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MAXIMAL DISPLACEMENT OF SPECTRALLY NEGATIVE

BRANCHING LÉVY PROCESSES

CHRISTOPHE PROFETA

Abstract. We consider a branching Markov process in continuous time in which the particles
evolve independently as spectrally negative Lévy processes. When the branching mechanism is
critical or subcritical, the process will eventually die and we may define its overall maximum, i.e.
the maximum location ever reached by a particule. The purpose of this paper is to give asymptotic
estimates for the survival function of this maximum. In particular, we show that in the critical case
the asymptotics is polynomial when the underlying Lévy process oscillates or drifts towards +∞,
and is exponential when it drifts towards −∞.

1. Introduction

1.1. Description of the model. We consider a one-dimensional spectrally negative branching
Lévy process in the sense of Kyprianou [10]. It is a continuous-time particle system in which indi-
viduals move according to independent spectrally negative Lévy processes, and split at exponential
times into a random number of children.

More precisely, an initial ancestor begins its existence at the origin at time t = 0. It moves
according to a spectrally negative Lévy process L up to an independent exponential random vari-
able e of parameter 1. It then dies and splits into a random number of children with distribution
p = (pn)n≥0. Each of these children starts his life at the location of the ancestor and behaves inde-
pendently of the others, following the same stochastic pattern as the ancestor : it moves according
to L and branches at rate 1.

We assume that the offspring distribution p is non trivial, has expectation smaller or equal to
one and admits moments of order at least 3 :

p1 6= 1, E[p] ≤ 1, E[p3] < +∞.

As a consequence of the first two conditions, the branching process will almost surely die in fi-
nite time, and one may define its overall maximum M, i.e. the maximum location ever reached
by one particle. The purpose of this paper is to study the asymptotics of the survival function of M.

The investigation of the maximal displacement of branching processes, or equivalently of their
right-most particles, has already received a lot of attention in the literature. The emphasize has
been put so far on the supercritical branching Brownian motion for which it is known that the
survival function of the right-most particle is a travelling wave solution of the F-KPP equation, see
Bransom [3].

Key words and phrases. Branching process ; Extreme values ; Spectrally negative Lévy process.
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In our subcritical/critical set-up, this problem was first tackled by Fleischman & Sawyer [6] in
the case of the branching Brownian motion, as a model of propagation of an allele mutation in a
population. In this case, one may write an ODE satisfied by the survival function of M, and the
result follows by standard analytic methods. A generalization to symmetric stable Lévy processes
was obtained by Lalley & Shao [12], using a pseudo-differential equation and a Feynman-Kac rep-
resentation of the solution. More recently, the case of α-stable Lévy processes with positive jumps
was solved in [15], using a different method based on integral equations. It was in particular proven
that the asymptotics of the survival function of M is given as a power −α in the subcritical case,
and −α/2 in the critical case. We will see in the following theorems that the situation is different
for spectrally negative stable Lévy processes.

It is finally noteworthy to point out that in the literature, the term ”branching Lévy process”
might refer to a construction more general than the one we just described. One may indeed encodes
both the displacement of particules and the offspring reproduction into a general Lévy measure :
we refer for instance to Bertoin & Mallein [5] or Mallein & Shi [14] for a study of such processes.

1.2. Statement of the results. For λ ∈ C such that ℜ(λ) ≥ 0, let us define the Laplace exponent
Ψ(λ) = lnE

[

eλL1
]

of L by

Ψ(λ) = aλ+
η2

2
λ2 +

∫ 0

−∞

(

eλx − 1− λx1{|x|<1}

)

ν(dx)

where a ∈ R is the drift coefficient, η ∈ R the Gaussian coefficient and the Lévy measure ν satisfies
∫ 0
−∞(x2∧ 1) ν(dx) < +∞. We exclude the case where −L is a subordinator (for which M = 0 a.s.).
As a consequence the function Ψ is strictly convex and tends to +∞ as λ → +∞. This implies
that for any q ≥ 0, the equation Ψ(λ) = q admits at most two solutions, and we denote by Φ(q)
the largest one :

Φ(q) = sup{λ ≥ 0, Ψ(λ) = q}.
The function Φ is well-known to be related to the maximum of L. Indeed, let us denote by S the
running supremum of L :

St = sup
s≤t

Ls, t ≥ 0,

and let e be an exponential random variable with parameter 1 independent of L. Then, the random
variable Se is also exponentially distributed, see Bertoin [4, Corollary VII.2] :

P (Se ≥ x) = e−Φ(1)x. (1.1)

We start with the subcritical case.

Theorem 1. Assume that the branching process is subcritical, i.e. E[p] < 1. Then, there exists a
finite constant κ > 0 such that

P (M ≥ x) ∼
x→+∞

κe−Φ(1−E[p])x.

Comparing this asymptotics with (1.1), we see that in the subcritical case the branching mecha-
nism reduces the decay of the survival function of M, although it remains exponential. Of course,
when there are no branching, i.e. E[p] = 0, then M = Se a.s. and the equivalence is in fact an
equality.
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Before turning our attention to the critical case, we need to introduce the scale functions W (q),
with q ≥ 0, which are defined on [0,+∞) via their Laplace transforms by

∫ +∞

0
e−βxW (q)(x)dx =

1

Ψ(β)− q
for ℜ(β) > Φ(q). (1.2)

These functions are increasing, a.e. differentiable, and known to be related with the exit time
problem for spectrally negative Lévy processes, see for instance Kuznetsov, Kyprianou & Rivero
[9] or Hubalek & Kyprianou [7]. Analytically, the behavior at +∞ of the scale function W (0) = W
will explain the difference in the two cases of the following Theorem 2. Indeed, when Ψ′(0+) < 0,

the function W (q) has an exponential growth at +∞ given for q ≥ 0 by

W (q)(x) ∼
x→+∞

1

Ψ′(Φ(q))
eΦ(q)x (1.3)

while in the case Ψ′(0+) ≥ 0, this asymptotics is rather subexponential.

Theorem 2. Assume that the branching process is critical, i.e. E[p] = 1.

(1) If Ψ′(0+) > 0, then :

P (M ≥ x) ∼
x→+∞

2Ψ′(0+)

σ2 x
.

(2) If Ψ′(0+) = 0, then there exist two positive constants κ1, κ2 such that for x large enough :
κ1

xW (x)
≤ P (M ≥ x) ≤ κ2

xW (x)
.

(3) If Ψ′(0+) < 0, then there exists a finite constant κ > 0 such that :

P (M ≥ x) ∼
x→+∞

κe−Φ(0)x.

To better understand Theorem 2, it might be useful to recall the following facts on the large time
behavior of the underlying Lévy process L, see Bertoin [4, Corollary VII.2] :

i) When Ψ′(0+) > 0, the process L drifts a.s. towards +∞. As a consequence, each particule
tends to drift upward, and the branching mechanism allows to obtain a power decay instead
of an exponential one. Note that the inequalities given in Point (2) remain valid in this case
since lim

x→+∞
W (x) = 1/Ψ′(0+).

ii) When Ψ′(0+) = 0, the process L oscillates, i.e. lim sup
t→+∞

Lt = − lim inf
t→+∞

Lt = +∞. In this case,

the fact that some particules may enjoy big deviations towards +∞ also yields a power decay.
This is typically the case of the branching Brownian motion.

iii) Finally, when Ψ′(0+) < 0, the process L drifts a.s. towards −∞. This case is then very similar
to the subcritical case of Theorem 1, i.e. the branching mechanism only slightly reduces the
tail of the asymptotics.

When Ψ′(0+) = 0, as is usual, Theorem 2 may be refined by assuming a specific asymptotics of Ψ
at 0.

Corollary 3. Assume that E[p] = 1 and that Ψ is regularly varying at 0, i.e. that there exists a
constant α ∈ [1, 2] and a slowly varying function ℓ such that

Ψ(λ) ∼
λ↓0

λαℓ

(

1

λ

)

. (1.4)
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Then,

κ1
ℓ(x)

xα
≤ P (M ≥ x) ≤ κ2

ℓ(x)

xα

and there exists a sequence (xn) such that

P (M ≥ xn) ∼
xn→+∞

2

σ2

Γ(2α)

Γ(α)
ℓ(xn)x

−α
n .

Remark 4. From Bertoin [4, Proposition VII.6], Assumption (1.4) is equivalent to the Spitzer’s
condition :

lim
t→+∞

1

t

∫ t

0
P(Ls ≥ 0)ds =

1

α
.

The simplest example is of course the α-stable spectrally negative Lévy process for which one may
choose Ψ(λ) = λα, hence Φ(q) = q1/α.

1.3. An integral equation. To prove Theorems 1 and 2, we shall write down an integral equation
which is similar to the stable case with positive jumps studied in [15] or to the centered branching
random walk case studied in Lalley & Shao [13]. Let us set

u(x) = P (M ≥ x) for x ≥ 0,

and u(x) = 0 for x < 0. The choice to take u null on the negative half-line will allow to work with
Fourier transforms without need of renormalization.

Lemma 5. The function u is a solution of the nonlinear integral equation :

u(x) = E[p]E
[

1{Le<x}u(x− Le)
]

− 1

2
E
[

p
2 − p

]

E
[

1{Le<x}u
2(x− Le)

]

+ E
[

1{Le<x}ω(x− Le)
]

+R(x) (1.5)

where the function ω is such that

∀z ≥ 0, 0 ≤ ω(z) ≤ E[p3]u3(z), (1.6)

and the remainder R satisfies the bounds :

|R(x)| ≤
{

Ke−Φ(1)x if x ≥ 0,

KP(Le ≤ x) if x < 0
(1.7)

for some constant K > 0.

Proof. Let x ∈ R and recall that e is an exponential random variable of parameter 1 independent
of L. We start by applying the Markov property at the first branching event :

P(M < x) = p0P (Se < x) +
+∞
∑

n=1

pn P
(

Se < x, Le +M(1) < x, . . . , Le +M(n) < x
)

where the random variables (M(n))n∈N are independent copies of M, and are also independent
of the pair (Le, Se). Using the formula P(M ≥ x) = u(x) + 1{x<0} we thus obtain the integral
equation :

1− u(x)− 1{x<0} = p0P (Se < x) +

+∞
∑

n=1

pn E
[

1{Se<x} (1− u(x− Le)− 1{x<Le})
n
]

. (1.8)
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Note that developing the power n on the right-hand side, one may remove the indicator 1{x<Le}

since by definition {Se < x < Le} = ∅. Plugging the Taylor expansion with integral remainder

(1− u)n = 1− nu+
n(n− 1)

2
u2 − n(n− 1)(n − 2)

6
u3
∫ 1

0
(1− ut)n−3(1− t)2dt

in (1.8), we deduce after some simplifications that

u(x) = P (Se ≥ x)− 1{x<0} + E[p]E
[

1{Se<x}u(x− Le)
]

− 1

2
E
[

p
2 − p

]

E
[

1{Se<x}u
2(x− Le)

]

+ E
[

1{Se<x}ω(x− Le)
]

(1.9)

where the function ω equals :

ω(z) = u3(z)
∑

n≥3

pn
n(n− 1)(n − 2)

6

∫ 1

0
(1− u(z)t)n−3(1− t)2dt ≤ E[p3]u3(z).

Looking at (1.9) and adding and substracting 1{Le<x}, one now obtains formula (1.5) with R given
by

R(x) = P (Se ≥ x)− 1{x<0}

+ E

[

(

1{Se<x} − 1{Le<x}

)

(

E[p]u(x− Le)−
1

2
E
[

p
2 − p

]

u2(x− Le) + ω(x− Le)

)]

.

Finally, for x < 0, we have using that Se ≥ 0 a.s. and u(z) ≤ 1 :

|R(x)| ≤ E
[

1{Le<x}

(

E[p] + E
[

p
2
]

+ E[p3]
)]

≤ KP(Le < x)

while for x > 0, using the explicit distribution of Se given by (1.1) :

|R(x)| ≤ P(Se ≥ x) + 2E
[

1{Se>x}

(

E[p] + E
[

p
2
]

+ E[p3]
)]

≤ Ke−Φ(1)x.

�

Starting from Lemma 5, the proofs of Theorems 1 and 2 both rely on the same three steps :

i) We first obtain some a priori estimates on u using Equation (1.5).
ii) We then use these estimates to write down a new integral equation satisfied by u.
iii) We finally compute the asymptotics of u using this new equation.

One of the key observation will be to notice that the three expectations on the right-hand side of
Equation (1.5) are in fact convolution products. This will lead us to work with Laplace and Fourier
transforms.

2. The subcritical case : proof of Theorem 1

We start with the subcritical case and first prove that the asymptotics of u must be at least
exponential. In the following, we shall exclude the case E[p] = 0 for which M = Se a.s.

Lemma 6. Assume that E[p] < 1. There exists two constants C, δ > 0 such that

∀x ≥ 0, u(x) ≤ Ce−δx.
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Proof. Using that u is decreasing and bounded by 1, we first write

P(Le > 0)u2(x) ≤ E
[

1{Le>0}u
2(x− Le)

]

≤ E
[

1{Se<x}u
2(x− Le)

]

+ P(Se ≥ x). (2.1)

Of course, since L is not the opposite of a subordinator, we necessarily have P(Le > 0) > 0. Going
back to Equation (1.9), and using the bound on ω given in (1.6) as well as the obvious inequality
Le ≤ Se a.s., we obtain for x ≥ 0 :

1

2
E
[

p
2 − p

]

P(Le > 0)u2(x) ≤ E[p]E
[

1{Se<x}u(x− Se)
]

− u(x)

+ E[p3]E
[

1{Se<x}u
3(x− Se)

]

+
(

1 + E
[

p
2
])

P(Se ≥ x). (2.2)

Notice that we have implicitly used the fact that E
[

p
2 − p

]

> 0 since p is integer-valued. We now
integrate this relation on [0, n] with n ∈ N and δ > 0 :
∫ n

0
eδx
(

1

2
E
[

p
2 − p

]

P(Le > 0)u2(x)− E[p3]E
[

1{Se<x}u
3(x− Se)

]

)

dx

≤ E[p]E

[

eδSe

∫ (n−Se)+

0
eδxu(x)dx

]

−
∫ n

0
eδxu(x)dx+

(

1 + E
[

p
2
])

∫ n

0
eδxP(Se ≥ x)dx

≤
(

E[p]E
[

eδSe

]

− 1
)

∫ n

0
eδxu(x)dx+

(

1 + E
[

p
2
])

∫ n

0
eδxP(Se ≥ x)dx.

Since E[p] < 1, we may choose δ ∈ (0,Φ(1)) small enough such that E[p]E
[

eδSe

]

< 1. Then, letting
n → +∞, we obtain :

lim sup
n→+∞

∫ n

0
eδx
(

1

2
E
[

p
2 − p

]

P(Le > 0)u2(x)− E[p3]E[eδSe ]u3(x)

)

dx ≤ 1 + E[p2]

δ
E[eδSe ].

Since u decreases to 0 as x → +∞, we deduce that
∫ +∞

0
eδxu2(x)dx < +∞

and finally, for x ≥ 1,
∫ +∞

0
eδzu2(z)dz ≥

∫ x

x−1
eδzu2(z)dz ≥ eδ(x−1)u2(x) (2.3)

which implies the result. �

Thanks to Lemma 6, we may now take the Laplace transform of Formula (1.5) with λ ∈ (0, δ).
To simplify the computation, we set

g(x) = ω(x)− 1

2
E
[

p
2 − p

]

u2(x).

Using the Fubini-Tonelli theorem to compute the convolution products on the right-hand side of
(1.5), we obtain :

∫

R

eλxu(x)dx = E[p]E
[

eλLe

]

∫

R

eλxu(x)dx+ E

[

eλLe

]

∫

R

eλxg(x)dx +

∫

R

eλxR(x)dx.

By definition, the Laplace transform of the random variable Le admits the expression

E[eλLe ] =

∫ +∞

0
e−tetΨ(λ)dt =

1

1−Ψ(λ)
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which yields the formula
∫

R

eλxu(x)dx =
1

1− E[p]−Ψ(λ)

∫

R

eλx(g(x) + E[p]R(x))dx+

∫

R

eλxR(x)dx. (2.4)

Observe that this expression remains valid for 0 ≤ λ < Φ(1−E[p]). We now prove that the fraction
on the right-hand side may be written as a Laplace transform. Indeed

1

1− E[p]−Ψ(λ)
=

∫ +∞

0
e−(1−E[p]−Ψ(λ))tdt

=

∫ +∞

0
e−(1−E[p])t

E

[

eλLt

]

dt =

∫

R

eλz
∫ +∞

0
e−(1−E[p])t

P(Lt ∈ dz)dt.

From Kyprianou [11, Corollary 8.9], the q-potential measure of L is known to be absolutely con-
tinuous with density θ(q) given for q > 0 by :

∫ +∞

0
e−qt

P(Lt ∈ dz)dt = θ(q)(z)dz =
(

Φ′(q)e−Φ(q)z −W (q)(−z)
)

dz. (2.5)

As a consequence, inverting Equation (2.4), we obtain a new integral equation for u :

u(x) =

∫

R

(g(z) + E[p]R(z)) θ(1−E[p])(x− z) dz +R(x). (2.6)

Finally letting x → +∞ and using the bound (1.7) on R as well as the asymptotics (1.3) of W (q)

gives the result :

lim
x→+∞

eΦ(1−E[p])xu(x) = Φ′(1− E[p])

∫

R

eΦ(1−E[p])z (g(z) + E[p]R(z)) dz = κ.

It seems however difficult to compute explicitly κ as it is given in terms of u. �

3. The Critical case : Proof of Theorem 2 when Ψ′(0+) ≥ 0

We now assume that E[p] = 1 and we recall that in this case σ2 = E[p2−p] denotes the variance
of p. For the first part of the proof, we shall deal with Point (1) and Point (2) of Theorem 2
simultaneously.

3.1. A priori estimates. As in the subcritical case, we start by proving some a priori estimates
on the function u. These estimates will be necessary to justify some of the computation later.

Lemma 7. For any δ > 0, there exists a finite constant Cδ such that :

∀x > 0, u(x) ≤ Cδ

x1−δ
.

Proof. We shall prove by induction that for every n ∈ N, there exists a constant Cn such that

∀x > 0, u(x) ≤ Cn x
1

2n
−1. (3.1)
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3.1.1. The base case n = 1. We start by taking the Laplace transform of Equation (2.2), whose
right-hand side only involves the random variable Se. This yields with λ > 0 :

P(Le > 0)
σ2

2

∫ +∞

0
e−λzu2(z)dz − E

[

e−λSe

]

E[p3]

∫ +∞

0
e−λzu3(z)dz ≤

(

1 + E[p2]
) 1− E

[

e−λSe

]

λ

i.e. using the explicit distribution of Se

∫ +∞

0
e−λz

(

P(Le > 0)
σ2

2
u2(z) − E[p3]u3(z)

)

dz ≤ 1 + E[p2]

λ+Φ(1)
.

As before, since u is decreasing and converges towards 0 as x → +∞, we deduce by letting λ ↓ 0
that u2 is integrable. Then a change of variables yields

u2
(

1

λ

)
∫ 1

0
e−zdz ≤ λ

∫ +∞

0
e−λzu2(z)dz ≤ λ

∫ +∞

0
u2(z)dz.

Setting x = 1/λ, we finally conclude that there exists a finite constant C1 such that :

u(x) ≤ C1√
x

which is (3.1) for n = 1.

3.1.2. Induction step. Fix n ∈ N and assume that Formula (3.1) holds true. Multiplying Equa-
tion (2.2) by x and taking the Laplace transform, we obtain after some simplifications using the
decomposition z = z − Se + Se :

∫ +∞

0
e−λzz

(

P(Le > 0)
σ2

2
u2(z) − E[p3]u3(z)

)

dz

≤ E

[

See
−λSe

]

∫ +∞

0
e−λzu(z)dz +

1 + E[p2]

(λ+Φ(1))2
+ E[p3]E

[

See
−λSe

]

∫ +∞

0
e−λzu3(z)dz.

Fix ε small enough and take A > 0 such that for any x ≥ A

E[p3]u(x) ≤ P(Le > 0)
σ2

2
− ε.

A change of variables then yields

ε

λ2

∫ +∞

λA
e−xxu2

(x

λ

)

dx

≤ E [Se]

λ

∫ +∞

0
e−λz

( z

λ

)

dz +
1 + E[p2]

(λ+Φ(1))2
+ E[p3]E [Se]

∫ +∞

0
u3(z)dz + E[p3]

∫ A

0
zu3(z)dz

i.e., for λ small enough such that λA ≤ 1/2,

εu2
(

1

λ

)
∫ 1

1/2
e−xxdx ≤ λE [Se]

∫ +∞

0
e−zu

( z

λ

)

dz + λ2K

for some constant K > 0. Plugging the induction hypothesis in the right-hand side yields

εu2
(

1

λ

)
∫ 1

1/2
e−xxdx ≤ λ2− 1

2n CnE [Se]

∫ +∞

0
e−zz1−

1

2n dz + λ2K

and replacing x = 1/λ as before, we finally obtain the existence of a constant Cn+1 such that :

u(x) ≤ Cn+1 x
1

2n+1 −1.
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As a consequence, we deduce that (3.1) holds for every n ∈ N, which proves Lemma 7 by monotony.
�

3.2. A new equation for u. The purpose of this subsection is to prove the following new equation
for the function u :

Proposition 8. The function u is a solution of the integral equation :

u(x)−R(x) =

∫ +∞

0

(

σ2

2
u2(x+ z)− ω(x+ z)−R(x+ z)

)

W (z)dz.

In the following, we shall denote the Fourier transform of a measurable function f (provided it
exists) by :

F(f)(ξ) =

∫

R

eiξzf(z)dz.

In particular, since u is decreasing and converges towards 0, we deduce from Abel’s lemma that
F(u) is well-defined (although umight not be integrable). Taking the Fourier transform of Equation
(1.5), and applying the Fubini theorem on the left-hand side since u2 is integrable from Lemma 7,
we deduce that

σ2

2
E[eiξLe ]F(u2)(ξ) =

∫

R

eiξx
∫

R

u(x−z)P(Le ∈ dz)dx−F(u)(ξ)+E[eiξLe ]F(ω)(ξ)+F(R)(ξ). (3.2)

To compute the convolution product on the right-hand side, we shall rely on the following lemma :

Lemma 9. Let f : R → R be an integrable function and let ϕ : [0,+∞) → [0,+∞) be a measurable
function, null on (−∞, 0) and such that

∀ξ 6= 0,

∣

∣

∣

∣

∫ +∞

0
eiξxϕ(x)dx

∣

∣

∣

∣

< +∞.

Then, the Fourier transform of the convolution product is given by :
∫

R

eiξx
(
∫

R

ϕ(x− z)f(z)dz

)

dx = F(ϕ)(ξ) ×F(f)(ξ), ξ 6= 0.

Proof. Of course, Lemma 9 is just a consequence of Fubini theorem if ϕ is integrable. But when
ϕ is not integrable, as will be the case here, some care is needed. Fix n > 0. Applying the Fubini
theorem and a change of variable, we first write

∫ n

−n
eiξx

∫ +∞

0
f(x− z)ϕ(z)dz dx =

∫ +∞

0
eiξzϕ(z)

∫ n−z

−n−z
eiξyf(y)dy dz.

To avoid lengthy expressions, we shall proceed in two steps by cutting the last integral at 0.
Integrating by parts, we first write:

F(ϕ)(ξ) ×
∫ +∞

0
eiξyf(y)dy −

∫ +∞

0
eiξzϕ(z)

∫ n−z

0
eiξyf(y)dy dz

=

∫ +∞

0
eiξzϕ(z)dz

∫ +∞

n
eiξyf(y)dy +

∫ +∞

0

(
∫ +∞

y
eiξzϕ(z)dz

)

eiξ(n−y)f(n− y)dy.

The first term will converge to 0 as n → +∞. To study the limit of the second term, fix A large
enough such that

∀x ≥ A,

∣

∣

∣

∣

∫ +∞

x
eiξzϕ(z)dz

∣

∣

∣

∣

≤ ε.
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We then have :
∣

∣

∣

∣

∫ A

0

(
∫ +∞

y
eiξzϕ(z)dz

)

eiξ(n−y)f(n− y)dy

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ +∞

A

(
∫ +∞

y
eiξzϕ(z)dz

)

eiξ(n−y)f(n− y)dy

∣

∣

∣

∣

≤ sup
y≥0

∣

∣

∣

∣

∫ +∞

y
eiξzϕ(z)dz

∣

∣

∣

∣

∫ A

0
|f(n− y)|dy + ε

∫

R

|f(x)|dx −−−−−→
n→+∞

ε

∫

R

|f(x)|dx.

A similar argument shows that

lim
n→+∞

∫ +∞

0
eiξzϕ(z)

∫ 0

−n−z
eiξyf(y)dy dz = F(ϕ)(ξ) ×

∫ 0

−∞
eiξyf(y)dy.

As a consequence, we have obtained that
∫

R

eiξx
∫ +∞

0
f(x− z)ϕ(z)dz dx = lim

n→+∞

∫ n

−n
eiξx

∫ +∞

0
f(x− z)ϕ(z)dz dx

= lim
n→+∞

∫ +∞

0
eiξxϕ(x)

∫ n−x

−n−x
eiξzf(z)dz dx

= F(ϕ)(ξ) ×F(f)(ξ)

which concludes the proof of Lemma 9. �

Recall now that the distribution of Le is actually the 1-potential measure of L, i.e. from (2.5)

the random variable Le is absolutely continuous with density given by θ(1). Applying Lemma 9 to
Equation (3.2) with f = θ(1) and ϕ = u, we thus obtain

σ2

2
E[eiξLe ]F(u2)(ξ) = E[eiξLe ]F(u)(ξ) −F(u)(ξ) + E[eiξLe ]F(ω)(ξ) + F(R)(ξ).

By definition, the characteristic function of Le is given by

E

[

eiξLe

]

=

∫ +∞

0
e−tetΨ(iξ)dt =

1

1−Ψ(iξ)

which yields the equation

F
(

σ2

2
u2 − ω −R

)

(ξ) = Ψ(iξ)F(u−R)(ξ).

Integrating by parts the right-hand side, we further have

iξ

Ψ(iξ)
F
(

σ2

2
u2 − ω −R

)

(ξ) = F((R − u)′)(ξ). (3.3)

The next step consists in showing that the function ξ −→ iξ/Ψ(iξ) is actually the Fourier transform
of W ′. Indeed, from [7], since Ψ′(0+) ≥ 0, the function W is concave on (0,+∞) hence it is
absolutely continuous on any compact subset of (0,+∞). As a consequence, we may integrate by
parts the definition of W given in (1.2) to obtain

∫ +∞

0
e−βxW ′(x)dx =

β

Ψ(β)
, ℜ(β) > 0. (3.4)

We now check that Formula (3.4) remains valid for β = iξ with ξ 6= 0. The function W ′ being
positive and decreasing, let us denote by w∞ its limit : lim

x→+∞
W ′(x) = inf

x≥0
W ′(x) = w∞. As a
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consequence, from Abel’s lemma, the Fourier transform of W ′ − w∞ is well-defined for ξ 6= 0. Let
ε > 0 and take A large enough such that

∀x ≥ A,

∣

∣

∣

∣

∫ +∞

x
e−iξz(W ′(z)− w∞)dz

∣

∣

∣

∣

≤ ε.

Integrating by parts, we have for h > 0 :
∣

∣

∣

∣

∫ +∞

0

(

e−hx − 1
)

e−iξx(W ′(x)− w∞)dx

∣

∣

∣

∣

= h

∣

∣

∣

∣

∫ +∞

0
e−hx

∫ +∞

x
e−iξz(W ′(z)− w∞)dz dx

∣

∣

∣

∣

≤ h

∫ A

0

∣

∣

∣

∣

∫ +∞

x
e−iξz(W ′(z) − w∞)dz

∣

∣

∣

∣

dx+ ε

which proves that

lim
h↓0

∫ +∞

0
e−hxe−iξx(W ′(x)− w∞)dx =

∫ +∞

0
e−iξx(W ′(x)− w∞)dx.

Then, using the continuity of Ψ, we obtain still for ξ 6= 0 :

iξ

Ψ(iξ)
= lim

h↓0

h+ iξ

Ψ(h+ iξ)

= lim
h↓0

∫ +∞

0
e−hxe−iξx(W ′(x)− w∞)dx+

∫ +∞

0
e−hxe−iξxw∞dx

=

∫ +∞

0
e−iξx(W ′(x)− w∞)dx+

w∞

iξ
.

Plugging this last expression in (3.3) and computing the convolution product, using again Lemma

9 with f = σ2

2 u2 − ω −R and ϕ = W ′ −w∞, one obtains :

∫ +∞

0
e−iξx

∫ +∞

0

(

σ2

2
u2(z + x)− ω(z + x)−R(z + x)

)

(W ′(z)− w∞)dz dx

= F((R − u)′)(ξ)− w∞

iξ
F
(

σ2

2
u2 − ω −R

)

(ξ). (3.5)

We now check that the terms in w∞ cancel. When Ψ′(0+) > 0, we necessarily have w∞ = 0 since
the function W ′ is integrable as can be seen by letting β ↓ 0 in Formula (3.4) and applying the
monotone convergence theorem

∫ ∞

0
W ′(x)dx =

1

Ψ′(0+)
.

When Ψ′(0+) = 0, the cancelation will follow from the observation that

F
(

σ2

2
u2 − ω −R

)

(0) =

∫ +∞

−∞

(

σ2

2
u2(z)− ω(z)−R(z)

)

dz = 0.

Indeed, applying the dominated convergence theorem in (3.3) thanks to Lemma 7, we have

lim
ξ↓0

F
(

σ2

2
u2 − ω −R

)

(ξ) = lim
ξ↓0

Ψ(iξ)

iξ
F
(

(R − u)′
)

(ξ) = 0.

As a consequence, integrating by parts the last term of (3.5) and inverting the Fourier transform,
we deduce that
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∫ +∞

0

(

σ2

2
u2(z + x)− ω(z + x)−R(z + x)

)

(W ′(z)− w∞)dz

= (R− u)′(x) + w∞

∫ x

−∞

(

σ2

2
u2(z)− ω(z)−R(z)

)

dz

i.e.
∫ +∞

0

(

σ2

2
u2(z + x)− ω(z + x)−R(z + x)

)

W ′(z)dz = (R− u)′(x). (3.6)

Finally, integrating both sides and using again the Fubini theorem :

u(x)−R(x) =

∫ +∞

x

∫ +∞

r

(

σ2

2
u2(z)− ω(z)−R(z)

)

W ′(z − r)dzdr

=

∫ +∞

x

(

σ2

2
u2(z)− ω(z)−R(z)

)

W (z − x)dz

=

∫ +∞

0

(

σ2

2
u2(z + x)− ω(z + x)−R(z + x)

)

W (z)dz

which is the announced equation. �

3.3. Study of the limit. The last part of the proof now consists in studying the asymptotics of
u, using the new equation :

u(x)−R(x) = x

∫ +∞

0

(

σ2

2
u2(x(z + 1))− ω(x(z + 1))−R(x(z + 1))

)

W (xz)dz. (3.7)

Notice that by a coupling argument with the subcritical case obtained in Theorem 1, we have for
any offspring distribution such that E[p] < 1 :

lim inf
x→+∞

eΦ(1−E[p])xu(x) > 0.

In particular, since Φ(0) = 0 in the case Ψ′(0+) ≥ 0, this implies that for any δ > 0,

lim inf
x→+∞

eδxu(x) = +∞. (3.8)

As a consequence, we deduce that for x large enough, there exists a constant C > 0 such that

σ2

2
u2(x)− ω(x)−R(x) ≥ σ2

2
u2(x)

(

1− Cu(x)−Ce−(Φ(1)−δ)x
)

≥ 0

which proves that the integrand on the right-hand side of (3.7) is positive for x large enough. Sim-
ilarly, we deduce from (3.6) that the function u−R is decreasing for x large enough.

Going back to Theorem 2, Point (2) is equivalent to showing that

0 < lim inf
x→+∞

γ(x) ≤ lim sup
x→+∞

γ(x) < +∞ (3.9)

where we have set, to simplify the notation :

γ(x) = xW (x)u(x).
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3.3.1. Computation of the upper bound. We first prove that the limit superior of γ is finite. Let us

take A large enough such that for any x ≥ A, the quantity σ2

2 u2(x)− ω(x)−R(x) is positive. We
then decompose :

u(x) ≥ x

∫ 2

1
W (xz)

(

σ2

2
u2(x(z + 1))− ω(x(z + 1)) −R(x(z + 1))

)

dz

≥ σ2

2
xW (x)u2(3x)− xW (x)E[p3]u3(2x)− xW (x)Ke−2Φ(1)x

for some constant K > 0 given by the bound (1.7) on R. Then, multiplying both sides by xW (x)
and taking the supremum on [A,n], we deduce that

sup
[A,n]

σ2

18

(

W (x)

W (3x)

)2

(γ(3x))2 ≤ sup
[A,n]

γ(x) +
E[p3]u(2A)

4
sup
[A,n]

(

W (x)

W (2x)

)2

(γ(2x))2 + C

for some constant C > 0 independent of n. Furthermore, since W is positive, increasing and
concave, we have the bounds

1 ≥ W (x)

W (2x)
≥ W (x)

W (3x)
≥ 1

W (3x)

(
∫ x

0
W ′(3y)dy +W (0)

)

=
1

3
+

2

3

W (0)

W (3x)
≥ 1

3
.

Therefore
σ2

162
sup

[3A,3n]
(γ(x))2 ≤ sup

[A,3n]
γ(x) +

E[p3]

4
u(2A) sup

[A,3n]
(γ(x))2 + C

and dividing both sides
(

σ2

162
− E[p3]

4
u(2A)

)

sup
[3A,3n]

γ(x) ≤
(

1 +
sup[A,3A] γ(x) + C

sup[3A,3n] γ(x)

)

+
E[p3]

4
u(2A)

sup[A,3A] (γ(x))
2

sup[3A,3n] γ(x)
.

Finally, by taking A large enough for the left-hand side to be positive and letting n → +∞, we
conclude that

sup
x≥3A

γ(x) < +∞

which implies that the limit superior is finite.

3.3.2. Computation of the lower bound. We now turn our attention to the limit inferior of γ. Fix
δ > 0 small enough. Using the limit superior as well as (3.8), we deduce that there exists K > 0
and A > 0 such that for every z ≥ A, one has

σ2

2
u2(z)−R(z) ≤ K

(

1

zW (z)

)1−δ

(u(z) −R(z))1+δ .

Starting from (3.6), and recalling that the function u−R is decreasing for x large enough, we first
write the bound

(R(x)− u(x))′ ≤ K(u(x)−R(x))1+δ

∫ +∞

0

xW ′(xz)

(x(1 + z)W (x(1 + z))1−δ
dz

which implies, since x → xW (x) is increasing,

(R(x)− u(x))′

(u(x)−R(x))1+δ
≤ K

(

W (x)

(xW (x))1−δ
+ x

∫ +∞

1

W ′(xz)

(x(1 + z)W (x(1 + z))1−δ
dz

)

. (3.10)
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Furthermore, since W is concave and z ≥ 1, we have the series of inequalities :

W ′(xz)

(x(1 + z)W (x(1 + z)))1−δ
≤ W (xz)

xz

1

(xzW (xz))1−δ
=

(W (xz))δ

(xz)2−δ
≤
(

W (x)

x

)δ 1

(xz)2−2δ
.

As a consequence, we deduce that the integral in (3.10) is bounded by

x

∫ +∞

1

W ′(xz)

(x(1 + z)W (x(1 + z)))1−δ
dz ≤

(

W (x)

x

)δ ∫ +∞

x

1

z2−2δ
dz =

1

1− 2δ

(W (x))δ

x1−δ
.

Then, integrating (3.10) on [A, y], the last inequality implies that there exists a constant C > 0
such that :

1

(u(y) −R(y))δ
− 1

(u(A) −R(A))δ
≤ δC

∫ y

A

(W (x))δ

x1−δ
dx ≤ C(yW (y))δ

i.e.

u(y)−R(y) ≥
(

C(yW (y))δ +
1

(u(A) −R(A))δ

)−1/δ

.

Finally, passing to the limit inferior, we conclude that

lim inf
y→+∞

γ(y) = lim inf
y→+∞

yW (y)u(y) ≥ C−1/δ > 0

which proves Point (2) of Theorem 2.

3.4. The case Ψ′(0+) > 0. We now prove Point (1) of Theorem 2. In this case, we may improve the
previous inequality using the fact that W converges towards some positive valueW (∞) = 1/Ψ′(0+).
Indeed, let us first write Equation (3.7) under the form :

u(x) =
σ2

2

∫ +∞

0
u2(x+ z)W (x+ z)dz + I(x) =

σ2

2

∫ +∞

x
u2(z)W (z)dz + I(x) (3.11)

where the remainder I is given by :

I(x) = R(x) +
σ2

2

∫ +∞

0
u2(x+ z)(W (z)−W (z + x))dz − σ2

2

∫ +∞

0
(ω(z + x) +R(z + x))W (z)dz.

Differentiating and solving Equation (3.11), we deduce that

u(x) =
1

1 + σ2

2

∫ x
0 W (z)dz +

∫ x
0

I′(z)
u2(z)dz

=
1

1 + σ2

2

∫ x
0 W (z)dz + I(x)

u2(x)
− I(0) − 2

∫ x
0

I(z)u′(z)
u3(z)

dz
. (3.12)

Fix ε > 0 small enough. Using (3.9) as well as the bounds on ω and R, the function I is smaller
than

|I(x)| ≤ K

(

1

x2
+

1

x

∫ +∞

0

1

(1 + z)2
(W (x+ zx)−W (zx))dz

)

≤ K

(

1

x2
+

2W (∞)

x

∫ ε

0

1

(1 + z)2
dz +

W (∞)−W (εx)

x

∫ +∞

ε

1

(1 + z)2
dz

)
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for some constant K > 0. Furthermore, taking δ = 0 in (3.10), we also deduce that x → x2|u′(x)|
is bounded for x large enough. As a consequence, for x ≥ 1, there exists a constant C > 0 such
that

∣

∣

∣

∣

∫ x

1

I(z)u′(z)

u3(z)
dz

∣

∣

∣

∣

≤ C

∫ x

1
|I(z)|zdz ≤ CK

(

ln(x) + 2W (∞)εx+

∫ x

1
(W (∞)−W (εz))dz

)

.

Going back to (3.12), this yields the bounds

1
σ2

2 W (∞) + 4KCW (∞)ε
≤ lim inf

x→+∞
xu(x) ≤ lim sup

x→+∞
xu(x) ≤ 1

σ2

2 W (∞)− 4KCW (∞)ε

and the result follows by letting ε ↓ 0 :

lim
x→+∞

xu(x) =
1

σ2

2 W (∞)
=

2

σ2
Ψ′(0+).

�

3.5. The regularly varying case. We now assume that Assumption (1.4) holds :

Ψ(λ) ∼
λ↓0

λαℓ

(

1

λ

)

where α ∈ [1, 2] and ℓ is a slowly varying function. Recalling that W is increasing, we deduce from
(1.2) and the Tauberian theorem that W is regularly varying at +∞ :

W (x) ∼
x→+∞

xα−1

Γ(α)ℓ (x)
. (3.13)

Let us define for z ≥ 0 the function b(x) by

b(x)(z) =
W (x)W (xz)

((1 + z)W (x+ xz))2
.

From the asymptotics (3.13), this function converges a.s. :

b(x)(z) −−−−→
x→+∞

zα−1

(1 + z)2α
.

We now come back to Equation (3.7) which we rewrite :

γ(x) =
σ2

2

∫ +∞

0
γ2(x(1 + z))b(x)(z)dz + I(x) (3.14)

where the remainder I(x) is given by

I(x) = xW (x)R(x)−
∫ +∞

0

(

x(1 + z)W (x(1 + z))
)2(

ω(x(1 + z)) +R(x(1 + z))
)

b(x)(z)dz.

Since W is increasing, the inequality b(x)(z) ≤ 1/(1 + z)2 together with the bounds on ω and R
given in Lemma 5 allow to apply the dominated convergence theorem to obtain

lim
x→+∞

I(x) = 0.

Now, applying Fatou’s lemma in Equation (3.14), we deduce that

lim inf
x→+∞

γ(x) ≥ lim inf
x→+∞

γ2(x)
σ2

2

∫ +∞

0

zα−1

(1 + z)2α
dz
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i.e.

lim inf
x→+∞

γ(x) ≤ 2

σ2B(α,α)

where B denotes the Beta function. Similarly, applying the reverse Fatou lemma since γ is bounded,
we conclude that

2

σ2B(α,α)
≤ lim sup

x→+∞
γ(x).

Finally, the existence of a sequence (xn) such that

lim
n→+∞

γ(xn) = lim
x→+∞

xnW (xn)u(xn) =
2

σ2B(α,α)

is a consequence of the continuity of γ. Now, Corollary 3 follows from the asymptotics of W given
by (3.13) and the formula for the Beta function B(α,α) = Γ2(α)/Γ(2α). �

Remark 10. Notice that if we neglect the remainders, the equation

f(x) =
σ2

2

∫ +∞

0
f2(x(1 + z))

zα−1

(1 + z)2α
dz

admits as solutions the functions

fc(x) =
xα

(

c+
(

σ2

2 B(α,α)
)1/α

x

)α

where c is any parameter in [0,+∞]. This expression is in agreement with the explicit solution
obtained in [6] for the Brownian case.

4. The critical case : proof of Theorem 2 when Ψ′(0+) < 0

In this case, the underlying Lévy process drifts a.s. to −∞, and we shall see that the asymptotics
of M is no longer polynomial but exponential. Consequently, the proof will be similar to the
subcritical case of Theorem 1. We start with the following a priori estimate :

Lemma 11. Assume that Ψ′(0+) < 0. Then, for any δ > 0, there exists a finite constant Cδ such
that

∀x ≥ 0, u(x) ≤ Cδ exp

(

−Φ(0)− δ

2
x

)

.

Proof. Fix λ ∈ (0,Φ(0)) and notice that since Ψ is convex and Ψ′(0+) < 0, we have E
[

eλLe

]

≤ 1.

Let n ∈ N. Integrating Equation (1.5) against exp
(

λx− 1
ne

λx
)

, we obtain :
∫ +∞

0
E

[

eλ(x+Le) exp

(

− 1

n
eλ(x+Le)

)](

σ2

2
u2(x)− E[p3]u3(x)

)

dx−
∫ +∞

0
eλx exp

(

− 1

n
eλx
)

R(x)dx

≤
∫ +∞

0
E

[

eλ(x+Le) exp

(

− 1

n
eλ(x+Le)

)]

u(x)dx−
∫ +∞

0
eλx exp

(

− 1

n
eλx
)

u(x)dx.

Integrating by parts and recalling that u is decreasing, the right-hand side is further equal to

n

λ
E

[

e−
1

n
eλLe − 1

]

+

∫ +∞

0
E

[

e−
1

n
eλx − e−

1

n
eλx+λLe

]

|u′(x)|dx.
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Observe finally that this last integral is negative, since, from Jensen inequality,

E

[

e−
1

n
eλx − e−

1

n
eλx+λLe

]

≤ e−
1

n
eλx − e−

1

n
eλxE[eλLe ] ≤ 0.

As a consequence, we deduce that

lim sup
n→+∞

∫ +∞

0
E

[

eλ(x+Le) exp

(

− 1

n
eλ(x+Le)

)](

σ2

2
u2(x)− E[p3]u3(x)

)

dx ≤
∫ +∞

0
eλxR(x)dx.

Applying the monotone convergence theorem, this implies that
∫ +∞

0
eλxu2(x)dx < +∞.

Lemma 11 now follows from the fact that u is decreasing, using the same argument as in (2.3). �

The remainder of the proof is now similar to the subcritical case of Section 2. Taking the Laplace
transform of (1.5) with λ ∈ (0,Φ(0)/2) , we obtain :

− 1

Ψ(λ)

∫

R

eλx
(

σ2

2
u2(x)− ω(x)−R(x)

)

dx =

∫

R

eλx (u(x)−R(x)) dx. (4.1)

We now observe that since Ψ(λ) < 0, the function λ −→ −1/Ψ(λ) is the Laplace transform of the
0-potential of L :

− 1

Ψ(λ)
=

∫ +∞

0
etΨ(λ)dt =

∫ +∞

0
E

[

eλLt

]

dt =

∫

R

eλz
∫ +∞

0
P(Lt ∈ dz)dt.

Therefore, passing to the limit as q ↓ 0 in (2.5)
∫ +∞

0
P(Lt ∈ dz)dt =

(

Φ′(0)e−Φ(0)z −W (−z)
)

dz

and plugging this last relation in (4.1), we obtain after inverting the Laplace transforms
∫

R

(

σ2

2
u2(z)− ω(z)−R(z)

)

(

Φ′(0)e−Φ(0)(x−z) −W (z − x)
)

dz = u(x)−R(x).

Finally, passing to the limit as x → +∞, we conclude that

lim
x→+∞

eΦ(0)xu(x) = Φ′(0)

∫

R

eΦ(0)z

(

σ2

2
u2(z)− ω(z)−R(z)

)

dz = κ.

�
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Université Paris-Saclay, CNRS, Univ Evry, Laboratoire de Mathématiques et Modélisation d’Evry,
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