On the convergence of discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

On the convergence of discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system

Résumé

We prove the convergence of discontinuous Galerkin approximations for the Vlasov-Poisson system written as an hyperbolic system using Hermite polynomials in velocity. To obtain stability properties, we introduce a suitable weighted L 2 space, with a time dependent weight and first prove global stability for the weighted L 2 norm and propagation of regularity. Then we prove error estimates between the numerical solution and the smooth solution to the Vlasov-Poisson system.
Fichier principal
Vignette du fichier
paper.pdf (368.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03760711 , version 1 (25-08-2022)
hal-03760711 , version 2 (30-01-2023)

Identifiants

Citer

Marianne Bessemoulin-Chatard, Francis Filbet. On the convergence of discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system. 2022. ⟨hal-03760711v1⟩
200 Consultations
154 Téléchargements

Altmetric

Partager

More