Finite elements for Wasserstein $W_p$ gradient flows - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2024

Finite elements for Wasserstein $W_p$ gradient flows

Résumé

Convergence of a finite element discretization of a degenerate parabolic equation of $q$-Laplace type with an additional external potential is considered. The main novelty of our approach is that we use the underlying gradient flow structure in the $L^p$-Wasserstein metric: from the abstract machinery of metric gradient flows, convergence of scheme is obtained solely on the basis of estimates that result naturally from the equation's variational structure. In particular, the limit is identified as the unique gradient flow solution without reference to monotonicity methods.
Fichier principal
Vignette du fichier
FE4WpGF_preprint.pdf (1.89 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03719189 , version 1 (11-07-2022)

Identifiants

  • HAL Id : hal-03719189 , version 1

Citer

Clément Cancès, Daniel Matthes, Flore Nabet, Eva-Maria Rott. Finite elements for Wasserstein $W_p$ gradient flows. 2024. ⟨hal-03719189⟩
192 Consultations
202 Téléchargements

Partager

More