Bayesian multi-objective optimization for quantitative risk assessment in microbiology - Archive ouverte HAL
Poster De Conférence Année : 2022

Bayesian multi-objective optimization for quantitative risk assessment in microbiology

Résumé

As a part of the European project ArtiSaneFood, the primary goal of this collaborative work between ANSES, CNIEL and L2S is to establish efficient bio-intervention strategies for cheese producers in France, in order to "economically" reduce the risk of Haemolytic Uremic Syndrome (HUS) caused by Shiga-Toxin producing Escherichia Coli (STEC) present in raw-milk soft cheese. This translates into a multi-objective optimization problem of a stochastic simulator based on a quantitative risk assessment (QRA) model proposed by Frédérique Perrin and co-authors in 2014, to estimate the Pareto optimal solutions for the process intervention parameters.
Fichier principal
Vignette du fichier
sbasak_mascot22_poster.pdf (1.05 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03715857 , version 1 (06-07-2022)

Licence

Identifiants

  • HAL Id : hal-03715857 , version 1

Citer

Subhasish Basak, Julien Bect, Laurent Guillier, Fanny Tenenhaus-Aziza, Janushan Christy, et al.. Bayesian multi-objective optimization for quantitative risk assessment in microbiology. MASCOT-NUM 2022, Jun 2022, Clermont-Ferrand, France. . ⟨hal-03715857⟩
101 Consultations
83 Téléchargements

Partager

More