On the convergence of discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system - Archive ouverte HAL
Article Dans Une Revue SIAM Journal on Numerical Analysis Année : 2023

On the convergence of discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system

Résumé

We prove the convergence of discontinuous Galerkin approximations for the Vlasov-Poisson system written as an hyperbolic system using Hermite polynomials in velocity. To obtain stability properties, we introduce a suitable weighted L 2 space, with a time dependent weight, and first prove global stability for the weighted L 2 norm and propagation of regularity. Then we prove error estimates between the numerical solution and the smooth solution to the Vlasov-Poisson system.
Fichier principal
Vignette du fichier
revised_paper.pdf (408.59 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-03760711 , version 1 (25-08-2022)
hal-03760711 , version 2 (30-01-2023)

Licence

Identifiants

Citer

Marianne Bessemoulin-Chatard, Francis Filbet. On the convergence of discontinuous Galerkin/Hermite spectral methods for the Vlasov-Poisson system. SIAM Journal on Numerical Analysis, 2023, 61 (4), pp.1664-1688. ⟨10.1137/22M1518232⟩. ⟨hal-03760711v2⟩
200 Consultations
154 Téléchargements

Altmetric

Partager

More