Sp(1)-SYMMETRIC HYPER-KÄHLER QUANTISATION - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Sp(1)-SYMMETRIC HYPER-KÄHLER QUANTISATION

Alessandro Malusà
  • Fonction : Auteur
Gabriele Rembado

Résumé

We provide a new general scheme for the geometric quantisation of Sp(1)-symmetric hyper-Kähler manifolds, considering Hilbert spaces of holomorphic sections with respect to the complex structures in the hyper-Kähler 2-sphere. Under properness of an associated moment map, or other finiteness assumptions, we construct unitary quantum (super) representations of central extensions of certain subgroups of Riemannian isometries preserving the 2-sphere, and we study their decomposition in irreducible components. We apply this quantisation scheme to hyper-Kähler vector spaces, the Taub-NUT metric on R 4 , moduli spaces of framed SU(r)-instantons on R 4 , and partly to the Atiyah-Hitchin manifold of magnetic monopoles in R 3 Contents 1. Introduction 1 Acknowledgements 5 2. Abstract Sp(1)-symmetric hyper-Kähler quantisation 6 3. Examples of applications 15 4. Outlook and further perspectives 25 Appendix A. Comparison with the standard approach 26 References 26
Fichier principal
Vignette du fichier
sp1_paper.pdf (368.22 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03748603 , version 1 (09-08-2022)
hal-03748603 , version 2 (12-06-2024)

Identifiants

  • HAL Id : hal-03748603 , version 1

Citer

Jørgen Ellegaard Andersen, Alessandro Malusà, Gabriele Rembado. Sp(1)-SYMMETRIC HYPER-KÄHLER QUANTISATION. 2022. ⟨hal-03748603v1⟩
68 Consultations
72 Téléchargements

Partager

More