Determination of ultrahigh molar mass of polyelectrolytes by Taylor dispersion analysis
Résumé
Taylor dispersion analysis (TDA) was successfully applied to obtain broadly distributed, ultrahigh molar masses of industrial anionic polyacrylamides (IPAMs) up to 25 ×10 6 g/mol, far beyond the detection limit of SEC (about 7.3×10 6 g/mol for anionic polyacrylamides standards). Two protocols of TDA differing in capillary surface and rinsing procedure were employed: (i) bare fused silica capillaries under intensive between-run rinsing with 1M NaOH, and (ii) capillaries coated with polyelectrolyte multilayers composed of polydiallyldimethylammonium chloride polycation and sodium polystyrenesulfonate polyanion under simple rinsing with background electrolyte. Both cases led to similar results and in agreement with those obtained by static light scattering, the rinsing capillary step being much shorter in the second case (8 min instead of 30 min). The data processing of the obtained taylorgrams was realized using multiple-Gaussian fitting of the overall taylorgrams, by separating the contribution of low molar mass impurities from the polymeric profiles, and by determining the mean hydrodynamic radii and diffusion coefficients of the polymers. The molar masses of ultra-high molar mass industrial anionic polyacrylamides were derived from the hydrodynamic radii according to logR h versus logM w linear correlation established with APAM standards. Compared to capillary gel electrophoresis for which the size separation was only feasible up to M w ~ 10×10 6 g/mol due to field induced polymer aggregation, TDA largely extended the range of accessible molar mass with easy-to-run and time saving assays.
Fichier principal
pub-snf-TDA-final.pdf (728.7 Ko)
Télécharger le fichier
pub-snf-TDA-final.DOCX (543.09 Ko)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|