Maximal displacement of spectrally negative branching L\'evy processes - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Maximal displacement of spectrally negative branching L\'evy processes

Résumé

We consider a branching Markov process in continuous time in which the particles evolve independently as spectrally negative L\'evy processes. When the branching mechanism is critical or subcritical, the process will eventually die and we may define its overall maximum, i.e. the maximum location ever reached by a particule. The purpose of this paper is to give asymptotic estimates for the survival function of this maximum. In particular, we show that in the critical case the asymptotics is polynomial when the underlying L\'evy process oscillates or drifts towards $+\infty$, and is exponential when it drifts towards $-\infty$.
Fichier principal
Vignette du fichier
Spectral_Branching.pdf (188.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03736526 , version 1 (22-07-2022)
hal-03736526 , version 2 (14-11-2022)

Identifiants

Citer

Christophe Profeta. Maximal displacement of spectrally negative branching L\'evy processes. 2022. ⟨hal-03736526v1⟩

Collections

GS-ENGINEERING
64 Consultations
53 Téléchargements

Altmetric

Partager

More