Structured Dictionary Learning of Rating Migration Matrices for Credit Risk Modeling - Archive ouverte HAL
Article Dans Une Revue Computational Statistics Année : 2024

Structured Dictionary Learning of Rating Migration Matrices for Credit Risk Modeling

Résumé

Rating Migration Matrix is a crux to assess credit risks. Modeling and predicting these matrices are then an issue of great importance for risk managers in any financial institution. As a challenger to usual parametric modeling approaches, we propose a new structured dictionary learning model with auto-regressive regularization that is able to meet key expectations and constraints: small amount of data, fast evolution in time of these matrices, economic interpretability of the calibrated model. To show the model applicability, we present a numerical test with real data. The source code and the data are available at https://github.com/michael-allouche/ dictionary-learning-RMM.git for the sake of reproducibility of our research.
Fichier principal
Vignette du fichier
Final_revision_resubmitted.pdf (963.62 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03715954 , version 1 (07-07-2022)
hal-03715954 , version 2 (09-12-2023)

Identifiants

Citer

Michaël Allouche, Emmanuel Gobet, Clara Lage, Edwin Mangin. Structured Dictionary Learning of Rating Migration Matrices for Credit Risk Modeling. Computational Statistics, 2024, ⟨10.1007/s00180-023-01449-y⟩. ⟨hal-03715954v2⟩
223 Consultations
560 Téléchargements

Altmetric

Partager

More