A super Robinson–Schensted–Knuth correspondence with symmetry and the super Littlewood–Richardson rule - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

A super Robinson–Schensted–Knuth correspondence with symmetry and the super Littlewood–Richardson rule

Résumé

Robinson–Schensted–Knuth (RSK) correspondence is a bijective correspondence between two-rowed arrays of non-negative integers and pairs of same-shape semistandard tableaux. This correspondence satisfies the symmetry property, that is, exchanging the rows of a two-rowed array is equivalent to exchanging the positions of the corresponding pair of semistandard tableaux. In this article, we introduce a super analogue of the RSK correspondence for super tableaux over a signed alphabet using a super version of Schensted’s insertion algorithms. We give a geometrical interpretation of the super-RSK correspondence by a matrix-ball construction, showing the symmetry property in complete generality. We deduce a combinatorial version of the super Littlewood–Richardson rule on super Schur functions over a finite signed alphabet. Finally, we introduce the notion of super Littlewood–Richardson skew tableaux and we give another combinatorial interpretation of the super Littlewood–Richardson rule.
Fichier principal
Vignette du fichier
SuperRSK.pdf (704.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03710691 , version 1 (30-06-2022)
hal-03710691 , version 2 (29-09-2022)

Identifiants

  • HAL Id : hal-03710691 , version 2

Citer

Nohra Hage. A super Robinson–Schensted–Knuth correspondence with symmetry and the super Littlewood–Richardson rule. 2022. ⟨hal-03710691v2⟩

Collections

FGES
29 Consultations
138 Téléchargements

Partager

More