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Abstract

Rating Migration Matrix is a crux to assess credit risks. Modeling and
predicting these matrices are then an issue of great importance for risk
managers in any financial institution. As a challenger to usual para-
metric modeling approaches, we propose a new structured dictionary
learning model with auto-regressive regularization that is able to meet
key expectations and constraints: small amount of data, fast evolution
in time of these matrices, economic interpretability of the calibrated
model. To show the model applicability, we present a numerical test
with both synthetic and real data and a comparison study with the
widely used parametric Gaussian Copula model: it turns out that our
new approach based on dictionary learning significantly outperforms
the Gaussian Copula model. The source code and the data are avail-
able at https://github.com/michael-allouche/dictionary-learning-RMM.
git for the sake of reproducibility of our research.

Keywords: Rating Migration Matrix, Dictionary Learning, Auto-regressive
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1 Introduction

1.1 Banking context

Credit risk refers to the risk of incurring losses due to unexpected changes in
the credit quality of the counterparty. Such a risk is summarized in a structured
rating migration matrix which captures all possible transition probabilities
that an obligor will migrate from a credit state to another over a given time
period (see Figure 1). According to the financial regulation guidelines (Basel
II and III), banks can use internal ratings and risk exposure estimations in
order to assess regulatory capital requirement and credit risk measures (VaR,
ES, ...). See [1, 2, 7, 21] for extensive references on risk measures and credit
risk. Rating migration matrices (RMM) are key indicators to assess credit risk
portfolio through the estimation of the credit quality of the obligors. Rat-
ing allocation process includes models and expert systems taking into account
obligors idiosyncratic features evolving over time given the economic situation.
Observed migration frequencies are displayed into RMM that are the corner-
stone of rating migration models upon which credit risk portfolio simulation
relies. The most widely used method for modeling RMM is the one-factor Gaus-
sian Copula (GC) model [13] which assumes that a single factor represents
the underlying systemic credit quality in the economy and defines a stationary
economic cycle. See [3] among others for estimating risk measures on the loss
distribution of a large credit risk portfolio under this model. The popularity of
the GC model is due to the ease of use but it also suffers from too simple under-
lying hypothesis. These weak assumptions lead to miscapture the dependence
structure in tails. However, and despite post subprime crisis criticisms [14], the
one-factor GC model remains very popular in the banking industry because of
its parsimony and of its ability to generate intuitive and interpretable results.
The aim of this work is to derive from the data a non parametric representa-
tion of RMM, as an alternative and a challenger to the parametric GC model.
This work is devoted to the design of a new methodology with thorough tests
and a comparison with the GC model.

1.2 Matrix Factorization for RMM

Let us start from the data. In practice, we observe at time t a one-year rating
migration matrix Pt ∈ RR−1⊗RR, which encodes the probability of migrating
from rating i = 1, . . . , R − 1 to rating j = 1, . . . , R within one year period
starting at time t − 1; in Figure 1 we have R = 11. The reconstruction of
this matrix is made empirically by evaluating the frequencies of obligors going
from the rating i to rating j between times t− 1 and t. It is important for risk
management purposes to model the evolution of Pt, by finding a representation
of the type

Pt ≈
K∑
k=1

αtkdk, ∀t ≥ 1, (1)
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Fig. 1: Representation of an idealized rating migration matrix of size 10× 11.
All values are in percentage. The credit quality goes from the highest (rating
1) to the lowest (rating 10), the default is 11.

for some so-called (deterministic) basis vectors dk and for some scalar random
coefficients αtk which we should model the evolution. In a matrix form (using
the vec () operator to simplify, see Section 1.5), we say that the collection of
vectorized matrices P = {vec (Pt) ∈ Rd}Tt=1 ∈ Rd ⊗ RT , with

d := (R− 1)R

for all t = 1, . . . , T , admits a matrix factorization over a dictionary D ∈
Rd ⊗ RK composed by K elements (called atoms), if there exists a linear
combination of atoms weighted by coefficients (called codings) A = {αt ∈
RK}Tt=1 ∈ RK ⊗ RT such that

P ≈ DA. (2)

1.3 Objective

In this work, the objective is to achieve (2) while requiring

• D to satisfy some linear constraints (see Section 1.5) in order to represent
economically interpretable RMM,

• the time series of elements αt of A to be smooth enough in order to get sta-
bility in the representation and to perform simulations/predictions through
a time series modeling,

• consider a dimensionality reduction framework K � d in order to work in
a lower dimensional space with extracted meaningful information.

However, the RMM evolution may vary quickly over time and a limited data
history is available (usually 10-20 years ≈ 200 observations) which is close to
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the dimension of the problem (usually R = 11 and d = 110). Thus, modeling
constrained RMM in a data-based non-parametric way presents an important
challenge, which has not been addressed so far to the best of our knowledge.

1.4 State of the art

Over the last years, a new paradigm of data-based models have emerged in the
Machine Learning (ML) community in order to extract structured information
from high-dimensional objects. A classical approach in ML is to use Matrix
Factorization techniques in order to project the data in some relevant basis.
It is well known that the optimal basis that minimizes the linear approxima-
tion error is the Karhunen-Loève basis [20, Theorem 9.8], also known as the
principal components in the principal component analysis (PCA).

Introduced in [24], dictionary learning (DL), see [9] for an overview and [12]
for theoretical results, is another matrix representation technique where the
basis, called dictionary, is learned from the observations. Unlike in the PCA
decomposition, neither the orthogonality nor the representation constraints
of the basis vectors (atoms) are imposed, allowing more flexibility to adapt
the desired representation to the data. Moreover, compared with a predefined
dictionary like Gabor functions, wavelets or local cosine vectors [20], learning
a dictionary adapted to the observations has shown better results in practice
[10, 17].

In DL, the linear approximation (2) is usually coupled with a regularization
criterion R(A) applied to the codings and yields to the general optimization
problem

min
D,A
‖P−DA‖2F + λR(A), λ ≥ 0, (3)

where the regularization term shall reflect the expected codings representation,
see [9, Chapter 4]. The most widely studied regularization is R(A) = ‖A‖1
referring to the so-called sparse coding (see [15] for an overview), where the
optimization with respect to A is known as basis pursuit [6] or the Lasso
[29]. DL with sparse representation was notably studied in image and video
processing [16, 18, 19], in graph learning [30] and in clustering [28]. In the
case of spatial data, and more precisely in image processing, Total Varia-
tion (TV) plays an important role. In one dimension we have RTV (A) =∑T−1

t=1

∑K
k=1

∣∣αt+1
k − αtk

∣∣, which is the integral of the absolute value of the gra-
dient [26]. The intuition of this type of regularization in images is to allow a
smooth transition between close codings and can be understood as a prior in
a Bayesian model, see [5].

Here, we rather focus on DL with a temporal structure. This application
has been mainly studied in video denoising [19, 25] where the temporal struc-
ture is exploited through an operator extracting patches of a fixed size in the
objective function representing an energy minimization procedure. Another
approach is to deal with an auto-regressive (AR) representation modeled either
in the dictionary [8] or in the codings [32]. In the former, a mixed audio



5

signal is decomposed into its constituent temporal sources (atoms of the dic-
tionary) in order to detect the presence of a specific sound. In the latter, the
authors present a framework which supports data-driven temporal learning
and forecasting through an AR modelization of the codings represented as a
regularization term. Our model described in Section 2 is inspired from this
problem formulation.

Our main and original contributions are to

• propose a new RMM modelization technique using DL approach
• derive a DL solution with linear constraints and a temporal regularization

term for both interpretable clustering and prediction of RMM
• retrieve an economic health indicator on real data
• confirm the nice reconstruction performance against the one-factor Gaussian

Copula model on both real and synthetic data.

The paper is organized as follows. We introduce our proposed model and the
associated optimization procedure in Section 2. Then we provide a numerical
study on real data in Section 3 with two applications: prediction/simulation
and clustering of RMM with economic interpretations. Finally, we challenge
in Section 4 the one-factor Gaussian Copula model on both real and synthetic
data.

1.5 Notations and data constraints

Notations

Let M ∈ Rd1 ⊗ Rd2 be a matrix with d1 rows and d2 columns. We use the
notation for the i-th row Mi,: , for the j-th column M:,j := mj and for the
sum column-wise

Mi,≥j := Mi,j + · · ·+Mi,d2 .

The vectorization operator vec (·) and its inverse vec−1 (·) are defined as
column-major order, i.e.

vec−1vec (M) := vec−1
(
[M1,1,M2,1, . . . ,Md1,d2 ]> ∈ Rd1d2

)
= M.

The Frobenius norm is defined by:

‖M‖F =
√

Tr(MM>) =

√ ∑
i∈[d1],j∈[d2]

M2
i,j ,

where [di] := {1, ..., di, } for i ∈ {1, 2}. The orthogonal linear projection of
a vector u ∈ Ru onto the space generated by the columns of a matrix V ∈
Rv1⊗Rv2 , with u = v1, is denoted by ProjV (u) . For a matrix U ∈ Ru1⊗Ru2 ,
(u1 = v1) with columns {U:,1, ...,U:,u2

}, the projection is defined by

ProjV (U) ∈ Rv2 ⊗ Ru2 ,
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with columns {ProjV (U:,1) , ...,ProjV (U:,u2)}.

Data constraints

A rating migration matrix M must satisfy some constraints for both mathe-
matical and economical reasons.
Mathematical constraints. Each row of M is a discrete probability, hence M is
a stochastic matrix. The set of Stochastic Matrices is denoted by

MS :=

{
M ∈ R(R−1) ⊗ RR :

∑
j∈[R]

Mi,j = 1,∀i ∈ [R− 1],

Mi,j ≥ 0, ∀(i, j) ∈ [R− 1]× [R]

}
.

Economic constraints. Depending on their expertise, some risk managers may
consider important to put additional constraints that are meaningful from
economic point-of-view. For instance, the likelihood of default for higher-rated
counterparties is lower than for the lower-quality ones. Then, the collection of
rating matrices satisfying so-called economic constraints is denoted by

ME :=

{
M ∈ R(R−1) ⊗ RR : Mi,≥j ≤Mi′,≥j ,

∀j ∈ [R], 1 ≤ i < i′ ≤ R− 1

}
.

A matrix satisfying such constraints is called an idealized matrix and is
illustrated in Figure 1.

2 Dictionary learning: modeling and solving

2.1 Defining the regularization term

In the case of time-series DL, the expected time dependency can be encoded
in the regularization part. We propose a regularization term with an extra
parameter w that will be used to infer the behavior of the codings as a time-
series.

Defining

ᾱk :=
1

T

T∑
t=1

αtk,

the proposed DL problem is:

min
D,A,w

D∈Ω, αt
k≥0, t∈[T ], k∈[K]

‖P−DA‖2F + λRAR(A,w) (4)



7

where w = (w1, ..., wK), with regularization:

RAR(A,w) :=

K∑
k=1

T−1∑
t=1

(
αt+1
k − ᾱk − wk(αtk − ᾱk)

)2

, (5)

where the extra parameter w allows us to estimate the AR parameters of the
time-series αk for each k ∈ [K], as it will be detailed below. The available
set Ω is the convex set of dictionaries verifying the idealized constraints (see
Section 1.5):

Ω :=
{
D ∈ Rd ⊗ RK : vec−1 (dk) ∈ME ∩MS , ∀k ∈ [K]

}
.

Heuristics for the regularization strategy

The AR model is an important time-series structure, largely applied in finance
and other contexts (see [22]). For a fixed k ∈ [K], we say that the time-series
αk is auto-regressive of order 1, if

αt+1
k = µk + wkα

t
k + εtk, for all t > 1, (6)

where µk is a constant called drift, wk is the AR coefficient and (εtk)Tt=1 are
independent centered Gaussian variables with some variance parameter σ2

k.
Starting from the DL model (3), we encourage the codings A to have an AR

structure (6) through the regularization term. Thus, assuming an AR structure
of αk for each k ∈ [K], the log-likelihood with respect to parameters µk, wk,
and σk, up to a constant term, is:

`(αk, µk, wk, σk) :=− 1

2σ2
k

T−1∑
t=1

(
αt+1
k − µk − wkαtk

)2

− (T − 1) log(σk)

(see [27, Chapter 3.6]), with solutions:

µ̃k, w̃k, σ̃k = arg max
µk,wk,σk

`(αk, µk, wk, σk).

It readily follows that the optimal parameter µk is

µ̃k =
1

T − 1

T−1∑
t=1

(αt+1
k − w̃kαtk) ≈ (1− w̃k)ᾱk =: µ̂k

where the approximation holds for large values of T . Thus, the optimization
of wk boils down to (up to a small error)

ŵk = arg min
wk

T−1∑
t=1

(
αt+1
k − ᾱk − wk(αtk − ᾱk)

)2

. (7)
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Doing so, we obtain the regularization term of (5). Note that this regular-
ization makes problem (3) convex with respect to A which will be useful
to the optimization strategy (Section 2.2). Observe that we would have lost
convexity in A if we had replaced the explicit minimizer ŵk into (5).

Later (in the hyper-parameter selection step in Section 3.1), we will need
also to retrieve all AR coefficients from observations. Obtaining the optimal
wk is straightforward from (7):

ŵk =

∑T−1
t=1 (αt+1

k − ᾱk)(αtk − ᾱk)∑T−1
t=1 (αtk − ᾱk)2

. (8)

Remark 1 Note that ŵk in (8) is not necessarily between −1 and 1, so for bet-
ter adequacy with the expected mean-reversion property of the alphas we prefer to
implement

ŵk =

∑T−1
t=1 (αt+1

k − ᾱk)(αtk − ᾱk)√∑T−1
t=1 (αt+1

k − ᾱk)2
√∑T−1

t=1 (αtk − ᾱk)2
.

Regarding σk, we proceed similarly and we get that σ̃k is close to

σ̂2
k =

∑T−1
t=1

(
αt+1
k − µ̂k − ŵkαtk

)2

T − 1
.

We observe that, replacing ŵk in (7) (and then in (4)) would result in a non-
convex function in terms of αk, which would increase the difficulty of the
optimization problem (4). Therefore, optimize this parameter wk as an extra
variable is the best choice regarding convexity purposes.

Remark 2 The model presented in this work can be easily generalized to an AR
model of order p ∈ N. The choice to introduce it in order 1 simplifies our notation
and is adequate to our case of application, see Section 3.1.1. The DL optimization
strategy, Section 2.2, applies likewise to an AR model of order p ∈ N.

The importance of the parameter µk

A similar AR regularization, inspired in graph theory, is proposed in [32]. The
difference between the latter and our model is that their µk is considered to be
zero. We discuss in this paragraph why in our case of application this choice
would not work.

Indeed, because of Equation (1) and the fact that Ω is a convex set, we
expect {αtk}Kk=1 to be coefficients of a linear combination of {dk}Kk=1 that
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approximates Pt ∈MS for each t fixed, as explained in Equation (1). Then:

K∑
k=1

αtk ≈ 1, for all t ∈ [T ]. (9)

On the other hand, if µk = 0, and αk are AR time-series of order 1 with
coefficients µk and wk , the estimator µ̂k gives that:

0 ≈ µ̂k = (1− wk)ᾱk.

Either wk = 1, which restricts a lot the possible time-modeling of αk. Or,
if wk 6= 1 for all k ∈ [K], then 1

T

∑T
t=1 α

t
k ≈ 0 and summing in k, we get∑K

k=1

∑T
t=1 α

t
k ≈ 0, which contradicts (9). This contradiction shows the diffi-

culty of fitting an AR model with drift 0 in the case where dictionaries lie in
a convex set and where the codings are expected to be a convex combination.

2.2 Dictionary learning optimization strategy

Problem (4) is not a convex optimization problem, as it is usually the case in
DL problems. Nevertheless, the problem is convex in variables D, A and w, as
we can observe in (4). This property encourages the use of a policy that consists
in alternating the minimization in A, D and w. This largely applied strategy
does not ensure a global solution of problem (4), but it is a straightforward
way of finding a local minima of problem.

The quadratic problems presented in this section are solved by a Interior
Point Method, see ([23, Section 16.8],[31]). Interior point methods (IPMs) are
very well-suited to solving quadratic optimization problems, particularly when
sizes of problems grow large, see [11].

2.2.1 Dictionary update

We opt for a sequential update of each atom of the dictionary: dk for k ∈ [K].
This choice is guided by two advantages: 1. The problem is strictly convex
for each atom dk (as stated in Proposition 1 below) which is not necessarily
true for the whole matrix D. 2. This strategy breaks the problem in smaller
problems making the resolution less dependent on the amount of atoms K.
Updating atoms separately is also the strategy of the widely used K-SVD (see
[9, Section 3.5]), however, the purpose in that case is to find a closed form for
the optimization problem, which is not true in our case of study because of
the form of constraints.

Proposition 1 Assume that {αtk}
T
t=1 is non zero. The minimization of (4) over

dk ∈ vec
(
ME ∩MS

)
is equivalent to minimizing a strictly convex quadratic

problem with linear constraints

min
dk

∥∥∥vec
(
P̃k

)
− Ãkdk

∥∥∥2

F
, s.t. vec−1 (dk) ∈ME ∩MS , (10)
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where P̃k and Ãk are explicitly defined in (12).

Observe that the condition on αk is expected to be systematically satisfied
since each element αtk is non-negative and sums up (in k) approximately to 1
(see (9)).

Proof Start from the reconstruction error in (4) and write

‖P−DA‖2F =

∥∥∥∥∥∥P−
K∑
j 6=k

djAj,: − dkAk,:

∥∥∥∥∥∥
2

F

. (11)

From this, it is obvious that the function dk 7→ ‖P−DA‖2F to minimize is quadratic
and convex. However, under this form, it is not yet clear it is strictly convex. To
establish this property, define

P̃k := P−
K∑
j 6=k

djAj,:,

Ãk :=



Ak,1 0 . . . 0
0 Ak,1 . . . 0
...

...
. . . 0

0 0 . . . Ak,1
...

...
...

...
Ak,T 0 . . . 0

0 Ak,T . . . 0
...

...
. . . 0

0 0 . . . Ak,T


∈ RdT ⊗ Rd.

(12)

The quantity in (11) is thus equal to∥∥∥vec
(
P̃k

)
− Ãkdk

∥∥∥2

F
.

Note that Ã>k Ãk is diagonal matrix equal to
∑T
t=1(αtk)2IRd , where IRd is the iden-

tity matrix in Rd. �

2.2.2 Codings update

Similarly to the dictionary update, we adopt a strategy based on the update
of each Ak,: for k ∈ [K]. The reasons are the same: it is preferable to solve
a smaller and strictly convex optimization problem. The fact that the opti-
mization for each k is a strongly convex problem is not straightforward and is
argued in the proposition below.

Proposition 2 Let k ∈ [K] be fixed. Consider the minimization of (4)-(5) over one
coding Ak,:, i.e.

min
Ak,:, Ak,t≥0

‖P−DA‖2F + λ

K∑
k=1

T−1∑
t=1

(
Ak,t+1 − Āk,: − wk(Ak,t − Āk,:)

)2
. (13)
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For any λ ≥ 0, the above problem is a strongly convex quadratic optimization problem
with linear constraints.

Proof First, there is a symmetric non-negative matrix Hwk ∈ RT ⊗ RT such that

RkAR(Ak,:, wk) =

T−1∑
t=1

(
Ak,t+1 − Āk,: − wk(Ak,t − Āk,:)

)2

= 〈A>k,:,H
wkA>k,:〉

since for wk fixed, RkAR(·, wk) is a quadratic problem without linear term that can
be represented by a symmetric matrix. Obviously, it is non-negative.

Similarly to the proof for the dictionary update, we define a matrix D̃k :

D̃k :=



D1,k 0 . . . . . . 0
...

...
. . .

. . .
...

Dd,k 0 . . . . . . 0
0 D1,k 0 . . . 0
...

...
...

. . . 0
0 Dd,k 0 . . . 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
0 . . . . . . 0 D1,k
...

. . .
. . .

...
...

0 . . . . . . 0 Dd,k



∈ RdT ⊗ RT ;

note that the minimization problem (13) is equivalent to

min
Ak,:, Ak,t≥0

∥∥∥vec
(
P̃k

)
− D̃kA

>
k,:

∥∥∥2

F
+ λ〈A>k,:,H

wkA>k,:〉, (14)

which is a quadratic constrained optimization problem with quadratic term given by
the matrix:

Ck := D̃>k D̃k + λHwk .

Since D̃>k D̃k = ‖dk‖22IRT and that ‖dk‖2 is uniformly bounded from below on

vec
(
ME ∩MS

)
, and since Hwk is symmetric non-negative, the matrix Ck is

symmetric positive definite with a uniform lower bound for its eigenvalues. The
announced statement is proved. �

2.3 Coefficient update

We note that, for each k ∈ [K], the optimization problem with respect to wk in
equation (4) is a 1-dimensional quadratic problem with explicit solution given
by Equation (8).

Remark 3 For each k ∈ [K], the solution of problem (10) and (13) decreases the
objective value of the respective optimization problems. However, it is an open ques-
tion to justify that this strategy provides a solution to problems (4) with respect to
D, A and w.
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Algorithm 1: Dictionary Learning (DL)

Input: matrix of vectorized RMM: P ∈ Rd ⊗ RT ,
number of atoms: K ∈ {1, 2, ...},
regularization parameter: λ > 0,
number of iterations: N ∈ {1, 2, ...}

Output: optimized dictionary, codings and drift: D,A,w
1 initialize D ∈ Rd ⊗ RK and A ∈ RK ⊗ RT
2 for i = 1 : N do

3 # Dictionary update
4 for k = 1 : K do

update dk with QP s.t. vec−1 (dk) ∈ME ∩MS

5 # Codings update
6 for k = 1 : K do

update αk with QP s.t. αtk ≥ 0, t ∈ [T ]

7 # Coefficient update
8 for k = 1 : K do

update wk with Equation (8)

3 Experiments

Our proposed DL method with temporal AR regularization will be evalu-
ated on real RMM provided by BNP Paribas. The dataset contains T = 192
one-year observed transition frequency matrices with shape R = 11 issued
monthly from 52 sectors composed by large European capitalization companies
between January 2004 and December 2019. This period contains in particular
the subprime crisis but not the COVID-19 pandemic.

3.1 Experimental design

Ideally, we should apply our DL method on each sector. However given the
dataset, the observed matrices are very sparse which refers to another problem
formulation (missing data). To overcome this issue we computed a (confiden-
tial) weighted sum among the 52 sectors to form a shareable (on git) set of
matrices P = {vec (Pt) ∈ Rd}Tt=1 with d = 110 and T = 192. Those matri-
ces are still noisy and so they might not respect the economic constraints, i.e.
Pt ∈ MS ,∀t ∈ [192]. Based on this dataset, we performed a classical 80/20

non-random train-test split in time, stored respectively in PTrain ∈ Rd⊗RTTrain

and PTest ∈ Rd ⊗ RTTest

. In all the following experiments in Section 3 we use
K = 3 for ease of interpretation since we want to represent the RMM as a
combination of three regimes, assuming that each one represents an economic
state. Larger values of K perform similar results but lead to a more sophis-
ticated economic analysis. See Section 3.1.2 for an automatic selection of the
hyperparameters.
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3.1.1 AR lag estimation

First let us check the relevance of the AR(1) model in (5). Starting from the
optimization problem (4) with λ = 0, we trained the DL model on PTrain and
applied the well-known partial autocorrelation function (PACF) [4, Section
3.2.5] on the codings ATrain

k,: , for all k ∈ [3]. For each series, we identified just
one statistically significant lag, suggesting a possible AR(1) model adapted to
the data. See Figure 2 for k = 1, while the others behave similarly.

Fig. 2: PACF of ATrain
1,: for the first 10 lags. The shaded region represents the

95% confidence interval.

3.1.2 Hyper-parameter selection

The best hyper-parameters λ and K can be chosen automatically through the
procedure described in Algorithm 2. The latter allows to evaluate both the
prediction and the reconstruction capacity of the model through an AR log-
likelihood estimation component-wise (see Lines 3 and 4 in Algorithm 2). We
applied Algorithm 2 for λ ∈ {0.01, 0.1, 1, 3, 5, 10} ,K ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10}
and stored the results in Table 1 which highlights the benefit of our proposed
regularization in the RMM predictions. The parameters associated with the
smallest selection criteria is K = 9 and λ = 0.1. However, since we consider
K = 3 for ease of interpretation, we select the best associated lambda which
is λ = 0.1.

In the next section we illustrate the results of our DL model and propose
two ML applications. First a time-series simulation of the RMM and second
their unsupervised clustering in order to infer an estimation of the global
economic sentiment.
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Algorithm 2: Hyper-parameter selection

Input: data train: PTrain ∈ Rd ⊗ RTTrain

,
data test: PTest ∈ Rd ⊗ RTTest

,
number of atoms: K ∈ {1, 2, ...},
lambda: λ > 0

Output: criteria: L
1 DTrain,ATrain,wTrain ← DL(PTrain,K, λ,N = 500), where the function

DL refers to Algorithm 1
2 ATest ← ProjDTrain

(
PTest

)
3 `k ← − 1

2σ̂2
k

∑TTest−1
t=1

(
ATest
k,t+1− µ̂k −wTrain

k ATest
k,t

)2

− (TTest− 1) log(σ̂k),

µ̂k = ᾱTrain
k (1− wTrain

k ),

σ̂2
k ← V̂ar[αTrain

k ]
(
1− (wTrain

k )2
)
,

4 L ← 1
K

∑K
k=1 `k

K
λ

0.01 0.1 0.5 1 3 5 10

2 73.9 68.3 2.8 − − − −
3 90.2 98.7 96.1 85.4 35.3 − −
4 92.7 101.7 100.9 93.2 62.9 28.1 −
5 92.7 101.2 100.3 92.3 64.4 44.8 14.2
6 96.7 104.8 106.1 99.2 68.3 40.6 22.8
7 100.5 106.0 106.0 100.7 73.4 56.1 37.6
8 103.8 106.0 100.7 93.0 72.6 48.3 20.7
9 106.9 109.4 105.5 104.6 70.9 40.8 24.4
10 106.9 108.1 106.6 97.3 67.1 71.1 7.8

Table 1: Selection criteria L from Algorithm 2 associated with various λ and
K. Negative values are not reported. The best overall result is emphasized in
bold and the best one for K = 3 is underlined.

3.2 Results

Computational aspects

The numerical experiments have been conducted on a Macbook Pro (13-inch,
M1, 2020), 512 Go SSD, 16 Go RAM. All the code was implemented in
Python 3.10. It takes less than a minute to train the model with K = 3 dur-
ing 500 iterations. Clearly from Algorithm 1 the training time is linear with
respect to K. The calibration of GC model takes about 70ms: although quite
different from one model to the other, the computational time is not an issue
in practice since RMM are assessed on a low frequency basis (every month).
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3.2.1 Dictionary representation

Once learned, it appears that the dictionary managed to extract three candi-
dates (atoms) to be good representatives for all RMM included in our dataset.
In Figure 3 are represented these atoms in a matrix form generating a sta-
ble (strong diagonal, see Figure 3a), an upgrade (strong lower diagonal, see
Figure 3b) and a downgrade (strong upper diagonal, see Figure 3c) risk con-
figuration. Although automatically obtained by our algorithm, observe that
these representatives make fully sense in terms of economic interpretation, and
should reveal the underlying characteristics of RMM in our data set.

(a) vec−1 (d1)

(b) vec−1 (d2)

(c) vec−1 (d3)

Fig. 3: Matrix representation of the atoms in a trained dictionary with K =
3, λ = 0.1.
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3.2.2 Codings

The AR regularization (5) enforces an AR behavior of the codings making
them more regular. The choice of the best prediction and analysis will then be
a trade-off between the reconstruction and the regularity of the time evolution
of the codings. Figure 4 depicts this evolution.
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Fig. 4: Time evolution of ATrain
3,: for λ ∈ {0.1, 1, 3, 10}.

Note that for larger values of λ the evolution in time of the coding is
smoother. This property tends to advantage the prediction of future matrices.

3.2.3 Simulation-base example

Let us briefly exemplify the use of the fitted model in a credit risk use-case,
using simulations. Consider a portfolio of obligors owned by a bank, described
according to the losses given default LGDi given the initial rating i at time T :
due to the definition of RMM, the average loss in one-year (estimated at the
current time T ) is given by

LossT =

10∑
i=1

LGDi P
T
i,11.

This average potential loss is then converted into capital requirements. In addi-
tion, banks are invited to develop forward-looking tools, for financial planning
and steering. This means, for example, understanding what the average loss
distribution will be in the future, in 12 months’ time for example, i.e. what
the distribution of LossT+12 is. Our fitted model allows to sample the above
loss by the simulation of (Pt : t = T + 1, . . . , T + 12) for getting RMM tra-
jectories. This simulation can be easily performed through the reconstruction
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matrix and the sampling of codings:

Pt ≈
K∑
k=1

αtkd
Train
k ,

αt+1,Sim
k = µ̂k + αt,Sim

k wTrain
k + εtk, t ≥ T,

αT,Sim
k = αT,Train

k ,

where (εtk : k ∈ [K]) is a centered Gaussian random variable, which k-th
coordinate has variance σ̂2

k, and where the correlation between components are
estimated empirically from the codings αTrain. These Gaussian variables are
taken independent in time.

3.2.4 Clustering

Let study now the benefit of our proposed regularized DL model in order to
obtain an interpretable classification of the RMM. We fit a k-means algorithm
on the standardized ATrain in 3 clusters and predict the classes of the stan-
dardized ATrain. Assuming that the atoms and the clusters represent different
economic states, we obtain in Figure 5 a classification in time of the observed
RMM. Additionally to the historical financial context, we present how to infer
an economic sentiment indicator based on both the codings’ classification and
the dictionary. To do so, we store in Table 2 the weights of the atoms assigned
to each cluster. Thus, combining with Figure 3, we can easily deduce that the
labels associated to the clusters green, yellow, red are respectively a good, a
stable and a bad economic sentiment indicator. Such an allocation can be con-
firmed graphically in Figure 5 which captures effectively the financial bubble
between 2006-2008, as well as the subprime crisis.

cluster
k

1 2 3

green 83.2 6.6 10.2
yellow 64.9 32.9 2.2
red 50.9 10.2 38.9

Table 2: Centroid of ATrain in each cluster: green, yellow, red. The values are
adjusted in percentage.

4 Challenging the one-factor Gaussian Copula
model

Let us compare our proposed non-parametric DL approach with the parametric
one-factor GC model based on the same real RMMs as tested in the previous
section.
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Fig. 5: Unsupervised classification of the codings ATrain in 3 clusters:
{−1 (red cross), 0 (yellow square), 1 (green dot)}.

4.1 One-factor Gaussian Copula model

For an initial rating i at time t, the one-factor Copula model assumes that the
event ”migration to the rating greater than j at time t+ 1” is given by{

Xt
i ≥ ci,j

}
,

where the parameters {ci,j}i∈[R−1],j∈[R] are thresholds triggering the rating

migration and with a stochastic factor

Xt
i = ρZt +

√
1− ρ2εti, (15)

composed by a systemic risk factor Zt (common to all obligors), an idiosyn-

cratic risk factor εti
d
= N (0, 1) (specific to every obligor), independent from

Zt, and a correlation parameter ρ ∈ (−1, 1) between the two sources of risk.
The systemic factor Z evolves through time and has a stationary distribu-
tion given by a standard Gaussian distribution. Thus, conditionally to Zt, this
event ”migration to the rating greater than j at time t+1” has the probability

Φ

(
ρZt − ci,j√

1− ρ2

)
=: P ti,≥j , (16)

and the unconditional probability is

Φ(−ci,j) =: PTTC
i,≥j , (17)

where Φ is the c.d.f. of a standard Gaussian distribution. The matrix PTTC

represents the probability of default ’Through the Cycle’ which is a long-run
average over a cycle and focuses mainly on permanent components of default
risk, whereas the matrix Pt represents the probability of default ’Point-In-
Time’ which takes into account both cyclical and permanent effect. Inverting
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ci,j in (17) and replacing in (16) gives

P ti,≥j = Φ

(
ρZt + Φ−1(PTTC

i,≥j )√
1− ρ2

)
, (18)

P ti,j :=Φ

(
ρZt + Φ−1(PTTC

i,≥j )√
1− ρ2

)
− Φ

(
ρZt + Φ−1(PTTC

i,≥j+1)√
1− ρ2

)
, (19)

with the convention PTTC
i,≥R+1 = 0.

4.2 Parameter estimation

Starting from (18), under the GC model one should have for all i ∈ [R − 1]
and j ∈ [R]

Φ−1
(
P ti,≥j

)
=
ρZt + Φ−1(PTTC

i,≥j )√
1− ρ2

,

where ρ is the unknown parameter. Since the matrix PTTC interprets, in the
GC model, as the migration matrix in the stationary systemic regime, each
PTTC
i,≥j can be estimated as a long-run time average, i.e.

P̂TTC
i,≥j :=

1

T

T∑
t=1

P ti,≥j .

Then, denoting for all t ∈ [T ], PΦ,t
i,≥j := Φ−1

(
P ti,≥j

)
and PΦ,TTC

i,≥j :=

Φ−1(P̂TTC
i,≥j ), we should get

PΦ,t
i,≥j ≈ a

t
1 + a2P

Φ,TTC
i,≥j ,

where (in the stationary regime)

at1
d
≈ N

(
0,

ρ2

1− ρ2

)
, a2 ≈

1√
1− ρ2

.

Therefore, solving the least square regression problem

min
a2

1

T

T∑
t=1

R∑
j=1

R−1∑
i=1

(
P̄Φ,t
i,≥j − a2P̄

Φ,TTC
i,≥j

)2

,
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with

P̄Φ,t
i,≥j := PΦ,t

i,≥j −
1

R(R− 1)

R∑
j=1

R−1∑
i=1

PΦ,t
i,≥j ,

P̄Φ,t
i,≥j := PΦ,TTC

i,≥j − 1

R(R− 1)

R∑
j=1

R−1∑
i=1

PΦ,TTC
i,≥j ,

entails

â2 =

∑T
t=1

∑R
j=1

∑R−1
i=1 P̄Φ,t

i,≥jP̄
Φ,TTC
i,≥j

T
∑R

j=1

∑R−1
i=1 (P̄Φ,TTC

i,≥j )2
,

and the parameter estimation

ρ̂ = ±

√
1−

(
1

â2

)2

. (20)

We pick the plus sign, for the sake of interpretation of Z as a systematic risk
factor (the higher Z, the larger the default probabilities). Then, computing
the mean residuals for all t ∈ [T ],

ât1 =
1

R(R− 1)

R∑
j=1

R−1∑
i=1

(
PΦ,t
i,≥j − â2P

Φ,TTC
i,≥j

)
,

we obtain an estimate

Ẑt =

√
1− ρ̂2

ρ̂
ât1. (21)

Finally, we obtain the reconstructed RMM PGC similarly to (19), i.e.

P GC,t
i,j = Φ

(
P̂Φ,t
i,≥j

)
− Φ

(
P̂Φ,t
i,≥j+1

)
,

with

P̂Φ,t
i,≥j := ât1 + â2P

Φ,TTC
i,≥j ,

and where by convention P̂Φ,t
i,R+1 = −∞.

4.3 Results

The GC model will be evaluated on PTrain in order 1) to check if the underlying
assumptions of the model are verified, and 2) to compare the reconstruction
error with our proposed DL model.



21

Validation.

On the first hand, Figure 6a displays the empirical distribution of the estimated
(21) on PTrain with associated ρ̂ = 0.66 (given by (20)). If the data were
coherent with a GC model, this histogram would be close to the stationary
distribution of Z, i.e. a standard Gaussian distribution, which is far to be the
case. On the other hand, Figure 6b illustrates that the model captures in this
term (which should represent the business cycle) the market’s volatility during
the 2007-2013 period. In addition, note that since the real data may not satisfy
the economic constraints, neither will the reconstructed GC RMM.
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Fig. 6: Histogram (6a) and series (6b) of
{
Ẑt, t ∈ [T ]

}
estimated on PTrain.
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Reconstruction

Table 3 reports the Root Mean Square Error (RMSE) PReco 7→√
‖PTrain −PReco‖2F /TTrain of the reconstructed RMM using the GC and the

DL models. It appears that even with only K = 2 atoms, the reconstruction
error with the DL approach is about twice lower than with the GC one. This
gap is accentuated as we increase the number of atoms.

model GC DL(0) DL(0.1) DL(0.5) DL(1)
error 0.527 0.304 0.304 0.306 0.307

Table 3: Reconstruction RMSE of PTrain using the GC model, and the DL (λ)
model with K = 2 atoms and λ ∈ {0, 0.1, 0.5, 1}. The best result is emphasized
in bold.

4.4 Validation on simulated data

The reconstruction performance between the GC and the DL model is com-
pared on simulated data using the One-factor Gaussian Copula model. Assume
that the economy factor in (15) evolves as an AR(1) process

Zt = κZt−1 + εzt ,

where the innovation noise εzt is independent in t and distributed as N (0, 1−
κ2). Here κ ∈ (−1, 1) and one can easily show that the stationary distribution
of Z is N (0, 1) with E

[
Z0
]

= 0.

4.4.1 Choice of κ

The half-life concept can be defined as how long the horizon should be for the
mean of the process to be half-way between its current value and its long term
mean. The half-life of the AR(1) process is defined as

H = − ln 2

ln |κ|
.

In our context, the simulated matrices (Pt)t∈[T ] are supposed to be issued quar-
terly with an economic cycle estimated around 5 years (20 quarters) leading
to κ = exp (− ln 2/10) = 0.93.



23

4.4.2 Synthetic RMM generation

We define the synthetic matrix PTTC ∈ R(R−1) ⊗ RR such that PTTC is an
idealized matrix through

PTTC = ϕ




2(R− i) (R−j)
(1+j−i) ( ij ) . . .

(R−i)
(1+i−j) ( ji )

. . .
...

... . . .
. . .


 , (22)

with i ∈ {0, . . . , R− 2}, j ∈ {0, . . . , R− 1}, R = 11 and

ϕ(X) :=

[
Xi,:

Xi,≥1

]
i∈{1,...,R−1}

,

the normalization operator by rows. Once the PTTC is defined, one can use (19)
to generate idealized RMM from a GC model P ti,j and add some multiplicative
noise such that the synthetic RMM are defined as

Pt := ϕ
(
[P ti,j(1 + ζti,j)]i∈{0,...,R−2},j∈{0,...,R−1}

)
,

with independent ζti,j ∼ U([−0.01, 0.01]). See Figure 8 for an illustration of the
synthetic data with R = 11 and T = 100 (25 years).

4.4.3 Results

Table 4 reports the RMSE of the reconstructed synthetic RMM using the GC
and the DL models. While the better results with the GC model were expected,
those with the DL are very similar and confirm the good performance of our
model even when the data come from a Gaussian model.

model GC DL (0) DL(0.1) DL(0.5) DL(1)
error 0.116 0.117 0.118 0.122 0.125

Table 4: Reconstruction RMSE of synthetic P using the GC model, and the
DL (λ) model with K = 2 atoms and λ ∈ {0, 0.1, 0.5, 1}. The best result is
emphasized in bold.

5 Conclusion

Modeling RMM is a challenging problem because it is necessary to find an
interpretable representation, satisfying economic constraints, while the data
are involving in time, not numerous and in a dimension close to the num-
ber of observations. We propose a new data-based method using a dictionary
learning approach, which implementation boils down to solve small-dimension
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Fig. 8: Synthetic PTTC matrix (7a) and series of synthetic {Zt, t ∈ [T ]} (7b)
with R = 11, T = 100 and κ = 0.93.

quadratic optimization problems with linear constraints, leading to a fast
algorithm. On the modeling size, we overcome the challenge of a constrained
dictionary learning problem and progress in temporal comprehension of the
data through the AR regularization. When tested on a real data-set, the
method enjoys good accuracy for reconstruction and includes the interpretable
classification with respect to economic sentiment indicator. Compared to the
popular Gaussian Copula model, it appears that the latter is not appropriate
to fit well the real data based on 1) model assumptions not satisfied, 2) twice
bigger reconstruction error. Therefore our DL model appears to be an efficient
alternative to the widely used Gaussian Copula model.

As perspectives for further works, beyond the better reconstruction ability
of our DL approach compared to the GC modeling, it is worthy mentioning
that the new model can be used for simulation purposes (to generate scenarios
of evolution of RMMs) and forward-looking financial steering tools, with some
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applications to risk analysis of credit portfolio; this will be considered in more
details in further research. In addition, in terms of financial interpretation,
the clustering analysis suggests that it is possible to connect the temporal
evolution of the codings with important macro-economical variables such as
GDP or financial indices. The integration of these real indicators in the DL
model, is one of the possible extension of the model to be considered in future
works.
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