ⊗ · · · ⊗ µik

is a nonnegative Radon measure of total mass |β| = card({1, . . . , N}k\INk ) = Nk− (N−k)!
N ! . Besides,

we have

1 ⩽
Nk(N − k)!

N !
=

Nk

N(N − 1) · · · (N − k + 1)
=

1∏k−1
i=1

(
1− i

N

) ⩽ e
k2

2N

where we have used the inequality

ln

k−1∏
i=1

(
1− i

N

)
= −

k−1∑
i=1

ln

(
1− i

N

)
⩾ − 1

N

k−1∑
i=1

i = − (k − 1)k

N
⩾ − k2

2N
.

Therefore, defining εk by (??) and

βk =
1

εk

(N − k)!

N !
β ∈ P(IRdk),
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we obtain ρsN :k = (1+ εk) (ρ
s
N :1)

⊗k − εkβk, which is (??). Then, applying Lemma ?? in Appendix

??, using that εk < 1 if ek
2/2N − 1 < 1, or equivalently, k2 < 2N ln(2), we obtain that

W [q]
p ((ρsN :1)

⊗k, ρsN :k) ⩽
ε
1/p
k

1− ε
1/p
k

W [q]
p ((ρsN :1)

⊗k, βk) if k2 < 2 ln(2)N. (125)

The estimate (??) is now inferred from (??) as follows: if k2 ⩽ 2N ln(1+ 1
2p ) then ek

2/2N −1 ⩽ 1
2p ,

hence ε
1/p
k ⩽ 1

2 (using (??)) and thus
ε
1/p
k

1−ε
1/p
k

⩽ 2ε
1/p
k , and it follows from (??) that

W [q]
p ((ρsN :1)

⊗k, ρsN :k) ⩽ 2
(
e

k2

2N − 1
)1/p

W [q]
p ((ρsN :1)

⊗k, βk).

Using the inequality ex−1
x ⩽ 1/2p ln(1 + 1

2p ) ⩽ 2 for every x ∈ (0, ln(1 + 1
2p )], we obtain (??).

Let us finally establish (??). Using (??) and (??), which express (ρsN :1)
⊗k and βk as linear

combinations, applying two times Lemma ?? in Appendix ?? and then Lemma ?? in Appendix
??, we infer that

W [q]
p ((ρsN :1)

⊗k, βk) ⩽ max

(
k∑

i=1

dE(yi, y
′
i)

q

)1/q

⩽ k1/q diamE

(
N⋃
i=1

supp(µi)

)

where, above, the maximum has been taken over all possible yi, y
′
i ∈ supp(µi), for i ∈ {1, . . . , k}.

Then, (??) follows from (??) combined with the above inequality.

A.3 Density of empirical measures in the set of probability measures

Let E be a Polish space, endowed with a distance dE . For every N ∈ IN∗, let Y N = (yN1 , . . . , yNN ) ∈
EN , and define the empirical measure µe

Y N ∈ P(E) by

µe
Y N =

1

N

N∑
i=1

δyN
i
.

The points yNi are not required to be distinct, so that the empirical measure µe
Y N can equivalently

be defined as a convex combination with rational coefficients of Dirac masses. Note that∫
E

f dµe
Y N =

1

N

N∑
i=1

f(yNi ) ∀f ∈ C 0(E).

A sequence (µj)j∈IN∗ of P(E) converges weakly to µ ∈ P(E) if
∫
E
f dµj →

∫
E
f dµ as j → +∞

for any f ∈ Cb(E) (narrow convergence), where Cb(E) is the Banach space of bounded functions
on E.

Lemma 23. When E is compact, the set {µe
Y N | N ∈ IN∗, Y N ∈ EN} is weakly dense in P(E).

In other words, any probability measure on E is the weak limit of a sequence of empirical measures.

Proof. This is a well known consequence of the Krein-Milman theorem (see, e.g., [?, Lemma 7]).
Let us anyway recall a proof. The set P(E) is convex and weak star compact, and its extreme
points are Dirac masses. The Krein-Milman theorem implies that any µ ∈ P(E) is the limit of
a finite convex combination

∑
i λiδyi

of Dirac masses. By density of rationals, without loss of
generality we can moreover assume that λi ∈ Q. The statement follows.
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Recall that the Wasserstein distance Wp metrizes the weak convergence in Pp(E) (which also
entails the convergence of first moments), for any p ∈ [1,+∞). We have then the following variant
of the above lemma (see [?, Theorem 6.18]).

Lemma 24. The set {µe
Y N | N ∈ IN∗, Y N ∈ EN} is dense in Pp(E) for the Wasserstein

distance Wp. In other words, any µ ∈ Pp(E) is the limit of a sequence of empirical measures for
the Wasserstein distance Wp.

Proof. It suffices to consider R > 0 sufficiently large such that
∫
E\B(y0,R)

dE(y0, y)
p dµ(y) < ε, for

ε > 0 small enough, so that the argument can be performed in the compact set B(y0, R), and the
statement readily follows (see also [?, Chap. 5]).

There exist a number of results in the literature quantifying the convergence of empirical
measures µe

Y N towards µ ∈ P(E) and providing rates of convergence, most in a probabilistic
context, like [?] where Y consists of N random variables having the same distribution as µ. In the
result hereafter, Y is deterministic and the rate of convergence is the one obtained by Riemann
integration.

Lemma 25. Let µ ∈ Pc(E) and let N ∈ IN∗. We assume that there exists a family of tagged
partitions of supp(µ) associated with µ (see (??)), i.e., for every N ∈ IN∗ there exists a partition
of supp(µ) = ∪N

i=1F
N
i such that all subsets FN

i are µ-measurable, pairwise disjoint, µ(FN
i ) = 1

N ,

and satisfy diamE(F
N
i ) ⩽ CE

Nr for some CE > 0 not depending on N , and a N -tuple Y N =
(yN1 , . . . , yNN ) ∈ EN such that yNi ∈ FN

i for every i ∈ {1, . . . , N}. Then

W1(µ
e
Y N , µ) ⩽

CE

Nr

and thus also, using (??), Wp(µ
e
Y N , µ) ⩽ diamE(supp(µ))

1−1/p C
1/p
E

Nr/p , for any p ∈ [1,+∞).

Note that, when E is a finite-dimensional manifold, r = 1/ dim(E).
When one wants that the assumption on the tagged partition be satisfied for any N ∈ IN∗, this

requires that the mass of µ be quite well uniformly distributed; for instance it is satisfied if µ is
absolutely continuous with respect to a Lebesgue measure with a density that is bounded above
and below on supp(µ). This result is quite obvious and has nothing to see with much deeper and
general results like those of [?].

Proof. For every i ∈ {1, . . . , N}, we have
∫
Fi

f(yNi ) dµ(y) = f(yNi )µ(FN
i ) = 1

N f(yNi ) because

µ(FN
i ) = 1

N and thus, for every f ∈ Lip(E) such that Lip(f) ⩽ 1,

∣∣∣∣∫
E

f d(µ− µe
Y N )

∣∣∣∣ =
∣∣∣∣∣

N∑
i=1

∫
FN

i

f(y) dµ(y)− 1

N

N∑
i=1

f(yNi )

∣∣∣∣∣ =
∣∣∣∣∣

N∑
i=1

∫
FN

i

(f(y)− f(yNi )) dµ(y)

∣∣∣∣∣
⩽

N∑
i=1

∫
FN

i

|f(y)− f(yNi )| dµ(y) ⩽
N∑
i=1

∫
FN

i

dE(y, y
N
i ) dµ(y) ⩽

N∑
i=1

µ(FN
i ) diamE(F

N
i ) ⩽

CE

Nr

and the conclusion follows by taking the supremum over all f .

A.4 Convergence of empirical and semi-empirical measures

Let (Ω,dΩ) be a complete metric space and let ν ∈ Pc(Ω). We assume that there exists a family
of tagged partitions (AN , XN ) of supp(ν) associated with ν satisfying (??) (see Section ??), with
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AN = (ΩN
1 , . . . ,ΩN

N ) and XN = (xN
1 , . . . , xN

N ). We define the empirical measure νeXN ∈ P(Ω) by

νeXN =
1

N

N∑
i=1

δxN
i
.

Note that, when Ω is a n-dimensional manifold, one has r = 1/n in (??).

A.4.1 Convergence of empirical measures on Ω

Lemma 26. � Let f be a bounded and ν-almost everywhere continuous (i.e., ν-Riemann inte-
grable) function on Ω, of compact support. Then∫

Ω

f d(ν − νeXN ) =

∫
Ω

f dν − 1

N

N∑
i=1

f(xN
i ) = o(1) (126)

as N → +∞. As a consequence, νeXN converges weakly to ν as N → +∞; equivalently,
Wp

(
νeXN , ν

)
= o(1) as N → +∞.

� Given any α ∈ (0, 1] and any N ∈ IN∗, we have∣∣∣∣∣
∫
Ω

f dν − 1

N

N∑
i=1

f(xN
i )

∣∣∣∣∣ ⩽ Cα
Ω

Nrα
Holα(f) (127)

for every f ∈ C 0,α
c (Ω). As a consequence of (??) for α = 1, we have

W1 (ν
e
XN , ν) ⩽

CΩ

Nr
(128)

and thus also, using (??), Wp(ν
e
XN , ν) ⩽ diamΩ(supp(ν))

1−1/p C
1/p
Ω

Nr/p , for any p ∈ [1,+∞).

Proof. In the first item, (??) follows from the theorem of convergence of Riemann sums, as already
recalled in (??). Interpreted in terms of the empirical measure νeXN , this means that νeXN converges
weakly to ν as N → +∞. In accordance with the Portmanteau theorem (see, e.g., [?, Chapter 1,
Section 2, Theorem 2.1]), since Wp metrizes the weak convergence, we have Wp

(
νeXN , ν

)
= o(1) as

N → +∞ since supp(ν) is compact.

Writing
∫
Ω
f dν =

∑N
i=1

∫
ΩN

i
f dν and using that ν(ΩN

i ) = 1
N (thus 1

N f(xN
i ) =

∫
ΩN

i
f(xN

i ) dν(x))

and that diamΩ(Ω
N
i ) ⩽ CΩ

Nr (see (??)), we have∣∣∣∣∣
∫
Ω

f dν − 1

N

N∑
i=1

f(xi)

∣∣∣∣∣ =
∣∣∣∣∣

N∑
i=1

∫
ΩN

i

(f(x)− f(xN
i )) dν(x)

∣∣∣∣∣ ⩽
N∑
i=1

∫
ΩN

i

|f(x)− f(xN
i )| dν(x)

⩽ Holα(f)

N∑
i=1

∫
ΩN

i

dΩ(x, x
N
i )α dν(x) ⩽ Holα(f)

N∑
i=1

ν(ΩN
i ) diamΩ(Ω

N
i )α ⩽

Cα
Ω

Nrα
Holα(f)

which gives (??). Taking α = 1, (??) follows by the definition (??) of W1.
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A.4.2 Convergence of semi-empirical measures

Let d ∈ IN∗. Let µ ∈ Pc(Ω × IRd), disintegrated as µ =
∫
Ω
µx dν(x) with respect to its marginal

ν = π∗µ on Ω. We define the semi-empirical measure µse
XN ∈ P(Ω× IRd) by

µse
XN =

1

N

N∑
i=1

δxN
i
⊗ µxN

i
=

∫
Ω

µx dν
e
XN (x).

Its marginal on Ω is the empirical measure νeXN . In other words, the disintegration of µse
XN

with respect to νeXN is the family of probability measures given by µxN
i

when x = xN
i for some

i ∈ {1, . . . , N} and 0 otherwise.

Lemma 27.

� We assume that x 7→ µx is ν-almost everywhere continuous for the Wasserstein distance W1

(equivalently, Wp). Let f be a bounded and µ-almost everywhere continuous (i.e., µ-Riemann

integrable) function on Ω× IRd, of compact support, Lipschitz with respect to ξ ∈ IRd with a
Lipschitz constant that is uniform with respect to x ∈ Ω. Then∫

Ω×IRd

f d(µ− µse
XN ) = o(1) (129)

as N → +∞. As a consequence, µse
XN converges weakly to µ; equivalently, Wp(µ

se
XN , µ) = o(1)

as N → +∞.

� We assume that x 7→ µx is Lipschitz for the Wasserstein distance W1, i.e., that there exists
L > 0 such that W1(µx, µy) ⩽ LdΩ(x, y) for ν-almost all x, y ∈ Ω. Then, given any N ∈ IN∗,∣∣∣∣∫

Ω×IRd

f d(µ− µse
XN )

∣∣∣∣ ⩽ (L+ 1)CΩ

Nr
Lip(f) (130)

for every f ∈ C 0
0 (Ω× IRd) ∩ Lip(Ω× IRd). As a consequence,

W1 (µ
se
XN , µ) ⩽

(L+ 1)CΩ

Nr
, (131)

and thus also, using (??), Wp(µ
se
XN , µ) ⩽ diamΩ×IRd(supp(µ))1−1/p ((L+1)CΩ)1/p

Nr/p , for any p ∈
[1,+∞).

Proof. Let f : Ω×IRd → IR be a bounded and µ-almost everywhere continuous function, of compact
support, Lipschitz with respect to ξ ∈ IRd. The function F defined by F (x) =

∫
IRd f(x, ξ) dµx(ξ)

is bounded on Ω, and

|F (x)− F (x′)| ⩽
∫
IRd

|f(x, ξ)− f(x′, ξ)| dµx(ξ) +

∣∣∣∣∫
IRd

f(x′, ξ) d(µx − µx′)(ξ)

∣∣∣∣
⩽
∫
IRd

|f(x, ξ)− f(x′, ξ)| dµx(ξ) +W1(µx, µx′) Lip(f(x′, ·))
(132)

for all x, x′ ∈ Ω. Now:

� First, if moreover x′ 7→ Lip(f(x′, ·)) is bounded on Ω and if x 7→ µx is ν-almost everywhere
continuous for the Wasserstein distance W1, then we infer from (??) that F is ν-almost
everywhere continuous. Therefore∫

Ω×IRd

f d(µ− µse
XN ) =

∫
Ω

F d(ν − νeXN ) =

∫
Ω

F dν − 1

N

N∑
i=1

F (xN
i ) = o(1)

as N → +∞ by convergence of Riemann sums (f and thus F being fixed), which gives (??).
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� Second, if f ∈ Lip(Ω × IRd) and if x 7→ µx is L-Lipschitz for the Wasserstein distance W1

then we infer from (??) that

|F (x)− F (x′)| ⩽ Lip(f) dΩ(x, x
′) +W1(µx, µx′) Lip(f) ⩽ Lip(f)(1 + L) dΩ(x, x

′)

and thus, using Lemma ??, that
∫
Ω
F d(ν − νeXN ) ⩽ CΩ

Nr Lip(F ), whence (??) and (??).

Remark 17. In the first item of Lemma ??, the boundedness assumption on f can be slightly
weakened to: x 7→ f(x, 0) bounded and µ ∈ P1(Ω × IRd). Indeed, writing |f(x, ξ)| ⩽ |f(x, 0)| +
Lip(f(x, ·))|ξ|, we infer that F is bounded. The rest of the proof is the same.

A.5 Discrepancy between empirical and ν-monokinetic measures

Recall that:

� given any XN = (xN
1 , . . . , xN

N ) ∈ ΩN and any ΞN = (ξN1 , . . . , ξNN ) ∈ IRdN , the empirical
measure µe

(XN ,ΞN ) on Ω× IRd is defined by (??);

� given any ν ∈ P(Ω) and any measurable function y : Ω → IRd, the ν-monokinetic measure
µν
y on Ω× IRd is defined by (??).

Lemma 28. Let ν ∈ P(Ω) and let (AN , XN )N∈IN∗ be a family of tagged partitions associated with
ν (see (??)), with AN = (ΩN

1 , . . . ,ΩN
N ) and XN = (xN

1 , . . . , xN
N ).

(i) Let y ∈ Lip(Ω, IRd). For every N ∈ IN∗, taking ΞN = (ξN1 , . . . , ξNN ) with ξNi = y(xN
i ) for

every i ∈ {1, . . . , N}, we have∣∣∣〈µν
y − µe

(XN ,ΞN ), f
〉∣∣∣ ⩽ CΩ

Nr
Lip (x 7→ f(x, y(x))) ∀f ∈ Lipc(Ω× IRd).

(ii) For every N ∈ IN∗, let ΞN = (ξN1 , . . . , ξNN ) ∈ IRd. Defining the piecewise continuous function

yN (x) =

N∑
i=1

ξNi 1ΩN
i
(x) ∀x ∈ Ω,

so that yN (xN
i ) = ξNi for every i ∈ {1, . . . , N}, we have∣∣∣〈µν
yN − µe

(XN ,ΞN ), f
〉∣∣∣ ⩽ CΩ

Nr
max

1⩽i⩽N
Lip(f(·, ξNi )) ∀f ∈ Lipc(Ω× IRd).

Proof. Let us prove ??. We have
〈
µν
y , f
〉
=
∫
Ω
f(x, y(x)) dν(x) =

∑N
i=1

∫
ΩN

i
f(x, y(x)) dν(x) and

(using that ν(ΩN
i ) = 1

N )〈
µe
(XN ,ΞN ), f

〉
=

1

N

N∑
i=1

f(xN
i , y(xN

i )) =

N∑
i=1

∫
ΩN

i

f(xN
i , y(xN

i )) dν(x)

hence ∣∣∣〈µν
y − µe

(XN ,ΞN ), f
〉∣∣∣ ⩽ N∑

i=1

∫
ΩN

i

∣∣f(x, y(x))− f(xN
i , y(xN

i ))
∣∣ dν(x)

⩽ Lip (x 7→ f(x, y(x)))

N∑
i=1

∫
ΩN

i

dΩ(x, x
N
i ) dν(x)

62



and ?? follows because
∫
ΩN

i
dΩ(x, x

N
i ) dν(x) ⩽ ν(ΩN

i ) diamΩ(Ω
N
i ) ⩽ CΩ

N1+r (using (??)).

The estimate of ?? is proved similarly: we have
〈
µν
yN , f

〉
=
∑N

i=1

∫
ΩN

i
f(x, ξNi ) dν(x) and thus

∣∣∣〈µν
yN − µe

(XN ,ΞN ), f
〉∣∣∣ ⩽ N∑

i=1

∫
ΩN

i

∣∣f(x, ξNi )− f(xN
i , ξNi )

∣∣ dν(x)
⩽

N∑
i=1

Lip(f(·, ξNi ))

∫
ΩN

i

dΩ(x, x
N
i ) dν(x)

and ?? follows.

Remark 18. Actually, we see from the proof that, in the estimates stated in the above lemma, it
suffices that all functions of which we consider the Lipschitz constant, be Lipschitz on each subset
ΩN

i . In particular, they may be discontinuous at the boundary of ΩN
i .

With that remark, we recover ?? as a consequence of ??.

A.6 Mean field and variance

Let µ ∈ Pc(Ω× IRd) be arbitrary. Recall that the mean field X [µ](t, x, ξ) is defined by (??), which
is the expectation of G(t, x, ·, ξ, ·) for the measure µ, performed with respect to (x′, ξ′) ∈ Ω× IRd:

X [µ](t, x, ξ) =

∫
Ω×IRd

G(t, x, x′, ξ, ξ′) dµ(x′, ξ′) = EµG(t, x, ·, ξ, ·)

Given any t ∈ IR, any x, x′ ∈ Ω and any ξ, ξ′ ∈ IRd, we set

et[µ](x, x
′, ξ, ξ′) = G(t, x, x′, ξ, ξ′)−X [µ](t, x, ξ).

Of course, we have Eµet[µ](x, ·, ξ, ·) = 0 and thus also

Eµ⊗µet[µ] = 0.

This naturally leads to consider the variance of et[µ] with respect to µ⊗ µ:

Var(et[µ]) = Eµ⊗µ∥et∥2 =

∫
Ω2×IR2d

∥G(t, x, x′, ξ, ξ′)−X [µ](t, x, ξ)∥2 dµ(x′, ξ′) dµ(x, ξ).

Note that
Var(et[µ]) ⩽ 4∥G(t, ·, ·, ·, ·)|supp(µ)2∥2C 0 . (133)

LetN ∈ IN∗ be fixed. Recall that the particle (time-dependent) vector field Y N = (Y N
1 , . . . , Y N

N )

is defined by (??) with Y N
i defined by (??), i.e., Y N

i (t,X,Ξ) = 1
N

∑N
j=1 G(t, xi, xj , ξi, ξj), where

we use the notations X = (x1, . . . , xN ) ∈ ΩN and Ξ = (ξ1, . . . , ξN ) ∈ (IRd)N .

Lemma 29. We assume that the norm ∥ · ∥ on IRd is induced by a scalar product ⟨ , ⟩ on IRd.
For every i ∈ {1, . . . , N} we have∫
ΩN×IRdN

∥Y N
i (t,X,Ξ)−X [µ](t, xi, ξi)∥2 dµ⊗N (X,Ξ) =

1

N
Var(et[µ]) ⩽

4

N
∥G(t, ·, ·, ·, ·)|supp(µ)2∥2C 0 .
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Proof of Lemma ??. By definition of et, we have, for every i ∈ {1, . . . , N},

Y N
i (τ,X,Ξ)−X [µ](t, xi, ξi) =

1

N

N∑
j=1

et[µ](xi, xj , ξi, ξj).

Therefore,∫
ΩN×IRdN

∥Y N
i (τ,X,Ξ)−X [µ](t, xi, ξi)∥2 dµ⊗N (X,Ξ)

=
1

N2

∫
ΩN×IRdN

N∑
j=1

∥et[µ](xi, xj , ξi, ξj)∥2 dµ⊗N (X,Ξ)

+
1

N2

∫
ΩN×IRdN

N∑
j,k=1
j ̸=k

⟨et[µ](xi, xj , ξi, ξj), et[µ](xi, xk, ξi, ξk)⟩ dµ⊗N (X,Ξ).

(134)

The first term at the right-hand side of (??) is equal to

1

N

∫
Ω2×IR2d

∥et[µ](x, x′, ξ, ξ′)∥2 dµ(x′, ξ′) dµ(x, ξ) =
1

N
Var(et[µ]). (135)

The second term at the right-hand side of (??) is equal to

N2 −N

N2

∫
Ω3×IR3d

⟨et[µ](x, x′, ξ, ξ′), et[µ](x, x
′′, ξ, ξ′′)⟩ dµ(x, ξ) dµ(x′, ξ′) dµ(x′′, ξ′′)

=
N2 −N

N2

∫
Ω×IRd

∥∥∥∥∫
Ω×IRd

et[µ](x, x
′, ξ, ξ′) dµ(x′, ξ′)

∥∥∥∥2 dµ(x, ξ) = 0 (136)

because the expectation of et[µ](xi, ·, ξi, ·) is equal to 0. The lemma is proved, using (??).

Although Lemma ?? is not used as such in this article, we believe that it has its own interest.
Actually, in the proof of Theorem ?? (in Appendix ??), we will need the following result, in the
spirit of Lemma ?? but more technical.

Lemma 30. As in Lemma ??, we assume that the norm ∥ · ∥ on IRd is induced by a scalar product
⟨ , ⟩ on IRd. Let X̄ = (x̄1, . . . , x̄N ) ∈ ΩN be arbitrary, and let

ρ = δx̄1 ⊗ · · · ⊗ δx̄N
⊗ µx̄1 ⊗ · · · ⊗ µx̄N

.

Then

M(t) =

(∫
ΩN×IRdN

( N∑
i=1

∥Y N
i (t,X,Ξ)−X [µ](t, xi, ξi)∥

)2

dρ(X,Ξ)

)1/2

⩽ 2∥G(t, ·, ·, ·, ·)|supp(µ)2∥C 0,1

(√
N
√
1 + 70 diamΩ×IRd(supp(µ)) +N

√
5W1

(
µ, µse

X̄

))
(137)

where µse
X̄

= 1
N

∑N
i=1 δx̄i ⊗ µx̄i = ρsN :1 (semi-empirical measure).
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Proof. As a first remark, we note that, since the function inside the integral at the left-hand side
of the inequality (??) is symmetric, we can replace ρ by the symmetrization ρs in the integral
(indeed, when F : ΩN × IRdN → IR is symmetric, we have

∫
F dρ =

∫
F dρs). As a second remark,

since M(t) is defined as the L2 norm of a sum, we infer from the triangular inequality that

M(t) ⩽
N∑
i=1

(∫
ΩN×IRdN

∥Y N
i (t,X,Ξ)−X [µ](t, xi, ξi)∥2 dρs(X,Ξ)

)1/2

⩽ N max
1⩽i⩽N

√
Ii(t) with Ii(t) =

∫
ΩN×IRdN

∥Y N
i (t,X,Ξ)−X [µ](t, xi, ξi)∥2 dρs(X,Ξ)

Note that it was important to symmetrize the measure ρ before applying the triangular inequality.
Let us now estimate Ii(t), for any fixed i ∈ {1, . . . , N}. We cannot apply directly Lemma ??
because in the integral Ii(t) the integration is performed with respect to ρs, and not with respect
to µ⊗N . However, following the proof of Lemma ??, we expand Ii(t) similarly as in (??); replacing
µ⊗N by ρs and thus the second-order marginal ρsN :2 and third-order marginal ρsN :3 appear. Note
that, by Lemma ?? in Appendix ??, since ρs is symmetric all its second-order (resp., third-order)
marginals on the various copies of (Ω× IRd)2 (resp., of (Ω× IRd)2) are equal. We obtain

Ii(t) =
1

N

∫
Ω2×IR2d

∥et[µ]∥2 dρsN :2 +
N2 −N

N2

∫
Ω3×IR3d

Ft[µ] dρ
s
N :3 (138)

with
Ft[µ](x, x

′, x′′, ξ, ξ′, ξ′′) = ⟨et[µ](x, x′, ξ, ξ′), et[µ](x, x
′′, ξ, ξ′′)⟩

To estimate the first term at the right-hand side of (??), we observe that (using the definition (??)
of the Wasserstein distance W1)∫

Ω2×IR2d

∥et[µ]∥2 d(ρsN :2 − µ⊗2) ⩽ Lip(∥et[µ]|supp(µ)2∥2)W
[1]
1 (ρsN :2, µ

⊗2)

⩽ 4∥G(t, ·, ·, ·, ·)|supp(µ)2∥2C 0,1W
[1]
1 (ρsN :2, µ

⊗2)

(the choice of q = 1, above, has little importance; other choices would change the constant 4, see
Lemma ??) and that, using (??) and (??),∫

Ω2×IR2d

∥et[µ]∥2 dµ⊗2 = Var(et[µ]) ⩽ 4∥G(t, ·, ·, ·, ·)|supp(µ)2∥2C 0 ⩽ 4∥G(t, ·, ·, ·, ·)|supp(µ)2∥2C 0,1 .

To estimate the second term at the right-hand side of (??), similarly, we observe that∫
Ω3×IR3d

Ft[µ] d(ρ
s
N :3 − µ⊗3) ⩽ Lip(Ft[µ]|supp(µ)2)W

[1]
1 (ρsN :3, µ

⊗3)

⩽ 4∥G(t, ·, ·, ·, ·)|supp(µ)2∥2C 0,1W
[1]
1 (ρsN :3, µ

⊗3)

and that, as in (??), ∫
Ω3×IR3d

Ft[µ] dµ
⊗3 = 0.

It follows that

Ii(t) ⩽ 4∥G(t, ·, ·, ·, ·)|supp(µ)2∥2C 0,1

(
1

N
+W

[1]
1

(
ρsN :2, µ

⊗2
)
+W

[1]
1

(
ρsN :3, µ

⊗3
))

.
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Now, applying Lemma ?? (Appendix ??), we infer from (??) that ρsN :1 = 1
N

∑N
i=1 δx̄i

⊗ µx̄i
= µse

X̄
(semi-empirical measure) and from (??) (taking k = 2, 3) that

W
[1]
1

(
ρsN :2, (µ

se
X̄ )⊗2

)
+W

[1]
1

(
ρsN :3, (µ

se
X̄ )⊗3

)
⩽

70

N
diamΩ×IRd(supp(µ))

and thus, using the triangular inequality,∑
k=2,3

W
[1]
1

(
ρsN :k, µ

⊗k
)
⩽

70

N
diamΩ×IRd(supp(µ)) +

∑
k=2,3

W
[1]
1

(
µ⊗k, (µse

X̄ )⊗k
)
.

Applying Lemma ?? in Appendix ??, we have

W
[1]
1

(
µ⊗k, (µse

X̄ )⊗k
)
⩽ kW1

(
µ, µse

X̄

)
.

Finally,

Ii(t) ⩽ 4∥G(t, ·, ·, ·, ·)|supp(µ)2∥2C 0,1

(
1

N
+

70

N
diamΩ×IRd(supp(µ)) + 5W1

(
µ, µse

X̄

))
and the estimate (??) follows.

B Proofs

B.1 Proof of Theorem ??

Let T > 0 be arbitrary. Let F be either equal to Ω × IRd, or a compact subset of Ω × IRd that is
the closure of an open set. Let C0(F ) be the Banach space of continuous functions on F vanishing
at infinity (when F is compact we have C0(F ) = C 0(F )), and let M1(F ) = C 0(F )′ be the Banach
space of Radon measures on F , endowed with the total variation norm ∥ ∥TV (which is the dual
norm). We have Pc(F ) ⊂ M1(F ) and C 0([0, T ],Pc(F )) ⊂ L∞([0, T ],M1(F )).

The Banach space L∞([0, T ],M1(F )) is endowed with its strong topology, induced by the L∞

norm in time of the total variation in space, but can also be endowed with its weak star topology,
as follows. Recall the general fact of Bochner integral theory that L1([0, T ], E)′ = L∞([0, T ], E′)
(isometric isomorphism) for any Banach space E such that E′ is separable, where the prime is the
topological dual. Applying this fact to the Banach space E = C 0(F ), observing that E′ = M1(F ) is
separable in weak star topology (because the set of rational convex combinations of Dirac measures
over points with rational coordinates is dense in it), the Banach space L∞([0, T ],M1(F )) coincides
with L1([0, T ],C 0(F ))′, i.e., with the dual of a Banach space, and thus is endowed with the
corresponding weak star topology.

We have the following preliminary lemma.

Lemma 31. Let K be a compact subset of Ω × IRd, let µ0 ∈ Pc(K) and let T > 0 be arbitrary.
Assume that there exists a sequence of measures µk ∈ C 0([0, T ],Pc(K)) solutions of the Vlasov
equation ∂tµ

k + LX [µk]µ
k = 0 in the sense (??), such that:

� µk(0) converges weakly to µ0 in Pc(K),

� µk converges to µ ∈ L∞([0, T ],M1(Ω× IRd)) for the weak star topology,

as k → +∞. Then µ ∈ C0([0, T ],Pc(K)) and t 7→ µ(t) is Lipschitz continuous in Wp distance
(for any p ∈ [1,+∞)) and is a solution of the Vlasov equation ∂tµ + LX [µ]µ = 0 (in the sense

(??)) such that µ(0) = µ0. Moreover, µk(t) converges weakly to µ(t) as k → +∞ (equivalently,
Wp(µ

k(t), µ(t)) → 0), uniformly with respect to t ∈ [0, T ].
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Proof. For every k ∈ IN∗, since µk ∈ C 0([0, T ],Pc(K)) is solution of the Vlasov equation in
the sense (??) and thus in the distributional sense, we have ⟨∂tµk + LX [µk]µ

k, f⟩ = 0 for any
f ∈ C∞([0, T ]×K) and thus, integrating by parts,

∫
K

f(0, x, ξ) dµk
0(x, ξ) +

∫ T

0

∫
K

∂tf(t, x, ξ) dµ
k(t, x, ξ)

+

∫ T

0

∫
K

⟨∇ξf(t, x, ξ), G(τ, x, x′, ξ, ξ′)⟩ dµk(t, x′, ξ′) dµk(t, x, ξ) dτ = 0.

Passing to the limit, we obtain the same equation with µk replaced by µ and µk
0 replaced by µ0,

for any f ∈ C∞([0, T ] ×K). Hence µ is solution of the Vlasov equation ∂tµ + LX [µ]µ = 0 in the
distributional sense, with µ(0) = µ0.

Let us prove that µ ∈ C 0([0, T ],Pc(Ω × IRd)) and that µ is a solution of the Vlasov equation
in the sense (??) and that µk(t) converges weakly to µ(t) for every t ∈ [0, T ].

By assumption, supp(µk) ⊂ [0, T ] × K for every k ∈ IN∗, hence, by the Prokhorov theorem,
a subsequence of µk converges weakly (i.e., in (C 0([0, T ] × K))′) to some measure, which must
then be equal to µ. Then supp(µ) is contained in the Kuratowski liminf of supp(µk) (see, e.g.,
[?, Proposition 5.1.8]), i.e., for every (t, x, ξ) ∈ supp(µ) there exists a sequence of (tk, xk, ξk) ∈
supp(µk) such that (tk, xk, ξk) → (t, x, ξ) as k → +∞. We infer that supp(µ) ⊂ [0, T ]×K. Since
µ ∈ L∞([0, T ],M1(Ω× IRd)), we must have supp(µ(t)) ⊂ K for almost every t ∈ [0, T ].

For every k ∈ IN∗, we consider on [0, T ] × K the time-dependent vector field vk(t, x, ξ) =
X [µk

t ](t, x, ξ), which is continuous and Lipschitz with respect to ξ (thanks to ??). Since supp(µk) ⊂
[0, T ] ×K, we have ∥vk∥C 0([0,T ]×K) ⩽ C for some C > 0 not depending on k. Let (Φvk(t))t∈[0,T ]

be the flow on [0, T ] × K generated by vk. Since µk is a solution of the transport equation
∂tµ

k + Lvkµk = 0, by the usual existence and uniqueness theorem for linear transport equations
(see, e.g., [?, Theorem 5.34]), we have µk(t) = Φvk(t)∗µ

k
0 for every t ∈ [0, T ]. This means, denoting

by νk = π∗µ
k(t) the (constant in time) marginal of µk(t) on Ω and disintegrating µk

t = µk(t) =∫
Ω
µk
t,x dν

k(x), that µk
t,x = Φvk(t, x, ·)∗µk

0,x for νk-almost every x ∈ π(K), for every t ∈ [0, T ]. It

follows from Lemma ?? of Appendix ?? that Wp(µ
k(t1), µ

k(t2)) ⩽ C|t1 − t2| for all t1, t2 ∈ [0, T ],
i.e., t 7→ µk(t) is Lipschitz continuous on [0, T ] in Wp distance, uniformly with respect to k. Since
µk converges to µ ∈ L∞([0, T ],M1(K)) for the weak star topology, it follows from the Ascoli
theorem that µk(t) converges weakly to µ(t) in M1(K) = C 0(K)′, uniformly with respect to
t ∈ [0, T ], and thus that µ ∈ C 0([0, T ],P1

c (K)) and that t 7→ µ(t) is Lipschitz continuous in Wp

distance. Lemma ?? is proved.

In view of establishing Item ??, let us first prove the existence of a solution of the Vlasov
equation. Given µ0 ∈ Pc(Ω × IRd), we consider a sequence of empirical measures µe

(XN ,ΞN
0 )

=

1
N

∑N
i=1 δxN

i
⊗ δξN0,i converging weakly to µ0 as N → +∞. Setting XN = (xN

1 , . . . , xN
N ) ∈ ΩN and

ΞN
0 = (ξN1 , . . . , ξNN ) ∈ (IRd)N , let t 7→ ΞN (t) = (ξN1 (t), . . . , ξNN (t)) be the unique solution of the

particle system (??) with parameter XN such that ΞN (0) = ΞN
0 . It is well defined on [0, T ] for

any T ∈ (0, Tmax(supp(µ0))) thanks to Assumption ?? and Lemma ??. Using the first part of
Proposition ??, which does not use anything from Theorem ?? (see its proof), t 7→ µe

(XN ,ΞN (t)) =
1
N

∑N
i=1 δxN

i
⊗ δξNi (t) is a solution of the Vlasov equation (??) in the sense (??).

Without loss of generality, we can assume that (XN ,ΞN
0 ) ∈ (supp(µ0))

N for every N ∈ IN∗,
where we recall that supp(µ0) is compact. Since µe

(XN ,ΞN (t)) is supported on the corresponding

solutions of the particle system, it follows from Lemma ?? that there exists a compact subset
K ⊂ Ω× IRd such that supp(µe

(XN ,ΞN (t))) ⊂ K for every t ∈ [0, T ] and for every N ∈ IN∗, i.e., the

measures µe
(XN ,ΞN (·)) are equi-compactly supported on [0, T ], uniformly with respect to N .
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Besides, since µe
(XN ,ΞN (t)) is a probability measure, we have ∥µe

(XN ,ΞN (t))∥TV = 1 < +∞ for

every t ∈ [0, T ], and thus the sequence (µe
(XN ,ΞN (·)))N∈IN∗ is bounded in L∞([0, T ],M1(Ω × IRd))

for the strong topology, i.e., in (L1([0, T ],C0(Ω× IRd)))′ for the strong (dual norm) topology. By
the Banach-Alaoglu theorem, there exists a subsequence of (µe

(XN ,ΞN (·)))N∈IN∗ converging to some

µ ∈ L∞([0, T ],M1(Ω× IRd)) for the weak star topology.
Therefore, a subsequence of the sequence of measures µe

(XN ,ΞN (·)) ∈ C 0
comp([0, T ],Pc(K)) sat-

isfies all assumptions of Lemma ??. It follows from that lemma that µ ∈ C 0([0, T ],Pc(K)) and
that µ is a solution on [0, T ] of the Vlasov equation ∂tµ+LX [µ]µ = 0 (in the sense (??)) such that
µ(0) = µ0, and is Lipschitz continuous with respect to t in Wp distance.

At this step, we have obtained the existence of solutions in C 0
comp([0, Tmax(supp(µ0))),Pc(Ω×

IRd)) (not yet uniqueness).

Remark 19. In [?, ?, ?, ?], the proof of the existence is done by constructing a sequence of
piecewise constant measures converging to a solution, under the stronger assumption that G be
globally Lipschitz continuous. The proof given above relies on approximation by empirical measures
and propagation of them, in the spirit of [?] (see also [?] and [?, Part I, Theorem 5.1]), which is
more appropriate to exploit Lemma ??.

Remark 20. Before going ahead, let us observe that, when G is locally Lipschitz with respect to
all variables (x, x′, ξ, ξ′), we have, for all µ1, µ2 ∈ Pc(Ω×IRd) and for every (t, x, ξ) ∈ [0, T ]×Ω×IRd,

∥∥X [µ1](t, x, ξ)−X [µ2](t, x, ξ)
∥∥ =

∥∥∥∥∫
Ω×IRd

G(t, x, x′, ξ, ξ′) d(µ1(x′, ξ′)− µ2(x′, ξ′))

∥∥∥∥
⩽ Lip(G(t, x, ·, ξ, ·)|S)W1(µ

1, µ2) ⩽ Lip(G(t, x, ·, ξ, ·)|S)Wp(µ
1, µ2) (139)

where S = supp(µ1) ∪ supp(µ2) (compact set). We have used that W1 ⩽ Wp.
In the case ??, there is however a weaker assumption: under Assumption ??, G is locally

Lipschitz only with respect to (ξ, ξ′) and thus the classical Wasserstein distance W1 cannot be
used as above. The main difference then comes from the following observation: given any µ1, µ2 ∈
Pc(Ω× IRd) having the same marginal ν ∈ Pc(Ω) on Ω, we have, by disintegration,

X [µ1](t, x, ξ)−X [µ2](t, x, ξ) =

∫
Ω

∫
IRd

G(t, x, x′, ξ, ξ′) d(µ1
x′(ξ′)− µ2

x′(ξ′)) dν(x′)

and thus∥∥X [µ1](t, x, ξ)−X [µ2](t, x, ξ)
∥∥ ⩽ max

x′∈supp(ν)
Lip(G(t, x, x′, ξ, ·)|Sx′ ) L

1
νW1(µ

1, µ2)

⩽ max
x′∈supp(ν)

Lip(G(t, x, x′, ξ, ·)|Sx′ ) L
1
νWp(µ

1, µ2)
(140)

where Sx′ = supp(µ1
x′)∪supp(µ2

x′) (compact) and L1
νWp(µ

1, µ2) =
∫
Ω
Wp(µ

1
x′ , µ2

x′) dν(x′) is defined
by (??).

Let us now establish (??) in the item ?? (which also entails uniqueness). Let µ1, µ2 ∈
C 0
comp([0, T ],Pc(Ω × IRd)) be two solutions of the Vlasov equation for some T > 0, having the

same (constant in time) marginal ν = π∗µ
i ∈ Pc(Ω) on Ω. Let K ⊂ Ω× IRd be a compact subset

containing supp(µi(t)) for i = 1, 2 and for every t ∈ [0, T ].
For i = 1, 2, we consider on [0, T ]×K the continuous time-dependent vector field vi(t, x, ξ) =

X [µi
t](t, x, ξ) (which is C1 with respect to ξ), so that µi is a solution of the transport equation

∂tµ
i + Lviµi = 0. Since we are going to apply Lemma ?? (in Appendix ??) with t0 ̸= 0, for every
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t0 ∈ [0, T ] we consider the flow (Φvi(t, t0))t∈[0,T ] on [0, T ]×K generated by vi, i.e., defined as the
unique solution of ∂tΦvi(t, t0, x, ·) = vi(t, x, ·) ◦ Φvi(t, t0, x, ·) such that Φvi(t0, t0, x, ·) = idIRd for
ν-almost every x ∈ supp(ν). Then, we have µi(t) = Φvi(t, t0)∗µ

i(t0) for every t ∈ [0, T ]. This
means, disintegrating µi

t = µi(t) =
∫
Ω
µi
t,x dν(x), that µ

i
t,x = Φvi(t, t0, x, ·)∗µi

t0,x for ν-almost every
x ∈ supp(ν), for every t ∈ [0, T ].

It follows from Lemma ?? (in Appendix ??), applied with Λ = ∅ and E = IRd to the vector
fields vi(t, x, ·) for any fixed x ∈ supp(ν), that

Wp(µ
1
t,x, µ

2
t,x) ⩽ e(t−t0)L([t0,t])Wp(µ

1
t0,x, µ

2
t0,x) +M([t0, t])

e(t−t0)L([t0,t]) − 1

L([t0, t])
∀t ∈ [t0, T ]

where, setting S(t) = supp(ν)× Φv1(t, t0, supp(µ
1
t0) ∪ supp(µ2

t0)) ∪ supp(µ2(t)) (compact),

L([t0, t]) = ess sup {∥(∂ξG, ∂ξ′G)(τ, x, x′, ξ, ξ′)∥ | t0 ⩽ τ ⩽ t, (x, ξ), (x′, ξ′) ∈ S(τ)} ,

M([t0, t]) = max
{
∥X [µ1

τ ](τ, x, ξ)−X [µ2
τ ](τ, x, ξ)∥ | t0 ⩽ τ ⩽ t, (x, ξ) ∈ supp(µ2

τ )
}
.

Since µ1
τ and µ2

τ have the same marginal ν on Ω, it follows from (??) and from the above definition
of L([t0, t]) and of S(t) that

M([t0, t]) ⩽ L([t0, t]) max
t0⩽τ⩽t

L1
νWp(µ

1
τ , µ

2
τ ).

Therefore

Wp(µ
1
t,x, µ

2
t,x) ⩽ e(t−t0)L([t0,t])Wp(µ

1
t0,x, µ

2
t0,x) +

(
e(t−t0)L([t0,t]) − 1

)
max

t0⩽τ⩽t
L1
νWp(µ

1
τ , µ

2
τ ).

Integrating with respect to x ∈ Ω for the measure ν, we obtain

L1
νWp(µ

1(t), µ2(t)) ⩽ e(t−t0)L([t0,t])L1
νWp(µ

1(t0), µ
2(t0))

+
(
e(t−t0)L([t0,t]) − 1

)
max

t0⩽τ⩽t
L1
νWp(µ

1(τ), µ2(τ)). (141)

We have the following general lemma.

Lemma 32. For every t0 ∈ IR, let at0 : [t0,+∞) → [0,+∞) be a nondecreasing function, continu-
ous at t0, depending continuously on t0. Let h : IR → [0,+∞) be an absolutely continuous function
such that

h(t) ⩽ e(t−t0)at0 (t)h(t0) +
(
e(t−t0)at0 (t) − 1

)
max

t0⩽τ⩽t
h(τ) ∀t ⩾ t0 ∀t0 ∈ IR.

Then

h(t) ⩽ h(0) exp

(
2

∫ t

0

aτ (τ) dτ

)
∀t ∈ IR.

Proof. Taking t0 < t < t1, writing

h(t)− h(t0)

t− t0
⩽

e(t−t0)at0
(t1) − 1

t− t0
h(t0) +

e(t−t0)at0
(t1) − 1

t− t0
max

t0⩽τ⩽t
h(τ)

and taking the limit as t → t0, since t1 is arbitrary, we obtain h′(t0) ⩽ 2h(t0)at0(t0), for almost
every t0 ∈ IR. The lemma follows by integration.
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Applying Lemma ?? to h(t) = L1
νWp(µ

1(t), µ2(t)) and at0(t) = L([t0, t]), and using (??), we
obtain (??). In particular, the uniqueness statement follows.

At this step, we have proved existence and uniqueness of solutions of the Vlasov equation in the
space C 0

comp([0, T ],Pc(Ω× IRd)). We can thus now define the Vlasov flow by (??), and we obtain
(??) by uniqueness.

Establishing (??) in the item ?? follows straightforwardly the same lines as above, by applying
Lemma ?? (in Appendix ??) with Λ = Ω and E = IRd, and using (??) instead of (??). We do not
give any further details.

It remains to establish the item ??. For K ⊂ Ω × IRd compact and T ∈ (0, Tmax(K)), we
consider a sequence of measures µk ∈ C 0([0, T ],Pc(K)) solutions of the Vlasov equation such that
µk
0 = µk(0) converges weakly to µ0 = µ(0) as k → +∞. Our objective is to prove that µk(t)

converges weakly to µ(t), uniformly with respect to t ∈ [0, T ].
Since µk(t) is a probability measure, we have ∥µk(t)∥TV = 1 < +∞ for every t ∈ [0, T ], and

thus the sequence (µk(·))k∈IN∗ is bounded in L∞([0, T ],M1(Ω×IRd)) (for the strong topology), i.e.,
in (L1([0, T ],C0(Ω× IRd)))′ for the strong (dual norm) topology. By the Banach-Alaoglu theorem,
a subsequence of (µk(·))k∈IN∗ converges to some µ̃(·) ∈ L∞([0, T ],M1(Ω× IRd)) for the weak star
topology.

It follows from Lemma ?? that µ̃ ∈ C 0([0, T ],Pc(K)), that µ̃ is a solution of the Vlasov
equation such that µ̃(0) = µ0, and that µk(t) converges weakly to µ̃ uniformly with respect to t.
By uniqueness, we must have µ̃ = µ. This finishes the proof of the theorem.

B.2 Proof of Theorem ??

We have ρN (t) = δXN ⊗ δΞN (t). By (??) in Lemma ?? of Appendix ?? (applied with γi = δξNi (t)),
we have

ρN (t)sN :1 =
1

N

N∑
i=1

δxN
i
⊗ δξNi (t) = µe

(XN ,ΞN (t)),

which gives the preliminary remark to Theorem ??. The statement ?? for k = 1 then follows from
the item ?? of Theorem ??, and the estimate (??) follows from the item ?? of Theorem ??.

For any k ∈ IN∗, the kth-order marginal ρN (t)sN :k is given by (??) in Appendix ?? (applied
with µi = δxN

i
⊗ δξNi (t)) By the triangular inequality, we have

W [q]
p

(
ρN (t)sN :k, µ(t)

⊗k
)
⩽ W [q]

p

(
ρN (t)sN :k, (µ

e
(XN ,ΞN (t)))

⊗k
)
+W [q]

p

(
(µe

(XN ,ΞN (t)))
⊗k, µ(t)⊗k

)
(142)

For the first term at the right-hand side of (??), noting that (XN ,ΞN
0 ) ∈ (supp(µ0))

N and thus

diamΩ×IRd

(
N⋃
i=1

supp(δxN
i
⊗ δξNi (t))

)
⩽ diamΩ(supp(ν)) + diamIRd(ΞN (t)),

and noting that µe
(XN ,ΞN (t)) = ρN (t)sN :1, we infer from (??) in Lemma ?? of Appendix ?? that

W [q]
p

(
ρN (t)sN :k, (µ

e
(XN ,ΞN (t)))

⊗k
)
⩽ 2k1/q

(
k2

N

)1/p (
diamΩ(supp(ν)) + diamIRd(ΞN (t))

)
. (143)

For the second term at the right-hand side of (??), as a consequence, successively, of the estimate
(??) of Lemma ?? in Appendix ?? and of Theorem ??, we have

W [q]
p

(
(µe

(XN ,ΞN (t)))
⊗k, µ(t)⊗k

)
⩽ k1/q Wp

(
µe
(XN ,ΞN (t)), µ(t)

)
⩽ k1/q CN

µ (t)Wp

(
µe
(XN ,ΞN

0 ), µ(0)
)

(144)
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where the constant CN
µ (t) is defined by (??) (or equivalently by Cµ,µe

(XN,ΞN )
(t), with the notation

used in (??) in Theorem ??). Therefore, (??) follows from (??), (??) and (??). Note that, for
k = 1, the first term of the right-hand side of (??) is equal to 0, which gives (??) again.

The statement ?? for any k ∈ IN∗ is proved by replacing the right inequality in (??) with the
application of the item ?? of Theorem ??.

B.3 Proof of Theorem ??

First of all, since ρN0 = δXN ⊗ ρN0,XN , with δXN = δxN
1
⊗ · · · ⊗ δxN

N
and ρN0,XN = µ0,xN

1
⊗ · · · ⊗

µ0,xN
N
, it follows from (??) in Lemma ?? of Appendix ?? (applied with µi = δxN

i
⊗ µ0,xN

i
) that

(ρN0 )sN :1 = 1
N

∑N
i=1 δxN

i
⊗ µ0,xN

i
= (µ0)

se
XN (semi-empirical measure), which gives (??), and the

weak convergence to µ0 stated in Item ?? for k = 1 is obtained by Lemma ?? of Appendix ??,
which gives the preliminary remark to the theorem.

Recall that ρN (t) = ΦN (t)∗ρ
N
0 and µ(t) = φµ0(t)∗µ0. Setting

ρ̃N (t) = φµ0(t)
⊗N
∗ ρN0 = δxN

1
⊗ · · · ⊗ δxN

N
⊗ µt,xN

1
⊗ · · · ⊗ µt,xN

N

(the latter equality is because φµ0(t, xi, ·)∗µ0,xN
i

= µt,xN
i
), we note that ρ̃N (t)s = φµ0(t)

⊗N
∗ (ρN0 )s

and that
ρ̃N (t)sN :k = φµ0

(t)⊗k
∗ (ρN0 )sN :k ∀k ∈ {1, . . . , N}.

Indeed, this follows from the following obvious lemma.

Lemma 33. Let E be a measure space, φ : E → E be a measurable mapping, N ∈ IN∗ and
ρ ∈ P(EN ). Then (

φ⊗N
∗ ρ

)
N :k

= φ∗(ρN :k) ∀k ∈ {1, . . . , N}.

Proof of Lemma ??. Denoting by πk : EN = Ek × EN−k → Ek the canonical projection, the
lemma straightforwardly follows from the fact that πk ◦ φ⊗N = φ⊗k ◦ πk.

In particular, we have

ρ̃N (t)sN :1 = φµ0
(t)∗(ρ

N
0 )sN :1 = φµ0

(t)∗(µ0)
se
XN =

1

N

N∑
i=1

δxN
i
⊗ µt,xN

i
= µ(t)seXN .

In order to establish (??), we start by applying the triangular inequality:

W [q]
p

(
ρN (t)sN :k, µ(t)

⊗k
)
⩽ W [q]

p

(
ρN (t)sN :k, ρ̃

N (t)sN :k

)
+W [q]

p

(
ρ̃N (t)sN :k, µ(t)

⊗k
)
, (145)

and we next show how to estimate each of the two terms of the sum at the right-hand side of (??).

First term. Applying successively Lemma ?? in Appendix ?? and Lemma ?? in Appendix ??,

and using that W
[q]
p ⩽ W

[q]
2 ⩽ W

[1]
2 (see (??) and (??)) because p ⩽ 2, we have

W [q]
p

(
ρN (t)sN :k, ρ̃

N (t)sN :k

)
⩽
( k

N

)1/q
W

[1]
2

(
ρN (t), ρ̃N (t)

)
(146)

where we insist that the latter Wasserstein distance W2 is computed with respect to the distance

d
[1]

(Ω×IRd)N
defined by (??): the choice of q = 1 is important. Given that ρN (t) = ΦN (t)∗ρ

N
0

and ρ̃N (t) = φµ0(t)
⊗N
∗ ρN0 , to estimate this distance, we apply Lemma ?? (in Appendix ??) with

Λ = ΩN and E = IRdN to the flows ΦN (t) and φµ0
(t)⊗N in the space ΩN × IRdN endowed with the
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distance d
[1]

(Ω×IRd)N
, respectively generated by the time-dependent vector fields Y N (t, ·, ·) (defined

by (??)) and X [µt](t, ·, ·)⊗N (with X [µt] defined by (??)), obtaining from the alternative estimate
of that lemma, with p = 2, that

W
[1]
2

(
ρN (t), ρ̃N (t)

)
⩽ M2(t)

√
t

(
etL2(t) − 1

L2(t)

)1/2

(147)

where
L2(t) = max

0⩽τ⩽t
Lip(Y N (τ, ·, ·)|supp(ρN (τ))∪supp(ρ̃N (τ)))

and, using (??),

M2(t) = max
0⩽τ⩽t

(∫
ΩN×IRdN

∥Y N (τ, ·, ·)−X [µτ ](τ, ·, ·)⊗N∥2ℓ1 dρ̃Nτ
)1/2

= max
0⩽τ⩽t

(∫
ΩN×IRdN

( N∑
i=1

∥Y N
i (τ,X,Ξ)−X [µτ ](τ, xi, ξi)∥

)2

dρ̃Nτ (X,Ξ)

)1/2

where we recall that ∥Ξ∥ℓ1 =
∑N

i=1 ∥ξi∥ for any Ξ = (ξ1, . . . , ξN ) ∈ (IRd)N . Let us estimate L2(t)
and M2(t).

Since the ℓ1 distance d
[1]

(Ω×IRd)N
has been used, according to Lemma ?? in Section ?? we have,

using the definition (??) of Yi,

L2(t) = max
0⩽τ⩽t

max
1⩽i⩽N

Lip(Y N
i (τ, ·, ·)|supp(ρN (t))∪supp(ρ̃N (t))) = max

0⩽τ⩽t
Lip(G(τ, ·, ·, ·, ·)|SN

µ (τ)2)

⩽ max
0⩽τ⩽t

∥G(τ, ·, ·, ·, ·)|SN
µ (τ)2∥C 0,1 = L(t)

where SN
µ (τ) is defined by (??). The choice q = 1 has been crucial here (for a choice q > 1 we

would get a positive power of N in the exponential term in (??), which is not desirable).
Besides, by Lemma ?? in Appendix ?? (the choice of p = 2 has been done to be able to apply

this lemma), we have

M2(t) ⩽ 2L(t)

(
√
N
√
1 + 70 max

0⩽τ⩽t
diamΩ×IRd(supp(µ(t))) +N

√
5W1

(
µ(t)se

XN , µ(t)
))

.

Since the map s 7→ ets−1
s is increasing for s > 0, and since

√
y(ey − 1) ⩽ ey for every y ⩾ 0, we

infer from (??) and (??) that

W
[q]
2

(
ρN (t)sN :k, ρ̃

N (t)sN :k

)
⩽ 2
( k

N

)1/q (√
NC ′

µ(t) +N
√

5W1

(
µ(t)se

XN , µ(t)
))

etL(t).

where C ′
µ(t) = (1 + 70max0⩽τ⩽t diamΩ×IRd(supp(µ(t))))1/2, for every t ⩾ 0. Applying Lemma ??

(in Appendix ??) with Λ = Ω and E = IRd to the Vlasov flow φµ0
(t) in Ω× IRd generated by the

vector field X [µt](t, ·, ·), we obtain

W1 (µ(t)
se
XN , µ(t)) ⩽ etL(t)W1 ((µ0)

se
XN , µ0) .

Finally,

W [q]
p

(
ρN (t)sN :k, ρ̃

N (t)sN :k

)
⩽ 2k1/q

(
C ′

µ(t)

N
1
q−

1
2

+N1− 1
q

√
5W1

(
(µ0)seXN , µ0

))
e2tL(t) (148)
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Second term. Applying Lemma ?? (in Appendix ??) with Λ = Ωk and E = (IRd)k to the

Vlasov flow φµ0
(t)⊗k in the space Ωk×(IRd)k endowed with the distance d

[q]

(Ω×IRd)k
defined by (??),

generated by the vector field X [µt](t, ·, ·)⊗k, we obtain

W [q]
p

(
ρ̃N (t)sN :k, µ(t)

⊗k
)
= W [q]

p

(
φµ0(t)

⊗k
∗ (ρN0 )sN :k, φµ0(t)

⊗k
∗ µ⊗k

0

)
⩽ etL(t)W [q]

p

(
(ρ0)

s
N :k, µ

⊗k
0

)
where L(t) is defined as before.

Similarly as in the proof of Theorem ?? (see Appendix ??), we note that, for any k ∈ {1, . . . , N},
the measure (ρN0 )sN :k is given by the formula (??) of Lemma ?? in Appendix ?? with βk given
by (??) and γi = µ0,xN

i
. Hence we infer from (??) in Lemma ?? (Appendix ??) that, if k2 ⩽

2N ln
(
1 + 1

2p

)
, since (ρN0 )sN :1 = (µ0)

se
XN ,

W [q]
p

(
(ρN0 )sN :k, ((µ0)

se
XN )⊗k

)
⩽ 2k1/q

(
k2

N

)1/p

diamΩ×IRd(supp(µ0))

(the above term is zero and thus does not appear in the final estimate when k = 1). Therefore, by
the triangular inequality and by (??) in Lemma ?? (Appendix ??),

W [q]
p

(
ρ̃N (t)sN :k, µ(t)

⊗k
)
⩽
(
W [q]

p

(
(ρ0)

s
N :k, ((µ0)

se
XN )⊗k

)
+W [q]

p

(
((µ0)

se
XN )⊗k, µ⊗k

0

))
etL(t)

⩽ k1/q
(
2

(
k2

N

)1/p

diamΩ×IRd(supp(µ0)) +Wp ((µ0)
se
XN , µ0)

)
etL(t). (149)

Conclusion. From (??), (??) and (??), we conclude that, for every t ⩾ 0,

W [q]
p

(
ρN (t)sN :k, µ(t)

⊗k
)
⩽ 2k1/q

((
k2

N

)1/p

C ′
µ(0) +

C ′
µ(t)

N
1
q−

1
2

+N1− 1
q

√
5W1

(
(µ0)seXN , µ0

)
+Wp ((µ0)

se
XN , µ0)

)
e2tL(t)

and (??) finally follows.
To obtain the statement ?? for any k ∈ IN∗, we have to adapt all the above arguments and in

particular Lemma ?? in Appendix ?? to the case where G is locally Lipschitz only with respect to
(ξ, ξ′). This is lengthy but straightforward and we do not give any details.

B.4 Proof of Theorem ??

We start by proving the second item of Theorem ??. Hence, we assume that G is locally α-Hölder
continuous with respect to (x, x′, ξ, ξ′) (uniformly with respect to t on any compact).

Lemma 34. Let x, x′ ∈ Ω be arbitrary. We have

∥y(t, x)− y(t, x′)∥ ⩽ etLy(t)
(
∥y0(x)− y0(x′)∥+ dΩ(x, x

′)α
)

∀t ⩾ 0. (150)

Proof of Lemma ??. By definition, we have ∂ty(t, z) =
∫
Ω
G(t, z, x′′, y(t, z), y(t, x′′)) dν(x′′) for ev-

ery z ∈ Ω, hence

∂ty(t, x)−∂ty(t, x
′) =

∫
Ω

G(t, x, x′′, y(t, x), y(t, x′′)) dν(x′′)−
∫
Ω

G(t, x′, x′′, y(t, x), y(t, x′′)) dν(x′′)

+

∫
Ω

G(t, x′, x′′, y(t, x), y(t, x′′)) dν(x′′)−
∫
Ω

G(t, x′, x′′, y(t, x′), y(t, x′′)) dν(x′′) (151)
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and using the definition of Ly(t) we obtain

∥∂t(y(t, x)− y(t, x′))∥ ⩽ Ly(t) (dΩ(x, x
′)α + ∥y(t, x)− y(t, x′)∥)

and (??) follows by integration (noting that τ 7→ Ly(τ) is nondecreasing).

By assumption, ∥y0(x) − y0(x′)∥ ⩽ Holα(y
0)dΩ(x, x

′)α for all x, x′ ∈ Ω, hence, using (??) in
Lemma ?? we infer that y(t, ·) is α-Hölder continuous and (??) follows.

Let us establish (??). We set rNi (t) = y(t, xN
i )− ξNi (t), for i = 1, . . . , N . By definition, we have

ṙNi (t) =
1

N

N∑
j=1

(
G(t, xN

i , xN
j , y(t, xN

i ), y(t, xN
j ))−G(t, xN

i , xN
j , ξNi (t), ξNj (t))

)
+ ϵNi (t) (152)

where

ϵNi (t) =

∫
Ω

G(t, xN
i , x′, y(t, xN

i ), y(t, x′)) dν(x′)− 1

N

N∑
j=1

G(t, xN
i , xN

j , y(t, xN
i ), y(t, xN

j )) (153)

with rNi (0) = 0, for every i ∈ {1, . . . , N}. On the one part, we have∥∥G(t, xN
i , xN

j , y(t, xN
i ), y(t, xN

j ))−G(t, xN
i , xN

j , ξNi (t), ξNj (t))
∥∥ ⩽ LN

y (t)(∥rNi (t)∥+ ∥rNj (t)∥) (154)

where LN
y (t) is defined by (??). On the other part, using (??) in Lemma ?? (see Appendix ??),

we have

∥ϵNi (t)∥ ⩽
Cα

Ω

Nrα
Holα(x

′ 7→ G(t, xN
i , x′, y(t, xN

i ), y(t, x′))) (155)

and we claim that

Holα(x
′ 7→ G(t, xN

i , x′, y(t, xN
i ), y(t, x′))) ⩽ Ly(t)(1 + etLy(t)(Holα(y

0) + 1)). (156)

Indeed, writing for short g(x′, y(t, x′)) = G(t, xN
i , x′, y(t, xN

i ), y(t, x′)), we have

∥g(x′
1, y(t, x

′
1))− g(x′

2, y(t, x
′
2))∥

⩽ ∥g(x′
1, y(t, x

′
1))− g(x′

2, y(t, x
′
1))∥+ ∥g(x′

2, y(t, x
′
1))− g(x′

2, y(t, x
′
2))∥

⩽ Ly(t)dΩ(x
′
1, x

′
2)

α + Ly(t)∥y(t, x′
1)− y(t, x′

2)∥
⩽ Ly(t)dΩ(x

′
1, x

′
2)

α + Ly(t)Holα(y(t, ·))dΩ(x′
1, x

′
2)

α

and (??) follows by using (??). Finally, setting RN (t) = (rN1 (t), . . . , rNN (t)), noting that Ly(t) ⩽
LN
y (t), we infer from (??), (??), (??) and (??) that

d

dt
∥RN (t)∥∞ ⩽ ∥ṘN (t)∥∞ ⩽ LN

y (t)

(
2∥RN (t)∥∞ +

Cα
Ω

Nrα
(1 + etL

N
y (t)(Holα(y

0) + 1))

)
and, noting that τ 7→ LN

y (τ) (defined by (??)) is nondecreasing and by integration, we obtain (??).

Let us establish (??). For every x ∈ Ω there exists i ∈ {1, . . . , N} such that x ∈ ΩN
i , and thus

dΩ(x, x
N
i ) ⩽ diamΩ(Ω

N
i ) ⩽ CΩ

Nr (by (??)). It follows from (??) that

∥y(t, x)− y(t, xN
i )∥ ⩽ Holα(y(t, ·))dΩ(x, xN

i )α ⩽
Cα

Ω

Nrα
etL

N
y (t) (Holα(y(0, ·)) + 1)

and, noting that yN (t, x) = ξNi (t), (??) follows by the triangular inequality, using (??).
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Let us now prove the first item of Theorem ??. Starting as in the proof of Lemma ??, by
continuity of G, we infer from (??) that, for any ε > 0, if x and x′ are sufficiently close then

∥∂t(y(t, x)− y(t, x′))∥ ⩽ Ly(t) (ε+ ∥y(t, x)− y(t, x′)∥)

and by integration we obtain

∥y(t, x)− y(t, x′)∥ ⩽ etLy(t)
(
∥y0(x)− y0(x′)∥+ ε

)
. (157)

By assumption, y0 is continuous ν-almost everywhere on Ω. It follows from (??) that, for every
t ⩾ 0, y(t, ·) is continuous ν-almost everywhere on Ω with the same continuity set as y0 (thus, not
depending on t).

Let us finally establish (??). By the Riemann integration theorem (see (??)), we have εNi (t) =
o(1) (where εNi (t) is defined by (??)) as N → +∞, uniformly with respect to t on every compact.
Besides, we still have the inequality (??), but with LN

y (t) now defined by

LN
y (t) = max

x,x′∈Ω
0⩽τ⩽t

Lip(G(τ, x, x′, ·, ·)|SN
y (τ)2 ,

i.e., like in (??) but without the first term involving Holα(G). With this substitution, we obtain

d

dt
∥RN (t)∥∞ ⩽ ∥ṘN (t)∥∞ ⩽ LN

y (t)
(
2∥RN (t)∥∞ + o(1)

)
and integrating we get ∥RN (t)∥∞ ⩽ e2tL

N
y (t)o(1), which yields (??), noting that LN

y (t) is uniformly
bounded with respect to t ∈ [0, T ] and to N ∈ IN∗ (as a consequence of Lemma ??). Then, (??)
follows by the triangular inequality, using the ν-almost everywhere continuity of y(t, ·).

B.5 Proof of Theorem ??

The proof is a slight adaptation of the proof of Theorem ??. We start by establishing (??). Hence,
we assume that G is locally α-Hölder continuous with respect to (x, x′, ξ, ξ′) (uniformly with respect
to t on any compact).

Lemma 35. Let i ∈ {1, . . . , N} and x, x′ ∈ ΩN
i be arbitrary. We have

∥yN (t, x)− yN (t, x′)∥ ⩽ etLyN
(t)dΩ(x, x

′)α (158)

where y0(·) = y(0, ·), where LyN
(t) is defined as Ly(t) in Theorem ?? with y replaced by yN .

Proof. Following the proof of Lemma ??, we arrive at

∥∂t(yN (t, x)− yN (t, x′))∥ ⩽ LyN
(t) (dΩ(x, x

′)α + ∥yN (t, x)− yN (t, x′)∥)

and (??) follows by integration, noting that yN (0, x)− yN (0, x′) = 0 if x, x′ ∈ ΩN
i .

It follows from Lemma ?? that yN (t, ·) is α-Hölder continuous in each Ωi, with Hölder constant
etLyN

(t).
We set rN (t, x) = yN (t, x)− yN (t, x) for every x ∈ Ω. By definition, if x ∈ ΩN

i then yN (t, x) =
ξNi (t) and thus

∂tr
N (t, x) =

1

N

N∑
j=1

(
G(t, x, xN

j , yN (t, x), yN (t, xN
j ))−G(t, xN

i , xN
j , ξNi (t), ξNj (t))

)
+ ϵN (t, x)
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where

ϵN (t, x) =

∫
Ω

G(t, x, x′, yN (t, x), yN (t, x′)) dν(x′)− 1

N

N∑
j=1

G(t, x, xN
j , yN (t, x), yN (t, xN

j ))

with rN (0, x) = 0. We have on the one part∥∥G(t, x, xN
j , yN (t, x), yN (t, xN

j ))−G(t, xN
i , xN

j , ξNi (t), ξNj (t))
∥∥

⩽ LN
yN

(t)(dΩ(x, x
N
i )α + ∥rN (t, x)∥+ ∥rN (t, xN

j )∥) ∀x ∈ ΩN
i

and on the other part, proceeding like in the proof of Theorem ?? (see Appendix ??),

∥ϵN (t, x)∥ ⩽
Cα

Ω

Nrα
LN
yN

(t)(1 + etL
N
yN

(t)) ∀x ∈ ΩN
i .

Using that dΩ(x, x
N
i ) ⩽ diamΩ(Ω

N
i ) ⩽ CΩ

Nr (see (??)), we finally obtain

d

dt
∥rN (t, ·)∥L∞(Ω) ⩽ ∥∂trN (t, ·)∥L∞(Ω) ⩽ LN

yN
(t)

(
2∥rN (t, ·)∥L∞(Ω) +

Cα
Ω

Nrα
(2 + etL

N
yN

(t))

)
and by integration, noting that τ 7→ LN

yN
(τ) is nondecreasing, (??) follows.

Finally, (??) is established as in the proof of Theorem ??.
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[33] D.R. Hartree, The wave mechanics of an atom with a non-Coulomb central field. Part II.
Some results and discussions, Proc. Cambridge Phil. Soc. 24 (1928), no. 1, 111–132.

[34] R. Hegselmann, U. Krause, Opinion dynamics and bounded confidence: models, analysis and
simulation, J. Artif. Soc. Soc. Sim. 5 (2002), no. 3.

[35] K. Ito, F. Kappel, The Trotter-Kato theorem and approximation of PDEs, Math. Comp. 67
(1998), no. 221, 21–44.

[36] P.-E. Jabin, A review of the mean field limits for Vlasov equations, Kinet. Relat. Models 7
(2014), no. 4, 661–711.

[37] P.-E. Jabin, D. Poyato, J. Soler, Mean-field limit of non-exchangeable systems,
arXiv:2112.15406 (2022).

[38] E. Mariucci, M. Reiß, Wasserstein and total variation distance between marginals of Lévy
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87. Birkhäuser/Springer, Cham, 2015. xxvii+353 pp.

[51] H. Spohn, Large scale dynamics of interacting particles, Texts and Monographs in Physics,
1991, Berlin, Springer-Verlag, xi+342 pp.

[52] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathe-
matical Series, No. 30, Princeton University Press, Princeton, N.J. 1970 xiv+290 pp.

[53] L. Tartar, An introduction to Sobolev spaces and interpolation spaces, Lecture Notes of the
Unione Matematica Italiana, 3. Springer, Berlin; UMI, Bologna, 2007. xxvi+218 pp.

[54] C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics, 58. American
Mathematical Society, Providence, RI, 2003. xvi+370 pp.

[55] C. Villani, Optimal transport. Old and new, Grundlehren der mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], 338. Springer-Verlag, Berlin, 2009.
xxii+973 pp.

[56] A.A. Vlasov, On the kinetic theory of an assembly of particles with collective interaction, Acad.
Sci. USSR. J. Phys. 9 (1945), 25–40.

79


