BAYESIAN MULTI-OBJECTIVE OPTIMIZATION FOR QUANTITATIVE

RISK ASSESSMENT IN MICROBIOLOGY

Subhasish Basak^{1,2}, Julien Bect², Laurent Guillier¹, Fanny Tenenhaus-Aziza³, Janushan Christy⁴, Emmanuel Vazquez²

¹Agence nationale de sécurité sanitaire (ANSES), 94700, Maisons-Alfort, France ²Université Paris-Saclay, CNRS, CentraleSupélec, L2S, 91190, Gif-sur-yvette, France ³Centre national interprofessionnel de l'économie laitière (CNIEL), 75009, Paris, France ⁴Centre technique d'expertise agroalimentaire (ACTALIA), 74800, La-Roche-sur-Foron, France

Context

As a part of the European project ArtiSaneFood, the primary goal of this collaborative work between ANSES, CNIEL and L2S is to establish efficient bio-intervention strategies for cheese producers in France, in order to "economically" reduce the risk of Haemolytic Uremic Syndrome (HUS) caused by Shiga-Toxin producing Escherichia Coli (STEC) present in raw-milk soft cheese. This translates into a multi-objective optimization problem of a stochastic simulator based on a quantitative risk assessment (QRA) model proposed by Perrin et al. (2014), to estimate the Pareto optimal solutions for the process intervention parameters.

QRA simulator

Batch level stochastic simulator

The farm-to-fork continuum for one batch

• Farm module

STEC and E.coli strains follow same fecal route!

- A batch of milk is tested with probability $p_{
 m test}^{
 m milk}$
- -Farms with E.coli conc. $> l^{
 m sort}$ are rejected

STEC conc. $Y_{
m milk}^{
m STEC}$ in farm milk is computed

• Cheese module

STEC cells form colonies (clusters) inside cheese

- -No. of colonies (Poisson): N_s^{colony}
- -Size of colonies (LogNormal): Y_s^{colony} for strain s
- Consumer module

Batch risk is computed using a dose-response model:

$$\Gamma = \sum_{s} N_s^{\text{colony}} \cdot Y_s^{\text{colony}} \tag{1}$$

$$R^{ ext{batch}} = \sum_{ ext{age}}^{s} g_{ ext{age}} \int_{\Gamma} P[ext{HUS}|\gamma, ext{age}] \cdot ext{p}(\gamma) d\gamma$$
 (2)

averaging over consumer age

Post-harvest module

Proportion of rejected batches is estimated using number of test sample $n_{\rm sample}$ given a test rate $p_{\rm test}^{\rm cheese}$

$$P^{\text{batch}} = P[\Gamma > 0] = 1 - \exp(-K \cdot n_{\text{sample}})$$

Quantities of Interest (QoI)

Several batches are simulated to estimate

•
$$R_{\text{avg}} = \mathbb{E}[R^{\text{batch}} \cdot (1 - P^{\text{batch}} \cdot p_{\text{test}}^{\text{cheese}})]$$

 $ullet P_{
m avg} = \mathbb{E}[P^{
m batch} \cdot p_{
m test}^{
m cheese}]$

QoIs are

- Relative risk: $f_1 = \frac{R_{\text{avg}}}{(1 P_{\text{avg}}) \cdot K_1}$, $(K_1$: baseline risk)
- Batch rejection rate: $f_2 = P_{\text{avg}}$

Multi-objective optimization

We consider the multi-objective optimization problem $\min_{x \in \mathbb{X}} f(x)$

where, $f = (f_1, f_2, ...)$

• The solution set ${\cal P}$ contains Pareto optimal points

$$\mathcal{P} = \{ x \in \mathbb{X} : \nexists x' \in \mathbb{X}, f(x') \prec f(x) \}$$

where $f' \prec f \implies f'_i \leq f_i, \forall i$, with at least one of the inequalities being strict

Pareto optimal points z_1 and z_2

• In a stochastic setting, we assume additive noise: for a given $x_i \in \mathbb{X}$, we observe $Z_i = f(x_i) + \varepsilon_i$, $\varepsilon_i \sim \mathcal{N}(0, \Sigma)$

PALS

Proposed by Zuluaga et al. (2013) and extended for the stochastic case by Barracosa et al. (2021).

- Initial design I_0 , n = 0, $\beta > 0$
- Step I $\forall x \in \mathbb{X}$, construct confidence rectangles

$$R_n(x) = \{ z \in \mathbb{R}^2_+ : R_n^-(x) \prec z \prec R_n^+(x) \}$$

using posterior means $\mu_{n,j}(x)$ and variances $\sigma_{n,j}^2(x)$

$$R_{n,j}^{\pm}(x) = \mu_{n,j}(x) \pm \beta^{1/2} \sigma_{n,j}(x)$$

based on I_n (indep. GP models for $f_i, j \in \{1, 2\}$)

- Step II Classify each $x \in \mathbb{X}$ into one of three classes
- Deemed Pareto optimal P_n :

$$P_n = \{x \in \mathbb{X} | \nexists x' \in \mathbb{X} \setminus \{x\}, R_n^-(x') \prec R_n^+(x)\}$$

- Non Pareto optimal N_n :

$$N_n = \{x \in \mathbb{X} | \exists x' \in \mathbb{X} \setminus \{x\}, R_n^+(x') \prec R_n^-(x)\}$$

- Unclassified $U_n = \mathbb{X} \setminus (P_n \cup N_n)$
- Step III Sample the next point of evaluation

$$X_{n+1} = \underset{x \in (U_n \cup P_n)}{\operatorname{arg \, max}} \|R_n^-(x) - R_n^+(x)\|_2$$

$$I_{n+1} = I_n \cup (X_{n+1}, Z_{n+1}), Z_{n+1} = f(X_{n+1}) + \varepsilon_{n+1}$$

• Increase n and Repeat I-III until $n \le n_{\max}$

PALS with quantiles

PALS is not directly suitable for our application:

- f_1 is not the expectation of a simulator output,
- we build a GP model for R_{avg} instead.

So, we propose using quantiles of QoI to construct confidence rectangles of coverage probability α

 $R_{n,j}^-(x) = q_{n,j}(\alpha/2)$ and $R_{n,j}^+(x) = q_{n,j}(1 - \alpha/2)$ with $q_{n,j}(.)$ being a posterior quantile of $f_i(x)$

Experimental results

- Minimizing f, given $p_{\text{test}}^{\text{milk}} = 1, p_{\text{test}}^{\text{cheese}} = 0.5$, w.r.t.
- $-n_{\text{sample}} \in \{1, 5, 10, 15, \cdots, 50\}$
- $-l^{\text{sort}} \in \{10, 12, 14, 16, 18, 20, 25, 30, 40, 50\}$
- True Pareto front: estimated using 5000 samples for each of 11×10 input pair
- -A GP regressor is used to smooth the predictions

(stripes corresponding diff. values of $l^{\rm sort}$)

- -Pareto optimal (green) and dominated points (red)
- Pareto front estimated using PALS
- $-|I_0| = 10, n_{\text{max}} = 30, \text{ samples/evaluation} = 200$

(integers denoting evaluation counts)

- With PALS using significantly less (40×200) budget, the user can provide the following insights
- -Points with $l^{\rm sort} > 12$ are dominated (red)
- $-l^{\text{sort}} \le 12$ remain unclassified (blue)

Future work

- Integrate milk loss as objective and $p_{
 m test}^{
 m milk}$, $p_{
 m test}^{
 m cheese}$ as design variables
- Take the correlation between outputs into account

References

- F. Perrin, F. Tenenhaus-Aziza, V. Michel, S. Miszczycha, N. Bel, and M. Sanaa. Quantitative risk assessment of haemolytic and uremic syndrome linked to O157:H7 and non-O157:H7 shiga-toxin producing escherichia coli strains in raw milk soft cheeses. *Risk Analysis*, 35(1):109–128, 2014.
- M. Zuluaga, G. Sergent, A. Krause, and M. Püschel. Active learning for multi-objective optimization. In *Proceedings of the 30th International Conference on Machine Learning*, pages 462–470. PMLR, 2013.
- B. Barracosa, J. Bect, H. Dutrieux Baraffe, J. Morin, J. Fournel, and E. Vazquez. Extension of the Pareto Active Learning method to multi-objective optimization for stochastic simulators. In *SIAM Conference on Computational Science and Engineering* (*CSE21*), Mar 2021.

This work is part of the ArtiSaneFood project (grant number: ANR-18-PRIM-0015) which is part of the PRIMA program supported by the European Union.

