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FINITE ELEMENTS FOR WASSERSTEIN Wp GRADIENT

FLOWS

CLÉMENT CANCÈS, DANIEL MATTHES, FLORE NABET, AND EVA-MARIA ROTT

Abstract. Convergence of a finite element discretization of a degenerate par-

abolic equation of q-Laplace type with an additional external potential is con-
sidered. The main novelty of our approach is that we use the underlying gradi-

ent flow structure in the Lp-Wasserstein metric: from the abstract machinery

of metric gradient flows, convergence of scheme is obtained solely on the basis
of estimates that result naturally from the equation’s variational structure. In

particular, the limit is identified as the unique gradient flow solution without

reference to monotonicity methods.

1. Introduction

We are interested in the numerical approximation of non-negative unit mass
solutions to the following degenerate parabolic equation

(1) ∂tρ−∇ ·
(
ρ |∇(η′(ρ) + Ψ)|q−2∇ (η′(ρ) + Ψ)

)
= 0, in Q = R≥0 × Ω,

on a bounded convex polyhedral domain Ω ⊂ Rd with unit outward normal n,
complemented with no-flux boundary conditions

(2) −
(
ρ |∇(η′(ρ) + Ψ)|q−2∇ (η′(ρ) + Ψ)

)
· n = 0 on R≥0 × ∂Ω,

and initial conditions ρ0 at time t = 0. The nonlinearity η : [0,+∞) → R≥0 is
continuous, smooth on (0,∞), strictly convex with superlinear growth at infinity,
and satisfies McCann’s condition [29] for geodesic convexity (see (11) later on). We
discuss both the case where η is differentiable up to zero, and where limr↓0 η

′(r) =
−∞. The external potential Ψ ≥ 0 is Lipschitz continuous and does not depend
on time. Finally, the exponent q is larger than one. Models of the form (1) appear
as diffusive approximations of the Euler or shallow water equations with high (but
non-necessarily linear w.r.t. the velocity) friction, see for instance [4, 26, 13, 32].

1.1. Gradient flow structure. The definition of our numerical method and the
proof of convergence heavily use the variational structure of the boundary value
problem (1)&(2): it is the metric p-gradient flow of the energy functional

(3) E(ρ) =

ˆ
Ω

(η(ρ) + ρΨ) dx

with respect to the Lp-Wasserstein distance Wp on the space P(Ω) of probability
measures on Ω. We briefly recall some key elements of the corresponding theory
developed in [5]; more detailed information is given in Section 2 below
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Define p as q’s dual exponent, i.e. 1
p + 1

q = 1. A curve (ρt)t≥0 in the space P(Ω)

is a p-gradient flow iff it satisfies the following energy inequality

− d

dt
E(t) ≥ 1

p
|ρ′|p(t) +

1

q
|∂E|q(ρt)(4)

for almost every t > 0, where E is a non-increasing function with E(t) = E(ρt) at
almost every t > 0. Formally (rigorous definitions are postponed to Section 2), the
metric velocity |ρ′| and the local slope |∂E| along a general curve (ρt)t≥0 amount
to

|ρ′|p(t) =

ˆ
Ω

|vt|pρ(t) dx, |∂E|q(ρt) =

ˆ
Ω

ρt
∣∣∇[η′(ρt) + Ψ]

∣∣q dx,

where vt is the minimizing vector field for the above integral among all v satisfying

∂tρt = −∇ ·
(
ρtv
)
.(5)

The key point is that the evolution equation (1)&(2), which is a relation on an
infinite-dimensional Banach space, is equivalently expressed as the single relation
(4) between the three scalar quantities E(ρt), |ρ′|(t) and |∂E|(ρt). On a formal
level, that equivalence is easily derived by substituting the chain rule −∂tE(t) ≤
|∂E|(ρt) |ρ′|(t) on the left-hand side, and then using Young’s inequality a · b ≤
1
p |a|

p + 1
q |b|

q for vectors a, b ∈ Rd, which is sharp precisely if a = |b|q−2b, with the

choices a = vt and b = ∇[η′(ρt) + Ψ] on the right-hand side.
The gradient flow structure of (1)&(2) has been used in the seminal paper [2] to

construct weak solutions as limits of a variational time discretization, and in [5] to
prove qualitative properties of solutions, like energy dissipation and instantaneous
regularization. Unfortunately, the theory for metric p-gradient flows for p 6= 2 is
much weaker than the one for p = 2, where e.g. E ’s geodesic convexity would have
significant consequences on the long-time asymptotics, as shown in [31].

Here, we use the gradient in a particular way for our needs: we consider a full dis-
cretization of (1)&(2) that — albeit not truely variational — dissipates E in a good
way. From that dissipation, we are not only able to conclude convergence of the dis-
crete approximations to some limit curve ρ∗ = (ρ∗t )t≥0. We are further able to show
— essentially just by soft arguments, using lower semi-continuity of |∂E| etc. —
that ρ∗ satisfies the energy inequality (4). In conclusion, we obtain a p-gradient flow
solution to (1)&(2), which is energy dissipating and a weak solution the PDE. In
particular, by this approach we circumvent the use of methods à la Browder-Minty
to identify the flux in the limit, i.e., the term |∇[η′(ρ)+Ψ]|q−2∇[η′(ρ)+Ψ], and we
obtain strong convergence results on the gradient expressions for our method. The
price we pay is the use of various results from the theory of metric gradient flows as
a “black box”, like an explicit characterization of the subdifferential |∂E| in terms
of differential operators, see Proposition A.2. For a more detailed description of
our method, see Section 2.6 further below.

1.2. The discretization. The equation is discretized on a simplicial decomposi-
tion of Ω, and a time-step τ . Details are given in Section 3 further below. For a
piecewise affine function fh, let f̄h be its piecewise constant projection onto the as-
sociated Donald mesh, such that f̄h(a) = fh(a) at all vertices a. Our fully discrete
evolution equation is then given byˆ

Ω

(
ρnh − ρn−1

h

)
wh + τn

ˆ
Ω

ρnh |∇ (µnh + Ψh)|q−2∇ (µnh + Ψh) · ∇wh = 0,(6)
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for every piecewise affine test function wh. Above, the piecewise affine µnh is such
that µnh(a) ∈ ∂η(ρnh(a)) at all vertices a. So in particular µnh(a) = η′(ρnh(a)) if
ρnh(a) > 0.

Several remarks on the seemingly complicated definition of our scheme are in
place. First, unless p = q = 2, the term |∇(η′(ρ) + Ψ)|q−2 requires a full recon-
struction the gradient of the potential. In space dimension d ≥ 2, the convenient
Two Point Flux Approximation (TPFA) [20] are not anymore sufficient for consis-
tency. We refer the reader to [21] for an illustration of the TPFA’s failure in the
context of Wp due to hazardous geometrical effects from the mesh, or to [22] where
similar effects appear already for the simpler transient q-Laplace equation. Instead,
we make use of lowest order Lagrange finite elements as in [35, 8], but with mass-
lumping as a key ingredient of our method. Since we do not assume any Delaunay
type regularity on the mesh, the method does not have nice monotonicity proper-
ties also shared by TPFA approaches, or by the very specific discrete duality finite
volume method [6] designed to approach strongly degenerate operators involving
some q-Laplacian too.

In view of the gradient flow interpretation, energy stability is a crucial aspect
for our scheme. Here we build on various recent contributions [10, 9, 11, 15], where
energy dissipative methods for general meshes are designed and analyzed. Unfor-
tunately, these schemes are not positivity preserving, but the latter is required for
the gradient flow interpretation. As a remedy, we introduce a Lagrange multiplier
for the positivity constraint, and use an interior point method inspired by [30].
We emphasize that the scheme we propose is not variational, but relies on the
cheaper backward Euler scheme. For variational discretizations building on the
JKO scheme [24] in the much easier case p = q = 2, see for instance [12, 27, 14].
Continuous in time but discrete in space dynamics are also considered in [28, 17, 19].

1.3. Results: well-posedness and convergence. We have two main results.
The first is on the well-posedness of the fully discrete iteration scheme.

Theorem 1.1. Let ρ0
h ∈ Xh ∩ P(Ω), then for all n ≥ 1, there exists ρnh ∈ Xh ∩

P(Ω) and µnh ∈ ∂η(ρnh) such that (6) holds true. Moreover, the scheme is energy
diminishing and the following discrete energy / dissipation inequality holds:

(7) Eh(ρnh) + τn
ˆ

Ω

ρnh |∇ (µnh + Ψh)|q ≤ Eh(ρn−1
h ), ∀n ≥ 1.

The second result concerns the continuous limit.

Theorem 1.2. For a fixed initial condition ρ0 of finite energy E(ρ0) <∞, consider
a family of fully discrete solutions ρhτ on uniformly regular meshes. Then, as h and
τ tend to zero along a suitable sequence, ρhτ (t) converges in Wp, locally uniformly

with respect to t ≥ 0, and in L1
loc(R≥0 × Ω), and the functions t 7→ E(ρhτ (t))

converge pointwise to a non-increasing limit E. The limit ρ satisfies the energy
identity (4). In particular, it is a weak solution to (1)&(2) in the sense specified in
Proposition 2.3.

1.4. Organization of the paper. In Section 2, we introduce some material re-
lated to the gradient flow interpretation of the continuous problem (1)&(2). The
finite element scheme is described in Section 3. It is based on conformal Lagrange P1

finite elements and mass lumping, while the time discretization relies on the back-
ward Euler scheme. In Section 4, we establish the a priori estimates our analysis
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will rely on. These estimates are all consequences of the (global) mass conserva-
tivity and the energy diminishing property of the scheme. In Section 5, then we
establish Theorem 1.1 by showing that the scheme admits solutions regardless to
the time-step. Section 5 is devoted to the proof of Theorem 1.2, which relies on
compactness arguments. Finally, numerical experiments are collected in Section 7.

2. Hypotheses, solution concept, idea of proof

2.1. Spaces and distances. For general information on Wasserstein metrics and
Wasserstein gradient flow, see [33, 34].

Denote by P(Ω) the space of probability measures on Ω. By abuse of notation,
we shall identify absolutely continuous measures µ ∈ P(Ω) with their Lebesgue-
density ρ ∈ L1(Ω). The Lp-Wasserstein distance Wp(µ, ν) between µ, ν ∈ P(Ω) is
defined as

Wp(µ, ν) =

(
inf

π∈
∏

(µ,ν)

¨
Ω×Ω

|x− y|p dπ(x, y)

)1/p

,(8)

where
∏

(µ, ν) is the set of all probability measures on Ω × Ω with respective
marginals µ and ν. Since Ω is bounded, convergence in Wp is equivalent to weak-∗-
convergence. The metric space

(
P(Ω),Wp

)
is complete. Occasionally, we shall use

the L1-Wasserstein distance W1 — also known as bounded Lipschitz distance — on
P(Ω), which is defined by (8) with p = 1, or alternatively in the dual representation

W1(µ, ν) = sup
06=ϕ∈C1(Rd)

´
Ω
ϕd(µ− ν)

‖∇ϕ‖L∞
.

It is easily seen from the definitions that

Wp(µ, ν) ≤ diam(Ω)1/qW1(µ, ν)1/p.(9)

2.2. Energy functional. We assume that η : R≥0 → R is a continuous and convex
function of superlinear growth. We assume further continuous differentiability on
R>0, with

(10) lim
ρ→+∞

η′(ρ) = +∞.

Along the paper, η is further assumed to satisfy McCann’s condition

(11) s 7→ sdη(s−d) is convex and non-increasing on R>0.

Moreover, in terms of the continuous and increasing pressure function φ : R≥0 →
R≥0,

(12) φ(r) = r η′(r)− η(r) + η(0) =

ˆ r

0

sη′′(s) ds,

we assume that

(13) lim
s→+∞

η ◦ φ−1(s)

sα
= 0, for some α < min

(
q,

d

d− 1

)
.

This is a soft condition, allowing for instance for η(r) = r log r−r+1, or η(r) = rm

for m > 1, with the latter restriction on m coming from (10) rather than (13).
For further discussion, we identify (by abuse of notation) η with its convex and

lower semi-continuous extension to R, such that η(r) = +∞ for r < 0. Notice
that ∂η(r) = {η′(r)} for all r > 0 by differentiability. At r = 0, there are two
alternatives:
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(A1) either η′ is singular at 0, i.e. limr↘0 η
′(r) = −∞, and ∂η(0) = ∅,

(A2) or η′(0) := limr↘0 η
′(r) is finite, and ∂η(0) = (−∞, η′(0)].

Accordingly, the energy functional E : P(Ω)→ R∪{+∞} is defined by formula (3)
from the introduction.

2.3. Metric slope. For the abstract definition of the metric (local) slope |∂E| of
E , see [5, Section 1.2]. In the situation at hand, it is characterized as follows, see
[5, Theorem 10.4.6].

Proposition 2.1. Let ρ ∈ Pr(Ω) be such that η(ρ) ∈ L1(Ω) and such that φ(ρ) ∈
W 1,1(Ω), and assume that there exists a measurable u : Ω→ Rd with ρ|u|q ∈ L1(Ω),
such that

(14) ρu = ∇φ(ρ) + ρ∇Ψ .

Then

|∂E(ρ)|q =

ˆ
Ω

ρ|u|q dx.(15)

In view of the definition of φ, there holds ∇φ(ρ) = ρ∇η′(ρ) as soon as ρ is
regular enough (here, ρ. bounded away from 0 is sufficient to justify the chain
rule). Equation (14) then gives a weak sense to the expected definition of u, namely
u = ∇(η′(ρ)+Ψ). Note that unless p = q = 2, the velocity v = |u|q−2u transporting
ρ differs from u and

|∂E(ρ)|q =

ˆ
Ω

ρ|v|p.

2.4. Metric velocity. For the abstract definitions of p-absolute continuity and
the metric velocity |ρ′| of a curve (ρt)t≥0 in P(Ω) with respect to Wp (or in any
other metric space), see [5, Section 1.1]. Informally, |ρ′| is the smallest function
m ∈ L1

loc(R≥0) with the property that

Wp(ρt1 , ρt2) ≤
ˆ t2

t1

m(t) dt for all 0 ≤ t1 ≤ t2,

and (ρt)t≥0 ∈ ACp, i.e., the curve is p-absolutely continuous, if |ρ′| ∈ Lp(R>0).
Here, we only need the following property, see [5, Theorem 8.3.1].

Proposition 2.2. If v : R>0 × Ω→ Rd with
´∞

0

´
Ω
ρt|vt|p dxdt <∞ is such that

the continuity equation

∂tρt +∇ · ρtvt = 0

is satisfied in the distributional sense, then (ρt)t≥0 ∈ ACp, and

|ρ′|p(t) ≤
ˆ

Ω

ρt|vt|p dx for a.e. t > 0.

2.5. p-gradient flows. A curve (ρt)t≥0 ∈ ACp is a p-gradient flow for E in Wp if
the energy dissipation inequality (4) is satisfied with some non-increasing function
E : R≥0 → R such that E(ρt) = E(t) for a.e. t ≥ 0. The following proposition
combines Theorem 11.1.3 with Theorem 10.4.6 and Proposition 10.4.2 from [5].
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Proposition 2.3. If (ρt)t≥0 is a p-gradient flow, then it is also a weak solution
to (1)&(2) in the following sense: at a.e. t ≥ 0, one has φ(ρt) ∈ W 1,1(Ω), and

ρt

∣∣∣∇φ(ρt)
ρt

+∇Ψ
∣∣∣q ∈ L1(Ω); further, for all ϕ ∈ C∞c (R>0 × Ω)

0 =

ˆ ∞
0

ˆ
Ω

[
ρ ∂tϕ−

∣∣∣∣∇φ(ρ)

ρ
+∇Ψ

∣∣∣∣q−2 (
∇φ(ρ) + ρ∇Ψ

)
· ∇ϕ

]
dx dt.

2.6. Strategy of proof. The proof of our convergence result in Theorem 1.2 rests
on the strong entropy dissipation estimate (7) for fully discrete solutions. From that,
we derive the existence of a limit curve ρ∗ = (ρ∗t )t≥0 that satisfies (the integral form
of) the energy inequality (4), for all t2 ≥ t1 ≥ 0:

E(t1)− E(t2) ≥ 1

p

ˆ t2

t1

∣∣(ρ∗)′∣∣p(t) dt+
1

q

ˆ t2

t1

|∂E|q(ρ∗t ) dt.(16)

Mere existence of a limit (ρ∗t )t≥0 is obtained by means of the Arzela-Ascoli theorem,
see Proposition 6.2. With the help of the entropy dissipation estimate, and thanks
to certain favourable properties of the mass-lumping procedure, we are further able
to identify the limit of∇φhτ , the affine interpolation of the values φ(ρhτ ) at vertices,
as ∇φ(ρ∗), see Proposition 6.3. A little more work is required to show that also

ρ̃hτ∇ [µhτ + Ψ]→ ∇φ(ρ∗) + ρ∗∇Ψ weakly in L1,(17)

where ρ̃hτ is piecewise constant on thesimplicial mesh (not the Donald mesh), see
Lemmas 6.5&6.6. Note that in the much easier special case p = q = 2, it would
now follow almost immediately that ρ is indeed a weak solution to (1)&(2).

The core part of the convergence proof is to conclude (16) from here. There are
three ingredients.

(i) Convergence of the slope: In Lemma 6.7, we conclude that

ˆ t2

t1

|∂E|q(ρ∗t ) dt =

ˆ t2

t1

ˆ
Ω

ρ∗t |u∗t |q dxdt ≤ lim inf
h,τ→0

ˆ t2

t1

ˆ
Ω

ρ̃h,τ |∇ [µhτ + Ψ]|q dxdt,

(18)

where u∗ is such that ρ̃hτ∇ [µhτ + Ψ]→ ρ∗u∗ in the distributional sense. The
existence of such an u∗ and the liminf-estimate both follow from the entropy
dissipation (7) by means of the abstract convergence result in Proposition
A.2. The equality on the left is then a consequence of the characterization of
|∂E|(ρ∗t ) in Proposition 2.1 above, since ρ∗tu

∗
t has already been identified as

the right-hand side of (15) by means of (17).
(ii) Convergence of the metric velocity: In Lemma 6.8, we show thatˆ t2

t1

∣∣(ρ∗)′∣∣p(t) dt ≤
ˆ t2

t1

ˆ
Ω

ρ∗t |v∗t |p dxdt ≤ lim inf
hτ→0

ˆ t2

t1

ˆ
Ω

ρ̃hτ |vhτ |p dxdt,(19)

where vhτ := |∇[µhτ + Ψ]|q−2∇[µhτ + Ψ], so that |vhτ |p = |∇[µhτ + Ψ]|q,
i.e., the right-hand sides of (18) and (19) are identical. And v∗ is such that
ρ̃hτvhτ → ρ∗v∗ as distributions. Existence of v∗ and the liminf-estimate
follow just as before. The inequality on the left is a direct consequence of the
metric slope’s characterization.

(iii) Convergence of the energy: In Lemma 6.9, we show that t 7→ Eh(ρ̄hτ (t))
converges at almost every t ≥ 0 to a non-increasing function E, and that
E(t) = E(ρ∗t ) at almost every t ≥ 0. The first part is an easy consequence of
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Helly’s theorem, the second part is established by means of strong convergence
of φ̄hτ and properties of the discretization.

3. Energy stable finite elements

We are interested in the approximation thanks to finite elements of solutions ρ
to (1)&(2). Our approach relies on lowest order conforming finite elements with
mass lumping. The mesh as well as the reconstruction operators are defined in
Section 3.1. We then present the scheme in Section 3.2.

3.1. P1 finite elements and mass-lumped reconstructions. The domain Ω
is assumed to be tessellated into a simplicial conformal discretization T (made of
triangles if d = 2 and of tetrahedra if d = 3). Denoting by hT the diameter of an
element T ∈ T and by dT the diameter of the largest sphere included in T , the size
and regularity of T are respectively defined by

hT = max
T∈T

hT , ζT = max
T∈T

hT
dT
.

We denote by VT the set of the (d + 1) vertices of T ∈ T , and by V =
⋃
T∈T VT

the set of all the vertices of T .
We also denote be Vh the usual P1 Lagrange finite elements space corresponding

to the mesh T , i.e.

Vh =
{
v ∈ C(Ω)

∣∣ v|T is affine for all T ∈ T
}
,

and by Ṽh the set of piecewise constant functions on T , i.e.

Ṽh =
{
v ∈ L∞(Ω)

∣∣ v|T is constant for all T ∈ T
}
.

In particular, the gradient ∇vh of an element vh ∈ Vh belongs to (Ṽh)d.
Mass lumping is frequently presented in the literature as a simple quadrature

rule for computing integrals, the quadrature points being located at the vertices,
similarly to the degrees of freedom. Here, we rather build on another classical
approach for representing mass lumping, which consists in introducing the so-called
Donald (or dual barycentric) mesh. To each a ∈ V we associate a cell ωa containing
a and delimited by the hyperplans joining

• the barycenters xT and xe of all triangle T ∈ V and edge e sharing a as a
vertex if d = 2;

• the barycenters xT , xF and xe of all triangle T ∈ V, face F and edge e
sharing a as a vertex if d = 3.

With this construction, one has |ωa ∩ T | = 1
d+1 |T | for all a ∈ VT , T ∈ T . An

illustration in the two-dimensional case is given on Figure 1. We denote by Xh the
set of piecewise constant functions on the Donald mesh, i.e.

Xh = {v ∈ L∞(Ω) | v|ωa
is constant for all a ∈ V}.

Now, given a piecewise linear function vh ∈ Vh, there exists a unique element of
Xh denoted by vh such that

vh(a) = vh(a), ∀a ∈ V.
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a

ωa

Figure 1. Construction of the Donald mesh cell ωa for some a ∈ V.

In particular, the mapping vh 7→ vh is one-to-one and onto from Vh to Xh. Due to
the mass-lumping procedure, the mass matrix is diagonal since

(20)

ˆ
Ω

vhwh =
∑
a∈V
|ωa|vh(a)wh(a), ∀ vh, wh ∈ Vh.

Another remarkable property of mass-lumped finite elements is its compatibility
with nonlinearities. More precisely, there holds

(21) f(vh) = f(vh), for all f ∈ C(R) and all vh ∈ Vh.

The combination of (20) and (21) is key to establish the energy stability of our
scheme. More generally, mass-lumping enhances the stability of finite elements, see

for instance [16]. In our analysis, one also needs to reconstruct elements ṽh ∈ Ṽh
from elements vh ∈ Vh by setting

ṽh(xT ) =
1

d+ 1

∑
a∈VT

vh(a), ∀T ∈ T .

For the time discretization, one defines an increasing sequence (tn)n≥0 with

t0 = 0 and tn → +∞ as n → +∞. We denote by τn = tn − tn−1 the nth time
step, and by τ = maxn≥1 τ

n. Then to a sequence (vnh)n≥0 ⊂ Vh, we associate the

piecewise constant w.r.t. time functions by defining time-and-space discretization

spaces Vhτ , Xhτ and Ṽhτ by

Vhτ =
{
vhτ ∈ D(R≥0;Vh) : vhτ (t, ·) = vhτ (0, ·)1{0}(t) +

∑
n≥1

vhτ (tn, ·)1(tn−1,tn](t)
}
,

Xhτ =
{
vhτ ∈ D(R≥0;Xh) : vhτ (t, ·) = vhτ (0, ·)1{0}(t) +

∑
n≥1

vhτ (tn, ·)1(tn−1,tn](t)
}
,

Ṽhτ =
{
ṽhτ ∈ D(R≥0; Ṽh) : ṽhτ (t, ·) = ṽhτ (0, ·)1{0}(t) +

∑
n≥1

ṽhτ (tn, ·)1(tn−1,tn](t)
}
,

where D(I;E) denotes the set of the left-continuous with right-limit (càglàd) func-
tions from the interval I to the space E.
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3.2. Definition of the scheme. The initial data ρ0 is discretized into ρ0
h ∈ Xh

characterized by

(22) ρ0
h(a):=

1

|ωa|

ˆ
ωa

ρ0 =

 
ωa

ρ0, ∀a ∈ V.

Similarly, the discretized external potential Ψh ∈ Vh is defined by setting

(23) Ψh(a) =

 
ωa

Ψ, ∀a ∈ V.

With this choice, the existence of some C1 > 0 depending only on the regularity
factor ζT and on the dimension d such that

(24) ‖∇Ψh‖L∞(Ω)d ≤ C1‖∇Ψ‖L∞(Ω)d

has been established in the proof of [11, Theorem A.1]. We define the approximate
energy Eh : P(Ω) ∩Xh → R≥0 by setting

Eh(vh) =

ˆ
Ω

(
η(vh) + Ψhvh

)
, vh ∈ Xh, vh ≥ 0.

The regularity of Ψ implies that ‖Ψ−Ψh‖∞ ≤ C2h with C2 = 2‖∇Ψ‖∞, hence

(25) |Eh(vh)− E(vh)| ≤ C2h, ∀vh ∈ P(Ω) ∩Xh.

Therefore since η is convex and in view of the definition (22) of ρ0
h, it results from

Jensen’s inequality that

(26) Eh(ρ0
h) ≤ E(ρ0) + C2h ≤ E(ρ0) + C2diam(Ω) < +∞.

Now, given ρn−1
h ∈ P(Ω) with E(ρn−1

h ) < +∞, the mass-lumped finite element

scheme consists in finding ρnh ∈ Vh with ρnh ∈ Dom(∂η) in Ω such that, for all
wh ∈ Vh, there holds

(27)

ˆ
Ω

(
ρnh − ρn−1

h

)
wh + τn

ˆ
Ω

ρnh |∇ (µnh + Ψh)|q−2∇ (µnh + Ψh) · ∇wh = 0,

where µnh denotes an element of Vh such that µnh(a) ∈ ∂η(ρnh(a)) for all a ∈ V, or
equivalently µnh ∈ ∂η(ρnh).

In the case (A1) where ∂η is single valued, the above definition of the scheme (27)
requires the density ρnh to be (strictly) positive on Ω, and the function of (ρnh(a))a∈V
of which we look for a zero is continuous. The alternative case (A2) is more intricate
since ρnh is now allowed to vanish at some nodes a ∈ V. Since ∂η(0) is multivalued,
µnh(a) can a priori take arbitrary values in (−∞, η′(0)], and in any case can no
longer be expressed as a function of ρnh(a). The problem (27) cannot be interpreted
as the Euler-Lagrange condition for the minimization of some functional (our time
discretization relies on the backward Euler scheme rather than on a minimizing
movement scheme), but roughly speaking, the gap between η′(ρnh(a)) and µnh(a)
can be thought as a Lagrange multiplier for the non-negativity constraint on ρnh(a).
The fact that this gap is multiplied by some mobility ρnh makes the calculations
involving, motivating some regularization via the introduction of barrier functions
both in the analysis and for the practical computation of the solutions to (27).
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4. A priori estimates

Lemma 4.1. Let ρnh ∈ Vh be a solution of the scheme (27), then ρnh, ρ
n
h and ρ̃nh all

belong to P(Ω).

Proof. Since the positivity of ρnh is assumed for solutions to (27), one only has to
check that ˆ

Ω

ρ̃nh =

ˆ
Ω

ρnh =

ˆ
Ω

ρnh =

ˆ
Ω

ρn−1
h =

ˆ
Ω

ρ0
h =

ˆ
Ω

ρ0 = 1.

The first two equalities are provided by the exactness of quadrature rules, while the
third one directly follows from testing (27) by wh ≡ 1. A straightforward induction
yields the fourth equality, and the fifth one stems from the definition (22) of the
discretized initial condition ρ0

h. The last equality holds since ρ0 ∈ P(Ω). �

Proposition 4.2. Let (ρnh)n≥1 be a solution to (27), then for all n∗ ≥ 1, there

holds

(28) Eh(ρn∗h ) +

n∗∑
n=1

τn
ˆ

Ω

ρnh |∇ (µnh + Ψh)|q ≤ Eh(ρ0
h) ≤ E(ρ0) + C2h.

Proof. Choosing wh = µnh + Ψh in (27), then since mass-lumping was imposed on
the accumulation term, one can make use of the convexity (in the usual sense) of
E to deduce the one-step energy / dissipation (7) Summing over n = 1, . . . , n∗ and
using (26) yields the desired inequality. �

A first consequence of the energy estimate is the following L∞(R≥0;L1(Ω)) on
η(ρhτ ).

Corollary 4.3. There exists C3 depending only on Ω, E(ρ0) and Ψ such that

(29)

ˆ
Ω

η(ρ̃nh) ≤
ˆ

Ω

η(ρnh) ≤ C3, ∀n ≥ 1.

Proof. We infer from Proposition 4.2 that

Eh(ρnh) ≤ E(ρ0) + C2diam(Ω) =: C3, ∀n ≥ 0.

Bearing the definition (3) of the energy and the non-negativity of Ψ in mind, one
gets that ˆ

Ω

η(ρnh) ≤ Eh(ρnh) ≤ C3, ∀n ≥ 0.

The first inequality in (29) is a direct consequence of Jensen’s inequality. �

We now state a second direct consequence of Proposition 4.2.

Corollary 4.4. There exists C4 depending only on Ω, E(ρ0), Ψ, q, ζT and d such
such that

n?∑
n=1

τn
ˆ

Ω

ρnh|∇µnh|q ≤ C4

(
1 +

n?∑
n=1

τn

)
, ∀n∗ ≥ 1.

Proof. Using the elementary inequality (a+ b)q ≤ 2q−1(aq + bq) if a, b ≥ 0, one gets
that
n∗∑
n=1

τn
ˆ

Ω

ρnh |∇µnh|
q ≤ 2q−1

(
n∗∑
n=1

τn
ˆ

Ω

ρnh |∇(µnh + Ψh)|q +

n∗∑
n=1

τn
ˆ

Ω

ρnh |∇Ψh|q
)
.
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Since Eh(ρnh) ≥ 0 for all n ≥ 1, one deduces from (28) that the first term in the
right-hand side is bounded by 2q−1(E(ρ0)+C2diam(Ω)). On the other hand, we
infer from (24) and from Lemma 4.1 thatˆ

Ω

ρnh |∇Ψh|q ≤ (C1)q‖∇Ψ‖q∞,

concluding the proof of Corollary 4.4. �

In the singular case (A1) where η′ : (0,+∞) → R is a (strictly) monotone onto
(thus invertible) function, one needs to bound ρnh away from 0. This is the purpose
of the following proposition.

Proposition 4.5. Assume that (A1) holds, then there exists εn > 0 depending
on the data of the continuous problem (among which η′) as well as on T and on(
τ `
)

1≤`≤n such that ρnh ≥ εn for all n ≥ 1.

Proof. As a consequence of (A1), µnh(a) = η′(ρnh(a)) for all a ∈ T . Since ρnh belongs
to P(Ω) owing to Lemma 4.1, one knows a priori that there exists a0 ∈ V such that

ρnh(a0) ≥
 

Ω

ρnh = |Ω|−1 =: ε(0)
n ⇔ µnh(a0) ≥ η′(|Ω|−1) =: M (0)

n .

Now, let a1 ∈ V be a vertex sharing an edge with a0, i.e. such that there exists
T0 ∈ T having a0 and a1 as vertices. Then we deduce from Corollary 4.4 that

ˆ
T0

ρnh|∇µnh|q ≤
C4

τn

(
1 +

n∑
`=1

τ `

)
=: Rn.

Since ∇µnh is constant on T0, the above integrand is piecewise linear, hence we can
replace ρnh by ρ̃nh, for which we can use

ρ̃nh(x) =
1

d+ 1

∑
a∈VT0

ρnh(a) ≥ 1

d+ 1
ρnh(a0) ≥ ε

(0)
n

(d+ 1)
, x ∈ T0.

On the other hand,

|∇µnh| ≥
∣∣∣∣µnh(a0)− µnh(a1)

hT0

∣∣∣∣ ,
hence, setting AT = minT∈T |T |, one has

µnh(a1) ≥M (0)
n − hT

(
Rn(d+ 1)

AT ε
(0)
n

) 1
q

=: M (1)
n ,

or equivalently

ρnh(a1) ≥ (η′)−1
(
M (1)
n

)
=: ε(1)

n > 0

since η′ is one-to-one and onto from (0,+∞) to R. Iterating the process provides a

lower bound M
(k)
n on µnh(ak) at a vertex located k edges away from a0 with

M (j+1)
n = M (j)

n − hT

(
Rn(d+ 1)

AT (η′)−1(M
(j)
n )

) 1
q

, j ≥ 0.
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Since Ω is connected, all the vertices are separated by a finite number of edges,
hence the existence of a finite Mn depending on the data of the continuous problem
as well as on hT and on the time discretization such that

µnh(a) ≥Mn, ∀ a ∈ V.
Then Proposition 4.5 holds with εn = (η′)−1(Mn). �

Denote by φnh the element of Vh such that φnh(a) = φ(ρnh(a)) for all a ∈ V, where
φ is defined by (12).

Lemma 4.6. There exists C5 depending only on the mesh regularity ζT and the
dimension d such that

(30) |∇φnh| ≤ C5ρ̃
n
h|∇µnh|, ∀n ≥ 1.

Proof. Let T ∈ T , the vertices of which being denoted by aT0 , . . . , a
T
d , let T̂ be the

reference elements, with aT̂0 = 0Rd and aT̂i = ei the ith vector of the canonical basis

of Rd, let FT be the unique affine map sending aT̂i on aTi , and let JT denote its
Jacobian matrix. Then classical results from the theory of finite elements (see for
instance [18, Lemma 1.100]) combined with elementary calculations show that

(31) |det(JT )| = d!|T |, |JT |2 ≤
d+
√
d

2
hT and |J−1

T |2 ≤
√

2

dT
≤
√

2
ζT
hT

,

with | · |2 standing for the matrix norm inherited from the Euclidian norm of Rd.
We deduce from a change of variable that for all n ≥ 1 and all T ∈ T , there holds

(32) |∇φnh(x)| =
 
T

|∇φnh| = d!
∣∣J−1
T δTφnh

∣∣ ≤ √2d!
ζT
hT

∣∣δTφnh∣∣ , ∀x ∈ T,

where δTφ
n
h is the vector of the variations of φnh in T defined by

δTφ
n
h =

 φnh(aT1 )− φnh(aT0 )
...

φnh(aTd )− φnh(aT0 )

 .

Let RnT be the diagonal matrix with positive entries defined by

(RnT )i,i =

{
φn
h(aTi )−φn

h(aT0 )

µn
h(aTi )−µn

h(aT0 )
if µnh(aTi ) 6= µnh(aT0 ),

ρnh(aTi ) otherwise,

so that, setting

δTµ
n
h =

 µnh(aT1 )− µnh(aT0 )
...

µnh(aTd )− µnh(aT0 )

 ,

there holds δTφ
n
h = RnT δTµ

n
h. Assume that ρnh(aTi ) > ρnh(aT0 ). Then the defini-

tion (12) of φ and the fact that µnh ∈ ∂η(ρnh) respectively provide that

φnh(aTi )− φnh(aT0 ) =

ˆ ρnh(aT1 )

ρnh(aT0 )

sη′′(s)ds

and

µnh(aTi )− µnh(aT0 ) ≥ η′(ρnh(aTi ))− η′(ρnh(aT0 )) =

ˆ ρnh(aT1 )

ρnh(aT0 )

η′′(s)ds.
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The above inequality is an equality if ρnh(aT0 ) > 0, so that

ρnh(aT0 ) ≤ (RnT )i,i ≤ ρ
n
h(aTi ),

which clearly still holds when ρnh(aT0 ) = 0. Proceeding similarly if ρnh(aTi ) < ρnh(aT0 ),
one gets that

(33) min
(
ρnh(aTi ), ρnh(aT0 )

)
≤ (RnT )i,i ≤ max

(
ρnh(aTi ), ρnh(aT0 )

)
≤

d∑
i=0

ρnh(aTi ),

hence

(34) |δTφnh| ≤ |δTµnh|

(
d∑
i=0

ρnh(aTi )

)
= (d+ 1)ρ̃nh(x) |δTµnh| , ∀x ∈ T.

On the other hand, using (31) once again provides

(35) |δTµnh| ≤ |JT |2
∣∣J−1
T δTµ

n
h

∣∣ ≤ d+
√
d

2d!
hT

 
T

|∇µnh| =
d+
√
d

2d!
hT |∇µnh(x)|

holds for all x in T . Combining (32), (34) and (35), one finally gets that (30) holds

with C5 = (d+ 1)d+
√
d√

2
ζT . �

The control on the gradient of φnh derived in previous lemma also provides a
control on φnh itself as shows next lemma.

Lemma 4.7. There exists C6 depending only on η, Ω, and ζT such that

(36)

ˆ
Ω

|φnh| ≤ C6

(
1 +

ˆ
Ω

|∇φnh|
)
.

Proof. Denoting by

Un = {x ∈ Ω | ρnh(x) ≤ 2|Ω|−1}, n ≥ 1,

then it follows form Markov inequality that |Un| ≥ |Ω|/2. One writes

φ
n

h ≤ φ(2|Ω|−1) +
(
φ
n

h − φ(2|Ω|−1)
)+

,

the second term in the right-hand side above vanishing on Un since φ is increasing.
Then [3, Lemma A.3] gives thatˆ

Ω

(
φ
n

h − φ(2|Ω|−1)
)+

≤ C7

ˆ
Ω

∇
(
φnh − φ(2|Ω|−1)

)+ ≤ C7

ˆ
Ω

|∇φnh|

for some C7 depending only on Ω and ζT , henceˆ
Ω

φnh =

ˆ
Ω

φ
n

h ≤ |Ω|φ(2|Ω|−1) + C7

ˆ
Ω

|∇φnh| .

Then the triangle inequality and Poincaré-Wirtinger inequality lead toˆ
Ω

|φnh| ≤
∣∣∣∣φnh −  

Ω

φnh

∣∣∣∣+

∣∣∣∣ˆ
Ω

φnh

∣∣∣∣ ≤ |Ω|φ(2|Ω|−1) + (C7 + CP )

ˆ
Ω

|∇φnh|

where CP is the constant in Poincaré-Wirtinger inequality in L1, which only de-

pends on Ω. Note that for Ω convex, CP ≤ diam(Ω)
2 owing to [1]. �
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5. Existence of a solution to the scheme

The goal of this section is to show that the nonlinear system (27) always admits
(at least) a solution ρnh and µnh with µnh ∈ ∂η(ρnh). Combining such an existence
result with Lemma 4.1 and Proposition 4.2 gives Theorem 1.1. The proof splits
into two steps. The first step deals with the case (A1) of a singular η near 0, where
Dom(∂η) = (0,+∞).

Proposition 5.1. Assume that (A1) holds, then there exists (at least) one solution
ρnh > 0 to the scheme (27), and µnh = η′(ρnh) since ∂η is single-valued.

The proof of Proposition 5.1 can be carried out thanks to a topological degree
argument. Since it is very similar to the one of [10, Proposition 3.8], we do not
detail it here.

The situation in the case (A2) is more intricate. To show the existence of a
solution (ρnh, µ

n
h) in this case, the idea is to approximate η fulfilling (A2) by a

sequence (ηε)ε>0 of functions entering the framework of (A1). More precisely,

define for ε > 0 the function βε ∈ C(R≥0) ∩ C1((0,+∞)) by setting

(37) βε(ρ) =

ˆ ρ

ε

min {0, log(a/ε)} da =

{
ρ log ρ− ρ(log ε+ 1) + ε if ρ ≤ ε,
0 else,

and by

(38) ηε = η + βε, ε > 0.

The function ηε enters the framework (A1) and converges uniformly towards η as

ε goes to 0 since 0 ≤ βε ≤ ε. Proposition 5.1 provides a sequence
(
ρnε,h

)
ε>0

of

solutions to (27) where µnh has been replaced by µnε,h with µnε,h = η′ε(ρ
n
h,ε). Since

Vh ∩ P(Ω) to which ρnε,h belongs is closed and bounded in the finite dimensional

space Vh, there exists ρnh ∈ Vh ∩ P(Ω) such that, up to a subsequence,

(39) ρnε,h → ρnh as ε→ 0.

Since we are in a finite dimensional setting, the above convergence holds true for
any norm. The convergence of η′ε(ρ

n
h,ε) is unclear. However, we can still prove the

following result.

Proposition 5.2. Let ρnh be defined by (39), then there exists µnh with µnh ∈ ∂η(ρnh)
such that (27) holds true.

Proof. Let us split the set V of the vertices into three disjointed subsets

V = Vn+ ∪ Vn0 ∪ Vn∂ , n ≥ 1,

where we have set

Vn+ ={a ∈ V | ρnh(a) > 0},
Vn0 ={a ∈ V | ρnh(a) = 0 and ρnh(a′) = 0 for all a′ ∈ V sharing an edge with a},
Vn∂ ={a ∈ V | ρnh(a) = 0 and ρnh(a′) > 0 for some a′ ∈ V sharing an edge with a}.

Since η′ε converges uniformly towards η′ on every compact subset of (0,+∞), one
deduces that

(40) µnε,h(a) −→
ε→0

η′(ρnh(a)) ∀ a ∈ Vn+.
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Consider now a vertex a ∈ Vn∂ , then there exists T ∈ T with a ∈ VT and a′ ∈
Vn+ ∩ VT . As a consequence, ρ̃nh ≥

ρnh(a′)
d+1 > 0 on T , and ρ̃nε,h is uniformly bounded

away from 0. Therefore, using Corollary 4.4 and (31), one deduces that∣∣δTµε,n∣∣q ≤ |JT |2 ∣∣J−1
T δTµε,n

∣∣q = |JT |2
 
T

|∇µnε,h|q ≤ C, ∀ε > 0,

with C depending on the data of the continuous problem and on the discretization,
but not on ε. Therefore, we deduce that

µnε,h(a) ≥ µnε,h(a′)− C −→
ε→0

η′(ρnh(a′))− C > η′(0)− C,

while lim supε→0 µ
n
ε,h(a) ≤ η′(0). So the sequence

(
µnε,h(a)

)
ε>0

is bounded, and we

can extract a converging subsequence, hence

(41) µnε,h(a) −→
ε→0

µnh(a) ∈ ∂η(0) = (−∞, η′(0)], ∀a ∈ Vn∂ .

We proceed differently for a ∈ Vn0 since we do not build µnh(a) as the limit of µnε,h(a).

Instead, we show that the choice of µnh(a) ∈ ∂η(0) does not affect the scheme (27).
Denote by

T n0 = {T ∈ T | VT ⊂ Vn0 } and T n+ = T \ T n0 .
The elements T ∈ T n0 are those where ρ̃nε,h tends to 0 with ε. Given wh ∈ Vh, the
term

Λnε = τn
∑
T∈T n

0

ˆ
T

ρnε,h
∣∣∇(µnε,h + Ψ)

∣∣q−2∇(µnε,h + Ψ) · ∇wh

appearing in (27) applied for the augmented energy profile ηε defined by (38) instead
of η tends to 0 since Hölder’s inequality shows that

(42) Λnε ≤
(ˆ

Ω

τnρ̃nε,h
∣∣∇(µnε,h + Ψ)

∣∣q) 1
p

 ∑
T∈T n

0

ˆ
T

|∇wh|qρ̃nε,h

 1
q

−→
ε→0

0

since the first integral is bounded thanks to Proposition 4.2 and the second tends
to 0. Therefore, owing to (39)–(42), passing to the limit ε→ 0 in the scheme (27)
yieldsˆ

Ω

(
ρnh − ρn−1

h

)
wh + τn

∑
T∈T n

+

ˆ
T

ρ̃nh |∇ (µnh + Ψh)|q−2∇ (µnh + Ψh) · ∇wh = 0,

while ρ̃nh = 0 on
⋃
T∈T n

0
T . Therefore we can fix µnh(a), a ∈ V0

T arbitrarily in

∂η(0) without affecting the scheme. In particular, (27) holds if one sets µnh(a) =
η′(0) for all a ∈ Vn0 . This concludes the proof of Proposition 5.2, and then of
Theorem 1.1. �

6. Convergence towards an EDI solution

The goal of this section is to establish Theorem 1.2 that is the convergence
of approximate solutions towards a solution of the continuous problem when the
discretization parameters h, τ tend to 0. Our proof is based on compactness. Since
we investigate the limit h, τ → 0, we can assume without loss of generality that
τ ≤ 1.
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6.1. Compactness properties. Our first lemma is about controlling the time
variations of ρhτ . For this purpose, define the piecewise linear in time and piecewise
constant in space reconstruction ρ̂hτ defined by

(43) ρ̂hτ (t) = ρn−1
h +

t− tn−1

τn
(
ρnh − ρn−1

h

)
if t ∈ [tn−1, tn].

Lemma 6.1. There exists C8 depending only on ξT , E(ρ0), Ψ, Ω and p such that,
for all ϕhτ in Vhτ such that ϕhτ (t) = 0 if t ≥ t? for some t? > 0, there holds

(44)

ˆ
R≥0

ˆ
Ω

∂tρ̂hτ ϕhτ ≤ C8 ‖∇ϕhτ‖∞ .

In particular, for all ϕ ∈W 1,∞(Ω), there holds

(45)

ˆ
Ω

(ρhτ (t)− ρhτ (s))ϕ ≤ C1 C8(|t− s|+ τ)
1
q ‖∇ϕ‖∞ , ∀ϕ ∈W 1,∞(Ω).

Proof. Due to the definition (43) of ρ̂hτ , the left-hand side in (44) rewritesˆ
R≥0

ˆ
Ω

∂tρ̂hτ ϕhτ =
∑
n≥1

ˆ
Ω

(
ρnh − ρn−1

h

)
ϕnh

=
∑
n≥1

τn
ˆ

Ω

ρnh |∇(µnh + Ψh)|q−2∇(µnh + Ψh) · ∇ϕnh.

Applying Hölder’s inequality then provides

ˆ
R≥0

ˆ
Ω

∂tρ̂hτ ϕhτ ≤

∑
n≥1

τn
ˆ

Ω

ρnh |∇(µnh + Ψh)|q
 1

p
∑
n≥1

τn
ˆ

Ω

ρnh |∇ϕnh|
q

 1
q

.

The first term in the right-hand side is bounded by C9 =
(
E(ρ0) + C2 diam(Ω)

) 1
p

owing to Proposition 4.2. Using moreover Lemma 4.1 and the fact that ∇ϕhτ is
compactly supported to estimate the second term, we obtainˆ

R≥0

ˆ
Ω

∂tρ̂hτ ϕhτ ≤ C9‖∇ϕhτ‖∞(t? + τ).

One recovers (44) if one further uses that τ ≤ 1.
Let us now focus on (45). Let 0 ≤ s ≤ t, and let m ≤ n be such that tm−1 ≤

s ≤ tm and tn−1 ≤ t ≤ tn. Given ϕ ∈ W 1,∞(Ω), define ϕh as the L2 projection of
ϕ on Xh, i.e. ϕh(a) =

ffl
ωa
ϕ for all a ∈ V and ϕhτ (t, x) = ϕh(x)1(tm−1,tn](t). Thenˆ

Ω

(ρhτ (t)− ρhτ (s))ϕ =

ˆ
Ω

(ρhτ (t)− ρhτ (s))ϕh =

¨
R≥0×Ω

∂tρ̂hτ ϕhτ .

Reproducing the above calculations, we obtain that

ˆ
Ω

(ρhτ (t)− ρhτ (s))ϕ ≤ C9‖∇ϕh‖∞

(
n∑

k=m+1

τk

) 1
q

≤ C9‖∇ϕh‖∞ (t− s+ τ)
1
q .

Then (45) follows from estimate ‖∇ϕh‖∞ ≤ C1‖∇ϕ‖∞ established in the proof
of [11, Theorem A.1]. �

Our next result is about the following uniform in time but weak in space com-
pactness property.
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Lemma 6.2. There exists ρ ∈ C(R≥0;
(
P(Ω),Wp

)
) with

´
Ω
η(ρ(t)) ≤ C3 for all

t ≥ 0 such that, as h, τ → 0, up to a subsequence,

Wp

(
ρhτ (t), ρ(t)

)
→ 0 locally uniformly with respect to t ≥ 0.

Proof. First, Corollary 4.3 implies thatˆ
Ω

η(ρhτ (t)) ≤ C3, ∀t ≥ 0,

so that owing to de La Vallée Poussin theorem, ρhτ (t) is tight and hence pre-
compact in

(
P(Ω),Wp

)
for all t ≥ 0. Second, Lemma 6.1 implies the following

estimate in the L1-Wasserstein metric W1:

W1(ρhτ (t), ρhτ (s)) = sup
ϕ∈W 1,∞(Ω)

´
Ω

(ρhτ (t)− ρhτ (s))ϕ

‖∇ϕ‖∞
≤ C1C8(|t− s|+ τ)

1
q

for all t, s ≥ 0. By means of (9), this implies

Wp(ρhτ (t), ρhτ (s)) ≤ C1C8

(
diam(Ω)

)1/q
(|t− s|+ τ)1/(pq).

This is sufficient to apply the Arzelà-Ascoli theorem in metric spaces (see e.g. [5,
Theorem 3.3.1]) and conclude local uniform convergence to a (Hölder-)continuous
limit ρ. �

One can further establish the point-wise convergence of the densities, as well as
some weak convergence on the gradient of φhτ .

Proposition 6.3. Up to the extraction of yet another subsequence, there holds

(46) ρhτ −→
h,τ→0

ρ a.e. in R≥0 × Ω and in L1
loc(R≥0 × Ω).

Moreover, φ(ρ) ∈ Lqloc(R≥0;BV(Ω)) ∩ L1
loc(R≥0;W 1,1(Ω)) since

(47) ∇φhτ −→
h,τ→0

∇φ(ρ) weakly in L1
loc(R≥0 × Ω)d.

and

(48) ∇φhτ −→
h,τ→0

∇φ(ρ) in the Lqloc
(
R≥0;M(Ω)

)d
weak-? sense.

Proof. The first step of the proof consists in proving the relative compactness of
the sequence (φhτ )h,τ in L1

loc(R≥0;W 1,1(Ω)) equipped with its weak topology. In

view of Lemma 4.7, it is sufficient to show that the sequence (∇φhτ )h,τ is uniformly

equi-integrable in L1((0, t?)× Ω)d whatever t? > 0. To this end, one remarks that
Lemma 4.6 implies

(49) |∇φhτ | ≤ C5 (ρ̃hτ )
1
p (ρ̃hτ )

1
q |∇µhτ |.

It follows from Corollary 4.4 that (ρ̃hτ )
1
q |∇µhτ | is bounded in Lq((0, t?) × Ω),

whereas (ρ̃hτ )
1
p is bounded in L∞((0, t?);L

p(Ω)) owing to Lemma 4.1. Thus

‖∇φhτ‖Lq((0,t?);L1(Ω))d ≤ C10

with C10 = C5C4
1
q (1 + t? + τ)

1
q . Using Corollary 4.3 together with de La Vallée

Poussin theorem, one checks that (ρ̃hτ (t, ·))h,τ is uniformly equi-integrable on Ω.
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Then so does (∇φhτ )h,τ in L1((0, t?)×Ω)d thanks to (49). Therefore we deduce from
Dunford-Pettis theorem that there exists some F such that, up to a subsequence,

(50) ∇φhτ −→
h,τ→0

F weakly in L1 ((0, t?)× Ω)
d
.

On the other hand, since ∇φhτ is bounded in Lq
(
(0, t?);L

1(Ω)
)d

, we deduce that

(51) ∇φhτ −→
h,τ→0

F in the Lq
(
(0, t?),M(Ω)

)d
weak-? sense.

Let θ : R → R be Lipschitz continuous, increasing and bounded, then denoting
by ψ = θ ◦ φ : R≥0 → R, one has

(52)
∥∥ψhτ∥∥L∞((0,t?)×Ω)

≤ ‖θ‖∞, ‖∇ψhτ‖L1((0,t?)×Ω)d ≤ ‖θ
′‖∞C10 T

1
p .

As a consequence, there exists ψ? ∈ L∞((0, t?)×Ω)∩L1((0, t?);W
1,1(Ω)) such that

ψhτ −→
h,τ→0

ψ? in the L∞((0, t?)× Ω) weak-? sense.

Combining the estimates (52) with Lemma 6.1 and Proposition 6.2, and recalling
that ψhτ = ψ(ρhτ ) thanks to the mass-lumping procedure, one can make use of
[7, Theorem 3.9] (see also [11, Theorem A.1]) which, since ψ is continuous and
increasing, shows that ρhτ converges pointwise towards ρ. As a consequence, φhτ
as well as φhτ tend to φ(ρ), so that one can identify F as ∇φ(ρ). Moreover, the
sequence (ρhτ )h,τ being uniformly equi-integrable owing to Corollary 4.3 combined

with de La Vallée Poussin theorem, it converges strongly in L1((0, t?)× Ω). �

The next lemma shows that any reasonable reconstruction of the density con-
verges towards the same limit ρ as the one exhibited in Propositions 6.2 and 6.3.

Lemma 6.4. Define ρ̌hτ , ρ̂hτ ∈ X̃hτ respectively by

(53)

{
ρ̌hτ (t, x) = maxy∈T ρ

n
h(y),

ρ̂hτ (t, x) = miny∈T ρ
n
h(y),

(t, x) ∈ (tn−1, tn]× T, T ∈ T ,

then, up to a subsequence,

ρ̌hτ −→
h,τ→0

ρ and ρ̂hτ −→
h,τ→0

ρ in L1
loc(R≥0 × Ω).

Proof. Define φ̌hτ = φ(ρ̌hτ ) and φ̂hτ = φ(ρ̂hτ ), then φ̌hτ , φ̂hτ ∈ X̃hτ are such that

(54) φ̂hτ ≤ φhτ ≤ φ̌hτ .

Using in the mean value inequality, one gets that

(55) 0 ≤ φ̌hτ − φ̂hτ ≤ |∇φhτ |hT a.e. in R≥0 × T.

Besides, it follows from Proposition 6.3 and Lemma 4.7 that

(56) φhτ −→
h,τ→0

φ(ρ) in L1
loc(R≥0 × Ω).

We deduce from (54)–(56) that φ̌hτ and φ̂hτ converge towards φ(ρ) in L1
loc(R≥0×Ω)

too, so that the convergence also holds point-wise almost everywhere up to the
extraction of yet another subsequence. Since φ−1 is continuous, we obtain that

ρ̌hτ −→
h,τ→0

ρ and ρ̂hτ −→
h,τ→0

ρ a.e. in R≥0 × Ω.
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Finally, remark that

0 ≤ ρ̂hτ ≤ ρ̌hτ ≤ (d+ 1)ρ̃hτ ,

so that ρ̂hτ and ρ̌hτ are tight in L1((0, t?) × Ω) whatever t? > 0 thanks to Corol-
lary 4.3. Then one can apply Vitali’s convergence theorem and conclude the proof
of Lemma 6.4. �

6.2. Identification of the limit. The purpose of this section is to identify the
limiting curve t 7→ ρ(t) exhibited at Proposition 6.2 as a p-gradient flow in the sense
of (4).

Lemma 6.5. Up to a subsequence, there holds

ρ̃hτ∇µhτ −→
h,τ→0

∇φ(ρ) weakly in L1
loc(R≥0 × Ω)d.

Proof. In view of (47), it is (more than) sufficient to establish that

(57) ρ̃hτ∇µhτ −∇φhτ −→
h,τ→0

0 in L1
loc(R≥0 × Ω)d.

Let T ∈ T and n ≥ 1, then, building on the material introduced in the proof of
Lemma 4.6, one hasˆ

T

|ρ̃nh∇µnh −∇φnh| = d! |T |
∣∣J−1
T (ρ̃nT Id −RnT ) δTµnh

∣∣ ,
where Id is the identity matrix of Rd×d, and where

ρ̃nT = ρnh(xT ) =
1

d+ 1

∑
a∈VT

ρnh(a).

Then we deduce from (31) thatˆ
T

|ρ̃nh∇µnh −∇φnh| ≤ d! |T | |J−1
T |2|JT |2

∣∣∣(ρ̃nT )
1
p Id − (ρ̃nT )

− 1
q RnT

∣∣∣
2

∣∣∣(ρ̃nT )
1
q J−1

T δTµnh

∣∣∣
≤ ζT d!

d+
√
d√

2

ˆ
T

∣∣∣(ρ̃nT )
1
p Id − (ρ̃nT )

− 1
q RnT

∣∣∣
2

∣∣∣(ρ̃nh)
1
q ∇µnh

∣∣∣ .
Note that the term (ρ̃nT )

− 1
q RnT vanishes if ρ̃nT = 0 thanks to (33) since q > 1.

Multiplying the above estimate by τn, summing over T ∈ T and n = 1, . . . , n?,
applying Hölder inequality and Corollary 4.4 yields
(58)

‖ρ̃hτ∇µhτ −∇φhτ‖L1((0,tn? )×Ω) ≤ ζT d!
d+
√
d√

2
C

1
q

4 (1 + tn?
)

1
q ‖|γ̃hτ |2‖Lp((0,tn? )×Ω)

with tn? =
∑n?

n=1 τ
n and

γ̃hτ (t, x) = (ρ̃nT )
1
p Id − (ρ̃nT )

− 1
q RnT if (t, x) ∈ (tn−1, tn)× T.

Owing to (33), to ρ̃hτ ≤ ρ̌hτ , to the concavity and to the subadditivity of u 7→ p u
1
p

there holds

|γ̃hτ |2 ≤ (ρ̂hτ )−
1
q |ρ̌hτ − ρ̂hτ | ≤ p

∣∣∣(ρ̌hτ )
1
p − (ρ̂hτ )

1
p

∣∣∣ ≤ p |ρ̌hτ − ρ̂hτ | 1p .
Therefore, Lemma 6.4 implies that |γ̃hτ |2 tends to 0 in Lploc(R≥0 ×Ω), so that (57)
holds thanks to (58). �
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Lemma 6.6. Up to a subsequence, there holds

ρ̃hτ∇Ψh −→
h,τ→0

ρ∇Ψ weakly in L1
loc(R≥0 × Ω)d.

Proof. Since ρ̂hτ ≤ ρ̃hτ ≤ ρ̌hτ with ρ̂hτ and ρ̌hτ defined by (53), we deduce from
Lemma 6.4 that

ρ̃hτ −→
h,τ→0

ρ in L1
loc(R≥0 × Ω).

On the other hand, because of (24), ∇Ψh is uniformly bounded in L∞(Ω)d, hence it
converges (up to a subsequence) towards some U in the L∞(Ω)d-weak-? sense. Fi-
nally one readily check that U = ∇Ψ in the distributional sense since Ψh converges
uniformly towards Ψ. �

We are now in the position to estimate the slope term in the energy inequality
for ρ.

Lemma 6.7. There holdsˆ t2

t1

|∂E(ρ)|q(t) dt ≤ lim inf
h,τ→0

ˆ t2

t1

ˆ
Ω

ρhτ |∇(µhτ + Ψh)|q , 0 ≤ t1 < t2.(59)

Proof. For each T > 0, define probability measures νhτ ∈ P(Rd+1) and vector fields
ξhτ : Rd+1 → Rd+1 by

νhτ =

{
1
T ρ̃hτ on (0, T )× Ω,

0 outside,
, ξhτ =

{
(0,uhτ ) on (0, T )× Ω,

0 outside,
(60)

with uhτ = ∇ (µhτ + Ψh) : R≥0 × Ω → Rd. The basic energy estimate in Proposi-
tion 4.2 implies a (h, τ)-uniform bound¨

Rd+1

νhτ |ξhτ |q ≤ C??.(61)

Further, by Proposition 6.2, the measures νhτ converge narrowly to ν = 1
T ρ as h, τ

tend to 0. Now apply Proposition A.2 from the appendix: there exists a limiting
vector field ξ : Rd+1 → Rd+1 with ρ|ξ|q ∈ L1((0, T )×Ω, such that νhτξhτ converges
narrowly towards 1

T ρξ. One readily checks that ξ = (0,u) on (0, T )× Ω. Taking a
sequence T →∞, one extends u to R≥0 × Ω by the usual diagonal argument.

Proposition A.2 thus yields further thatˆ t2

t1

ˆ
Ω

ρ|u|q dxdt ≤ lim inf
hτ→0

ˆ t2

t1

ˆ
Ω

ρ̃hτ |uhτ |q dxdt.(62)

By the above, ρu is the narrow limit of ρ̃hτ∇(µhτ + Ψh). In Lemmas 6.5 and 6.6
above, this limit has been identified as ∇φ+ ρ∇Ψ. We can thus use the character-
ization of the metric slope given in Proposition 2.1: at almost every t ∈ (t1, t2), we
have

|∂E|q(ρ(t)) =

ˆ
Ω

ρ(t, x)|u(t, x)|q dx,

and thanks to (62), this implies (59), since ρ̃hτ and ρhτ yield the same integral
values. �

Next, we identify the metric velocity.
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Lemma 6.8. ρ is an absolutely continuous curve from R≥0 to Wp(Ω), and its
metric velocity |ρ′| : R≥0 → R≥0 satisfies

(63)

ˆ t2

t1

|ρ′|p ≤ lim inf
h,τ→0

ˆ t2

t1

ˆ
Ω

ρ̃hτ |∇(µhτ + Ψh)|q dx, 0 ≤ t1 < t2.

Proof. Proceed as in the proof of Lemma 6.7, with

vhτ = |∇(µhτ + Ψh)|q−2∇(µhτ + Ψh)

instead of uhτ in the definition (60) of ξhτ . Observe that |vhτ |p = |uhτ |q by con-
struction, and since both are constant on triangular cells, the bound (61) remains
the same, upon replacing p by q. Proposition A.2 eventually implies narrow con-
vergence of ρ̃hτvhτ to a limit of the form ρv, with ρ|v|p ∈ L1. Additionally, still
from Proposition A.2, one obtainsˆ t2

t1

ˆ
Ω

ρ|v|p ≤ lim inf
h,τ→0

ˆ t2

t1

ˆ
Ω

ρ̃hτ |vhτ |p.

In order to estimate the metric velocity with the left-hand side above by means of
Proposition 2.2, we need to show that ρ and v satisfy the continuity equation

∂tρ = ∇ · ρv(64)

in the distributional sense on R≥0 × Ω. We shall derive (64) directly from the

weak formulation (27) of the scheme. To that end, let ϕ ∈ C∞c (R>0 ×Ω) be given,
and define accordingly ϕhτ as the piecewise-constant-in-time and piecewise-affine-
in-space function such that for all t ∈ (tn−1, tn], the function ϕhτ (t; ·) is given by
affine interpolation on the triangles of the values ϕ(tn−1, a) at the vertices a ∈ V.
Introduce further the temporal difference quotient

δtϕ̄hτ (t, x) :=
ϕ(tn, a)− ϕhτ (tn−1, a)

τn
for all t ∈ (tn−1, tn] and x ∈ ωa.

By smoothness of ϕ,

∇ϕhτ → ∇ϕ, δtϕ̄hτ → ∂tϕ uniformly a.e. on R>0 × Ω,(65)

where the almost everywhere simply accounts for the fact that ∇ϕhτ cannot be
evaluated on edges.

Now substitute wnh = ϕhτ (tn−1, ·) this into (27) and sum over n = 1, 2, . . . — the
sum is actually finite — to obtain

−
ˆ ∞

0

ˆ
Ω

ρ̄hτδtϕ̄hτ dxdt+

ˆ ∞
0

ˆ
Ω

ρ̃hτvhτ · ∇ϕhτ dxdt = 0.

By (65) above, by strong convergence of ρ̄hτ to ρ, and by weak convergence of
ρ̃hτvhτ to ρv, we may pass to the limit and obtain

−
ˆ ∞

0

ˆ
Ω

ρ ∂ϕ dx dt+

ˆ ∞
0

ˆ
Ω

ρv · ∇ϕdxdt = 0,

which is just the distributional formulation of (64). The claim (63) now follows
from Proposition (2.2). �

The last element we need to recover (4) — and thus to complete the proof of
Theorem 1.2 — is the following convergence of the energy Eh(ρhτ ).
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Lemma 6.9. There exists a decreasing (thus with bounded variations) function
E : R≥0 → R≥0, with E = E(ρ) a.e. on R≥0 such that, up to a subsequence,

(66) Eh(ρhτ (t)) −→
h,τ→0

E(t), for a.e. t ≥ 0.

Proof. As a direct consequence of the one-step energy estimate (7), the function
t 7→ Eh(ρhτ (t)) is non-increasing, thus in L∞∩BV(R≥0) since Eh(ρ0

h) is bounded af-
ter (26) and nonnegative. Helly’s compactness criterion then provides the existence
of E ∈ L∞ ∩ BV(R≥0) such that (66) holds.

It remains to check that E = E(ρ) a.e. in R≥0. To this end, let us decompose

(67) ‖Eh(ρhτ )− E(ρ)‖L1(0,t?) ≤ Ihτ + Jhτ +Khτ ,

with

Ihτ = ‖Eh(ρhτ )− E(ρhτ )‖L1(0,t?) , Jhτ = ‖η(ρhτ )− η(ρ)‖L1((0,t?)×Ω),

and

Khτ = ‖Ψ‖∞‖ρhτ − ρ‖L1((0,t?)×Ω).

We infer from (25) that

(68) Ihτ −→
h,τ→0

0.

Besides, it follows from Proposition 6.3 that

(69) Khτ −→
h,τ→0

0.

Let us now turn to the term Jhτ . In view of Proposition 6.3, and thanks to the

Sobolev injection of BV(Ω) in L
d

d−1 (Ω), it holds that

φhτ −→
h,τ→0

φ(ρ) weakly in Lqloc(R≥0;L
d

d−1 (Ω)).

Then applying [10, Lemma A.6] one gets that a similar convergence result holds for
the piecewise constant reconstruction φhτ :

φhτ = φ(ρhτ ) −→
h,τ→0

φ(ρ) weakly in Lqloc(R≥0;L
d

d−1 (Ω)).

Since φhτ converges pointwise towards φ(ρ) due to the continuity of φ, we get that

(70) φhτ −→
h,τ→0

φ(ρ) strongly in Lrloc(R≥0 × Ω), 1 ≤ r < min(q,
d

d− 1
).

On the other hand, η(ρhτ ) tends almost everywhere in (0, t?)×Ω towards η(ρ) since
η is continuous. Using Assumption (13), one can readily show (see for instance [10,
Lemma 3.3]) that

η(ρhτ ) ≤ φ(ρhτ )α + C for some α < min

(
q,

d

d− 1

)
and C > 0.

The above right-hand side is uniformly equi-integrable thanks to (70), whence

(71) Jhτ −→
h,τ→0

0.

Combining (68), (69) and (71) in (67), we get that Eh(ρhτ ) converges in L1(0, t?)
towards E(ρ). It also converges almost everywhere up to the extraction of a subse-
quence, whence (66). �
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7. Numerical results

7.1. On the effective resolution. We present in the next Subsection several
numerical experiments using the scheme (27). All numerical results were performed
with FreeFem++ (see [23]). Since the method to solve the problem is not fully
classical we detail here some important steps of the algorithm.

At the nth iteration, we know ρn−1
h and we search for ρnh solution to the scheme (27),

and so to a nonlinear system Fn(ρnh) = 0, which is equivalent to find

(72) ρnh = argmin
ρ

1

2
‖Fn(ρ)‖2.

As explain in Section 3.2, when ρnh vanishes at some nodes a ∈ V, the quantity µnh(a)
can no longer be written in terms of ρnh(a). But we can see it as a minimization
problem with a non-negative constraint on ρnh(a). Thus, we add a barrier function
µ̄nh to the derivative of the density which is increasing, convex and singular in zero.
More precisely, we replace µnh by µ(ρnh) + εµ̄(ρnh) where ε > 0 is a small parameter.
We then solve this problem by paying attention to the fact that the smaller the
perturbation parameter ε is, the more difficult the problem is to solve. The idea is

to construct a sequence of solution (ρn,kh )k≥0 to the scheme (27) for a sequence of
parameter (εk)k≥0 which tends to zero. More precisely, we begin with ε0 > 0 and
we solve the problem using the iterative strategy described above. At iteration k

we choose as initial value the solution ρn,k−1
h obtained in the previous step. At the

end of the step k, we stiffen the problem by setting εk+1 = $εk with $ < 1. We

stop the algorithm when εk < ε? for a given ε? > 0. Then we set ρnh = ρn,kh .
We detail now the iterative algorithm. The main idea is to use a line search

strategy. Thus, at the iteration n and step k, we know ρn,k−1
h and we look for for

ρn,kh . It is computed as follows:

• first compute dρn,k solution to DF (ρn,kh )dρn,k = −F (ρn,kh );

• then choose dρn,k as descent direction and set

G(s) =
d

dt

(
1

2
‖F (ρn,kh + sdρn,k)‖2

)
, s ∈ R≥0.

Thus, noticing that G(s) = 〈DF (ρn,kh +sdρn,k)dρ, F (ρn,kh +sdρn,k)〉 we are
able to compute G(s) for any s.
• Since G(0) = −〈F, F 〉 < 0, we have the following alternative:

(1) either G(1) ≤ 0, then we use a classical Newton step and we set

ρ
n,k+1/2
h = ρn,kh + dρn,k;

(2) or G(1) > 0, and we search for sn,k ∈ (0, 1) such that G(s) ≤ 0. Then
we set

ρ
n,k+1/2
h = ρn,kh + sn,kdρn,k.

• To make sure that the solution remains away from 0, we set

ρn,k+1
h = max(ρ

n,k+1/2
h , 10−8).

7.2. Barenblatt solution of the q-Laplace equation. We begin by a conver-
gence study for an analytical solution to

(73) ∂tρ−∇ ·
(
|∇ρ|q−2∇ρ

)
= ∂tρ−∇ ·

(
ρ|∇η′(ρ)|q−2∇η′(ρ)

)
= 0, in [0, tf ]× Ω,
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where the internal energy density η is given by

(74) η(ρ) =


ρ log ρ− ρ+ 1 if q = 2,

ρ− 1− log(ρ) if q =
3

2
,

q − 1

q − 2

(
q − 1

2q − 3

(
ρ

2q−3
q−1 − 1

)
− ρ+ 1

)
else.

The corresponding chemical potential is given by

η′(ρ) =


log(ρ) if p = q = 2,

1

2− p
(
ρ2−p − 1

)
else.

The function η of (74) satisfies Assumptions (10) and (13) provided q ≥ 2. Assume
that q > 2 (or equivalently that p < 2), so that η′ does not blow-up near 0, as
prescribed in the case (A2). The Barenblatt profile

(75) ρ(t, x) = (t+ t0)−k
(

(M − α |ξ|p)+
) 1

2−p

solves (73), cf. [25]. In formula (75), t0 > 0 is a parameter set to avoid blow-up at
t = 0, whereas

(76) k =
1

q − 2 + q
d

, α =
q − 2

q

(
k

d

) 1
q−1

, ξ = x(t+ t0)−
k
d .

The quantity M has to be set in order to ensure that ρ(t, ·) ∈ P(Ω). The Barenblatt
profile (75) is compactly supported, hence the no-flux boundary conditions (2) is
satisfied for a finite time provided 0 ∈ Ω and dist(0, ∂Ω) is large enough.

We study the convergence of the approximate solution towards the exact solution
in the 1-dimensional case for q = 5 (and so p = 5

4 ). In this case we have M ' 0.6868,
the final time is fixed at tf = 0.25 and we choose t0 = 0.05, the barrier function is
µ̄(x) = − 1

x , ε0 = 0.5 and $ = 0.7. Two types of convergence are studied here:

• we fix ε? and make the mesh size tend to 0 (see Fig. 2a);
• we fix the mesh size and make the parameter ε? tend to 0 (see Fig. 2b).

We begin with a coarse mesh containing 10 vertices and a mesh size approximately
equal to 1, then we refine five times the mesh to obtain a fine mesh with 258
vertices and a mesh size approximately equal to 0.105. Furthermore, the time step
associated with the coarsest mesh is 10−2 and when we refine the mesh, we divide
the time step by 4.

In each case we plot the relative error between the approximate solution and the
exact solution for the L2((0, tf)× Ω) norm.

We observe on Figure 2 a second-order convergence in space and and an order
of convergence approximately equal to 0.65 for εk. As expected, we observe a
saturation in the convergence w.r.t. hT or εk if εk or hT are respectively chosen
too coarsely.

7.3. Solution of the q-Laplace equation with a non-zero potential. In this
section we focus on qualitative numerical results in 2 space dimensions of the q-
Laplacian equation described in (1) for a non-zero potential Ψ. For the numerical
tests presented here, the energy density is given by η(ρ) = 1

2ρ
2 and the initial

density ρ0 ∈ P(Ω) is a cross as described on Fig. 3a. The external potential is
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Figure 2. Relative error for the L2((0, tf)× Ω) norm

Ψ(x) = k‖x − 1
2‖

2 and the stationary state ρ∞(x) = (M − Ψ(x))+ (see Fig. 3b),
where the parameters M and k are chosen such that ρ∞ ∈ P(Ω) and such that

the support of ρ∞, which is the ball of radius
√

M
k centered at the point ( 1

2 ,
1
2 ), is

included in Ω = (0, 1)2 (here we choose
√

M
k = 0.4).

(a) Initial density (b) Stationary state

Figure 3. Initial density and stationary state

We choose as final time tf = 0.25, the time step is τ = 0.000625, the mesh has
8192 triangles and the mesh size is approximately hT ∼ 0.022. We observe the
behavior of the solution for 3 different values of p (and q):

• p = 3
2 (and so q = 3) on Fig. 4;

• p = q = 2 on Fig. 5;
• p = 3 (and so q = 3

2 ) on Fig. 6.

In each case the barrier function is µ̄(x) = − 1
x , ε? = 10−3 but ε0 = 0.1 for p = 3

2
and p = 2 and ε0 = 0.2 for p = 3. Note that the color scale varies from one snapshot
to another in order to better visualize the behavior of the solution over time.

We also plot on Fig 7 the evolution of the energy E(ρ̄nh)−E(ρ∞) where E(ρ∞) =
2
3M .
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(a) t = 0.000625 (b) t = 0.00375 (c) t = 0.01625

Figure 4. Evolution of the density for p = 3
2

(a) t = 0.000625 (b) t = 0.00375 (c) t = 0.01625

Figure 5. Evolution of the density for p = 2

(a) t = 0.000625 (b) t = 0.00375 (c) t = 0.01625

Figure 6. Evolution of the density for p = 3

As can be seen from the Fig. 7, the energy decreases faster for p = 3
2 and therefore

the steady state is reached faster in this case. The saturation around 10−3 is related
to the choice of ε?.

Appendix A. Some results by Ambrosio, Gigli and Savaré

Our first proposition in this appendix is a version tuned for the proof of Proposi-
tion 6.2 of the refined version of the Ascoli-Arzelà theorem presented in [5, Propo-
sition 3.3.1].
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Figure 7. Energy dissipation

Proposition A.1. Let T > 0, and for ` ≥ 1 let ρ` : [0, T ] → P(Ω) be such that
(ρ`(t))`≥1 is tight for all t ∈ [0, T ] and such that

lim sup
`→+∞

dist(ρ`(t), ρ`(s)) ≤ ω(|t− s|), ∀0 ≤ t, s ≤ T,

with dist being a distance metrizing the narrow convergence on P(Ω), and ω ∈
C(R≥0,R≥0) satisfying ω(0) = 0, then there exists ρ ∈ C([0, T ],P(Ω)) with

dist(ρ(t), ρ(s)) ≤ ω(|t− s|)
such that, up to a subsequence, ρ`(t) converges narrowly towards ρ(t) as ` tends to
+∞ for all t ∈ [0, T ].

Next proposition, a more general version of which can be found in [5, Theorem
5.4.4], is about (weak) compactness for the momentum.

Proposition A.2. Let k ≥ 1 be an integer, let (ν`)`≥1 ⊂ P(Rk) be such that

ν` converges narrowly towards ν ∈ P(Rk) as ` tends to +∞, and let (ξ`)`≥1 be a

sequence of measurable vector fields mapping Rk to Rk such that there exists C11 > 0
and r > 1 such that ˆ

Rk

ν`|ξ`|r ≤ C11, ∀` ≥ 1.

Then there exists a measurable ξ : Rk → Rk such that ν`ξ` converges narrowly
towards νξ. Moreover, one hasˆ

Rk

ν|ξ|r ≤ lim inf
`≥1

ˆ
Rk

ν`|ξ`|r.
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[5] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space of
probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, second
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[12] C. Cancès, T. O. Gallouët, and Gabriele Todeschi. A variational finite volume scheme for
Wasserstein gradient flows. Numer. Math., 146(3):437–480, 2020.

[13] J. A. Carrillo, Y.-P. Choi, and O. Tse. Convergence to equilibrium in Wasserstein distance
for damped Euler equations with interaction forces. Comm. Math. Phys., 365:329–361, 2019.

[14] J. A. Carrillo, K. Craig, L. Wang, and C. Wei. Primal dual methods for Wasserstein gradient

flows. Found. Comput. Math., 2021.
[15] C. Chainais-Hillairet, M. Herda, S. Lemaire, and J. Moatti. Long-time behaviour of hybrid

finite volume schemes for advection-diffusion equations: linear and nonlinear approaches.

Numer. Math., 2022.
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