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A super Robinson–Schensted–Knuth
correspondence with symmetry and the super

Littlewood–Richardson rule

Nohra Hage

Abstract – Robinson–Schensted–Knuth (RSK) correspondence is a bijective correspondence be-
tween two-rowed arrays of non-negative integers and pairs of same-shape semistandard tableaux.
This correspondence satisfies the symmetry property, that is, exchanging the rows of a two-rowed
array is equivalent to exchanging the positions of the corresponding pair of semistandard tableaux.
In this article, we introduce a super analogue of the RSK correspondence for super tableaux over a
signed alphabet using a super version of Schensted’s insertion algorithms. We give a geometrical in-
terpretation of the super-RSK correspondence by a matrix-ball construction, showing the symmetry
property in complete generality. We deduce a combinatorial version of the super Littlewood–
Richardson rule on super Schur functions over a finite signed alphabet. Finally, we introduce the
notion of super Littlewood–Richardson skew tableaux and we give another combinatorial interpre-
tation of the super Littlewood–Richardson rule.
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1. Introduction

Schensted introduced in [27] a bijection between permutations over the totally ordered alpha-
bet [𝑛] := {1 < . . . < 𝑛} and pairs of same-shape standard Young tableaux over [𝑛] in order to
compute the length of the longest decreasing subsequence of a given permutation over [𝑛]. This
correspondence is described using Schensted’s insertion procedure that constructs a first standard
Young tableau by successively inserting the elements of the given permutation according to a
specific rule, while the second standard Young tableau records the evolution of the shape during
the insertion. This correspondence had been also described, in a rather different form, much
earlier by Robinson in [25] in an attempt to give a first correct proof of the Littlewood–Richardson
rule that provides an explicit combinatorial description for expressing a skew Schur function or a



1. Introduction

product of two Schur functions as a linear combination of Schur functions. This correspondence
is then referred to as the Robinson–Schensted (RS) correspondence. Knuth generalized in [18]
the RS correspondence to a bijection between two-rowed arrays of elements of [𝑛] and pairs
of same-shape semistandard Young tableaux over [𝑛]. Knuth’s bijection is also described using
Schensted’s insertion algorithm that constructs a first semistandard Young tableau by successively
inserting the elements of the second row of the given two-rowed array from left to right, while
the second semistandard Young tableau records the evolution of the shape during this insertion
using the elements of the first row of the two-rowed array. This bijection is then known as the
Robinson–Schensted–Knuth (RSK) correspondence. An essential property of this correspondence
is that it satisfies the symmetry property, that is, under the RSK correpondence, exchanging the
rows of a two-rowed array is equivalent to exchanging the positions of the corresponding pair of
semistandard Young tableaux, [18]. This property is also proved by Viennot in [33] for the RS cor-
respondence, and by Fulton in [9] for the RSK correspondence, using geometrical interpretations
of these correspondences. Since then, the RSK correspondence has found rich applications on
representation theory, algebraic combinatorics and probabilistic combinatorics, [8, 9, 17, 32], and
has found many generalizations on other structures of tableaux, [2, 3, 5, 24, 26, 30, 31].

Bonetti, Senato and Venezia introduced in [5] a super-RSK correspondence on super Young
tableaux over a signed alphabet using super Schensted’s right and left insertion. However, the
symmetry property holds only in special cases under this bijection as shown in [20]. A question
was to find a super-RSK correspondence satisfying the symmetry property in complete generality
and leading to the classical RSK correspondence as a particular case. Muth introduced in [24] a
super-RSK correspondence using Haiman’s mixed insertion algorithm on super Young tableaux
and proved that this correspondence satisfies the symmetry property in complete generality.
However, this correspondence is not related to the super plactic monoid of type A and to the
representations of the general linear Lie superalgebra, and then it does not yield to a combinatorial
description of the super Littlewood–Richardson rule. It is worth noting that Haiman’s mixed
insertion algorithm is used to define the shifted plactic monoid and allows to give a combinatorial
version of the shifted Littlewood–Richardson rule for shifted tableaux, [29]. We introduce in
this article a super version of the RSK correspondence on super Young tableaux that satisfies
the symmetry property in complete generality, using super Schensted’s insertion algorithms
and the super plactic monoid of type A. We deduce combinatorial descriptions of the super
Littlewood–Richardson rule for super Young tableaux over a finite signed alphabet.

Super plactic monoids, insertion and taquin. A signed alphabet is a finite or countable
totally ordered set S which is the disjoint union of two subsets S0 and S1. The super plactic
monoid P(S) over a signed alphabet S, is the quotient of the free monoid S∗ over S by the
congruence relation ∼P(S) generated by the following family of super Knuth relations, [20]:

𝑥𝑧𝑦 = 𝑧𝑥𝑦, with 𝑥 = 𝑦 only if 𝑦 ∈ S0 and 𝑦 = 𝑧 only if 𝑦 ∈ S1,

𝑦𝑥𝑧 = 𝑦𝑧𝑥, with 𝑥 = 𝑦 only if 𝑦 ∈ S1 and 𝑦 = 𝑧 only if 𝑦 ∈ S0,

for any 𝑥 ⩽ 𝑦 ⩽ 𝑧 of elements of S. When S = S0 = [𝑛], we recover the plactic monoid of
type A introduced by Lascoux and Schützenberger in [21], following the works of Schensted, [27],
and Knuth, [18], on the RSK correspondence. Plactic monoids have found several applications
in algebraic combinatorics, representation theory, probabilistic combinatorics and rewriting
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theory, [4, 6–9, 11–16, 19, 23]. When S = {𝑚 < . . . < 1 < 1 < . . . < 𝑛}, we recover the
reverse of the super Knuth relations obtained in [1] where the super plactic congruence is
described using Kashiwara’s theory of crystal bases for the representations of the general linear
Lie superalgebra 𝔤𝔩𝑚,𝑛 . It is worth noting that the super plactic monoid also appeared in [22] in the
study of the parastatistics algebra. Note finally that the super algebraic structures have been used
as combinatorial tools in the study of the invariant theory of superalgebras, the representation
theory of super algebras, and algebras satisfying identities, [2, 3, 5, 10].

A partition of a positive integer 𝑛 is a weakly decreasing sequence _ = (_1, . . . , _𝑘 ) ∈ Z𝑘>0
such that

∑
_𝑖 = 𝑛. The Young diagram of a partition _ = (_1, . . . , _𝑘 ) is the setY(_) of pairs (𝑖, 𝑗)

such that 1 ⩽ 𝑖 ⩽ 𝑘 and 1 ⩽ 𝑗 ⩽ _𝑖 , that can be represented by a diagram by drawing a box
for each pair (𝑖, 𝑗). The transposed diagram {( 𝑗, 𝑖)

�� (𝑖, 𝑗) ∈ Y(_)} defines another partition _̃,
called the conjugate partition of _. A super tableau of shape _ over S is a Young diagram of _
filled with elements of S such that the entries in each row are weakly increasing allowing the
repetition only of elements in S0 and the entries in each column are weakly increasing allowing
the repetition only of elements in S1. Denote by Yt(S) the set of all super tableaux over S. Note
that, when S = S0 and S = S1, we recover the notion of row-strict and column-strict tableaux,
respectively, [9]. Denote by R : Yt(S) → S∗ the column reading map that reads a super tableau
column-wise from bottom to top and from left to right. Super versions of Schensted left and right
insertion algorithms are introduced in [20] on super tableaux, and consist in inserting elements
of S into super tableaux by rows and columns, respectively. For any word𝑤 = 𝑥1 . . . 𝑥𝑘 over S, a
super tableau T(𝑤) is computed by inserting the letters of𝑤 iteratively from left to right using
the right insertion ⇝, and starting from the empty super tableau:

T(𝑤) := (∅ ⇝

𝑤) = ((. . . (∅ ⇝

𝑥1)

⇝

. . .) ⇝

𝑥𝑘 ) .

Two words over S are equivalent with respect to ∼P(S) if and only if they lead to the same
super tableau after insertion, [20]. This is the cross-section property of super tableaux with respect
to∼P(S) . We deduce that the internal product★Yt(S) defined on Yt(S) by 𝑡★Yt(S) 𝑡

′ := (𝑡 ⇝R(𝑡 ′)),
for all 𝑡 and 𝑡 ′ in Yt(S), is associative, and the monoids (Yt(S),★Yt(S) ) and P(S) are isomorphic.

Let _ and ` be partitions such that Y(`) is contained in Y(_). A super skew tableau of
shape _/` over S is a Young diagram of the following form

Y(_/`) :=
{
(𝑖, 𝑗)

�� 1 ⩽ 𝑖 ⩽ 𝑘, `𝑖 < 𝑗 ⩽ _𝑖
}

filled with elements of S such that the entries in each row are weakly increasing allowing the
repetition only of elements in S0 and the entries in each column are weakly increasing allowing
the repetition only of elements in S1. An inner corner of a super skew tableau of shape _/` is a box
in Y(`) such that the boxes below and to the right are not in Y(`), and an outer corner is a box
such that neither box below or to the right is in Y(_/`). Schützenberger introduced in [28] the
jeu de taquin procedure on Young tableaux in order to give a proof of the Littlewood–Richardson
rule using the properties of the plactic monoid of type A. We introduce in [13] the super jeu taquin
procedure on super tableaux that consists in moving inner corners from a super skew tableau into
outer corners by keeping the rows and the columns weakly increasing until no more inner corners
remain in the initial super skew tableau. We prove that the rectification of a super skew tableau 𝑆
by the super jeu de taquin is the unique super tableau whose reading is equivalent to the one of 𝑆
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with respect to ∼P(S) . We deduce that the resulting super tableau does not depend on the order in
which we choose inner corners. We also relate the super jeu de taquin to the insertion algorithms
and we show how we can insert a super tableau into another one by taquin. This interpretation of
the insertion product★Yt(S) by taquin allows us to give in Section 4 a combinatorial description of
the super Littlewood–Richardson coefficient. Moreover, we introduce in [13] the super analogue
of the Schützenberger’s evacuation procedure which transforms a super tableau 𝑡 over a signed
alphabet S into an opposite tableau 𝑡op, over the opposite alphabet obtained from S by reversing
its order. We show that the super tableaux 𝑡 and 𝑡op have the same shape and that the map 𝑡 ↦→ 𝑡op

is an involution on Yt(S) that is compatible with ∼P(S) . The super evacuation procedure allows
us to construct in Subsection 3.4 a dual version of the super-RSK correspondence using the left
insertion algorithm on super tableaux.

Organization and main results of the article

We begin by recalling in Section 2 the notions of super Young tableaux, the super plactic monoid
and the super jeu de taquin from [13, 20]. Moreover, we give a super version of the Robinson–
Schensted correspondence for super tableaux over a signed alphabet.

A super-RSK correspondencewith symmetry. We introduce in Subsection 3.1 a super version
of the RSK correspondence over a signed alphabet. Let S and S′ be signed alphabets. A signed
two-rowed array 𝑤 on S and S′ is a 2 × 𝑘 matrix

𝑤 :=
(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
with 𝑥𝑖 in S and 𝑦𝑖 in S′, for all 𝑖 = 1, . . . , 𝑘 , that satisfies Conditions (6) and (7). Starting
from a signed two-rowed array𝑤 on S and S′, Algorithm 3.1.1 computes a pair of same-shape
super tableaux (T(𝑤),Q(𝑤)) whose entries are the ones of the second and the first row of 𝑤 ,
respectively. More precisely, the super tableau T(𝑤) is equal to T(𝑦1 . . . 𝑦𝑘 ), and Q(𝑤) is the
super tableau obtained by successively adding 𝑥1, . . . , 𝑥𝑘 in the same places as the boxes added
when computing T(𝑤) starting from an empty super tableau. Moreover, Algorithm 3.1.3 allows
us to recover the initial signed two-rowed array 𝑤 starting from the same-shape pair of super
tableaux (T(𝑤),Q(𝑤)). This sets up a one-to-one correspondence between signed two-rowed
arrays and pairs of same-shape super tableaux on S and S′, that we denote by

sRSK : 𝑤 ↦→ (T(𝑤),Q(𝑤)) .

Hence, we obtain the following first main result of the article:

Theorem 3.1.5[Super-RSK correspondence]. Let S and S′ be signed alphabets.
The map sRSK defines a one-to-one correspondence between signed two-rowed arrays
and pairs of super tableaux on S and S′, such that for any signed two-rowed array𝑤
on S and S′, we have that T(𝑤) andQ(𝑤) are same-shape super tableaux whose entries
are the ones of the second and the first row of𝑤 , respectively.
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Using amatrix-ball construction, we show in Subsection 3.2 that the super-RSK correspondence
satisfies the symmetry property in complete generality. Let𝑤 be a signed two-rowed array on
signed alphabets S and S′. The inverse of𝑤 , denoted by𝑤 inv, is the signed two-rowed array on S′
and S obtained from𝑤 by exchanging the rows of𝑤 , and by sorting the new couples on S′×S
according to Conditions (6) and (7). The signed two-rowed array𝑤 has symmetry with respect to
the map sRSK if it satisfies the following property:

if sRSK(𝑤) = (T(𝑤),Q(𝑤)) then sRSK(𝑤 inv) = (Q(𝑤),T(𝑤)) .

A signed ball array on signed alphabets S and S′ is a rectangular array of balls filled with positive
integers, whose rows and columns are indexed with elements of S and S′, respectively, allowing
the repetition only of elements in S1 and S′1, respectively, and where many balls can occur in
the same position. We show in 3.2.1 how to correspond to each signed two-rowed array𝑤 on S
and S′, a signed ball array, denoted by Ba(𝑤), whose rows and columns are indexed with the
elements of the first and second row of𝑤 , respectively, from the smaller to the bigger one, and
where only the indices from S1 and S′1 are repeated as many times as they appear in 𝑤 . First,
we associate to each couple in 𝑤 a ball in an empty signed ball array and then we order and
number these balls with positive integers. Secondly, we add new balls to the given signed ball
array, we order and number them and we repeat the same procedure until no more balls can
be added. This geometrical construction allows us to prove the symmetry property using the
symmetry of the resulting signed ball array Ba(𝑤). More precisely, we denote by T(Ba(𝑤))
and Q(Ba(𝑤)) the super tableau obtained from Ba(𝑤) whose 𝑘-th row lists the indices of the
leftmost columns and top-most rows, respectively, where each integer number occurs in the
new added balls. Proposition 3.2.3 shows that (T(Ba(𝑤)),Q(Ba(𝑤))) = (T(𝑤),Q(𝑤)). Since the
matrix-ball construction is symmetric in the rows and columns of the resulting signed ball array,
we deduce the following result:

Theorem 3.1.10[Symmetry of the super-RSK correspondence]. Let S and S′
be signed alphabets. All signed two-rowed arrays on S and S′ have symmetry with
respect to the super-RSK correspondence map sRSK.

We end Subsection 3.4 by giving a dual way to construct the pair of super tableaux correspond-
ing to a signed two-rowed array with respect to the map sRSK using the left insertion algorithm
and the super evacuation procedure on super tableaux.

The super Littlewood–Richardson rule. We give in Section 4 a combinatorial interpretation
of the super Littlewood–Richardson rule using the super-RSK correspondence. Let _, ` and a be
partitions such thatY(_) is contained inY(a) and let S be a finite signed alphabet. We show that
the number 𝑐a

_,`
of ways a given super tableau 𝑡 of shape a over S can be written as the product

of a super tableau 𝑡 ′ of shape _ and a super tableau 𝑡 ′′ of shape ` over S, does not depend on 𝑡 ,
and depends only on the partitions _, ` and a . Moreover, we show that 𝑐a

_,`
is equal to the number

of super skew tableaux of shape a/_ whose rectification is a given tableau of shape `. Hence, we
obtain the following result:

5
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Theorem 4.2.1[The super Littlewood–Richardson rule]. Let _, ` and a be
partitions such that Y(_) is contained in Y(a). The following identities

𝑆_𝑆` =
∑︁
a

𝑐a
_,`
𝑆a and 𝑆a/_ =

∑̀︁
𝑐a
_,`
𝑆`

hold in the tableau Z-algebra rising from P(S), where 𝑆a/_ , 𝑆_ , 𝑆` and 𝑆a denote
respectively the formal sum of all super tableaux of shape a/_, _, ` and a over a finite
signed alphabet S.

We suppose finally that S1 = [𝑛] and S0 = {𝑚 < . . . < 1} with 1 < 1. Let 𝑤 be in S∗. We
denote by |𝑤 |𝑖 the number of times the element 𝑖 of S appears in𝑤 , and by |𝑤 | the number of
elements of S1 that appear in𝑤 such that each element is counted only once. The weight of𝑤 is
the following (𝑛 +𝑚)-uplet

wt(𝑤) := ( |𝑤 |𝑚, . . . , |𝑤 |1, |𝑤 |1, . . . , |𝑤 |𝑛).

The word 𝑤 is a super Yamanouchi word if for every right subword 𝑤 ′ of 𝑤 , the following
property |𝑤 ′ |𝑚 ⩾ . . . ⩾ |𝑤 ′ |2 ⩾ |𝑤 ′ |1 ⩾ |𝑤 ′ | holds, and for every left subword 𝑤 ′ of 𝑤 , the
following property |𝑤 ′ |1 ⩾ |𝑤 ′ |2 ⩾ . . . ⩾ |𝑤 ′ |𝑛 holds. We call wt(R(𝑆)) the weight of a super
skew tableau 𝑆 over S, and when R(𝑆) is a super Yamanouchi word, we call 𝑆 a super Littlewood–
Richardson skew tableau. For any partition ` ∈ Z𝑘>0, define the (𝑛+𝑚)-uplet ˇ̀ := (`1, ˜̀2), where `1
is the partition formed by the first𝑚 parts of ` and `2 is the partition formed by its last 𝑘 −𝑚
parts, such that if𝑚 ⩽ 𝑘 < 𝑚 + 𝑛 then the last (𝑚 + 𝑛) − 𝑘 parts of `2 are zero and if 𝑘 < 𝑚

then the last𝑚 − 𝑘 parts of `1 are zero and all the parts of `2 are zero. Using the super plactic
congruence and following Theorem 4.2.1, we deduce the following result:

Theorem 4.3.5. Let _, ` and a be partitions such that Y(_) is contained in Y(a). The
super Littlewood–Richardson coefficient 𝑐a

_,`
is equal to the number of super Littlewood–

Richardson skew tableaux of shape a/_ and of weight ˇ̀.

This theorem allows us to compute the super Littlewood–Richardson coefficient 𝑐a
_,`

using a
new combinatorial method as shown in Example 4.3.6.

Notation. We denote by A∗ the free monoid of words over a totally ordered alphabet A, the
product being concatenation of words and the identity being the empty word, and by #A the
cardinal number of A when it is finite. For any word𝑤 in A∗, the length of𝑤 is denoted by |𝑤 |.
For any 𝑖 ⩽ 𝑗 , a subword of a word 𝑤 = 𝑥1 . . . 𝑥𝑘 in A∗ is a word 𝑤 ′ = 𝑥𝑖 . . . 𝑥 𝑗 made up of
consecutive letters of𝑤 . We denote by [𝑛] the ordered set {1 < 2 < . . . < 𝑛} for 𝑛 in Z>0. Let S be
a finite or countable totally ordered set and | |.| | : S → Z2 be any map, where Z2 = {0, 1} denotes
the additive cyclic group of order 2. We call the ordered pair (S, | |.| |) a signed alphabet and the
map | |.| | the signature map of S. We denote S0 = {𝑎 ∈ S

�� | |𝑎 | | = 0} and S1 = {𝑎 ∈ S
�� | |𝑎 | | = 1}.

A monoidM is a Z2-graded monoid or a supermonoid if a map | |.| | : M→ Z2 is given such that
| |𝑢.𝑣 | | = | |𝑢 | | + | |𝑣 | |, for all 𝑢, 𝑣 inM. We call | |𝑢 | | the Z2-degree of 𝑢. The free monoid S∗ over S
is Z2-graded by considering | |𝑤 | | := | |𝑥1 | | + . . . + ||𝑥𝑘 | |, for any𝑤 = 𝑥1 . . . 𝑥𝑘 in S∗. In the rest of
this article, and if there is no possible confusion, S denotes a signed alphabet.
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2. The super plactic monoid of type A

2. The super plactic monoid of type A

In this section, we recall the notions of super Young tableaux, the super plactic monoid and the
super jeu de taquin from [13, 20]. Moreover, we give a super version of the Robinson–Schensted
correspondence for super tableaux over a signed alphabet.

2.1. Super Young tableaux. Let 𝑛 be a positive integer. A partition of 𝑛 is a weakly decreasing
sequence _ = (_1, . . . , _𝑘 ) in Z𝑘>0 such that

∑
_𝑖 = 𝑛. We call the integer 𝑘 number of parts or height

of _. We denote by P𝑛 the set of partitions of 𝑛 and we set P =
⋃P𝑛
𝑛∈Z>0

. The (Ferrers)–Young diagram

of a partition _ = (_1, . . . , _𝑘 ) of 𝑛, denoted by Y(_), is the set of pairs (𝑖, 𝑗) such that 1 ⩽ 𝑖 ⩽ 𝑘

and 1 ⩽ 𝑗 ⩽ _𝑖 , that can be represented by a diagram by drawing a box for each pair (𝑖, 𝑗). For
instance, the Young diagram Y((4, 3, 1, 1)) is represented by the following diagram:

.

Let _ be in P. The conjugate partition of _, denoted by _̃, is the partition corresponding to the
transposed diagram {( 𝑗, 𝑖)

�� (𝑖, 𝑗) ∈ Y(_)}, whose parts are the number of boxes of the columns
of Y(_). A super semistandard Young tableau, or super tableau for short, of shape _ over S, is a
pair 𝑡 := (_,T), where T : Y(_) → S is a map satisfying the following conditions:

T (𝑖, 𝑗) ⩽ T (𝑖, 𝑗 + 1), with T (𝑖, 𝑗) = T (𝑖, 𝑗 + 1) only if | | T (𝑖, 𝑗) | | = 0,
T (𝑖, 𝑗) ⩽ T (𝑖 + 1, 𝑗), with T (𝑖, 𝑗) = T (𝑖 + 1, 𝑗) only if | | T (𝑖, 𝑗) | | = 1. (1)

We callY(_) and T the frame and the filling of 𝑡 , respectively. We call 𝑡 a standard tableau over S
if T is injective. We denote by ∅ the empty super tableau, by Ys(S) the set of all standard tableaux,
and by Yt(S) (resp. Yt(S, _)) the set of all super tableaux (resp. of shape _) over S.

Let _ and ` be in P of heights 𝑘 and 𝑙 , respectively, such that 𝑙 ⩽ 𝑘 . We denote ` ⊆ _ if `𝑖 ⩽ _𝑖
for any 𝑖 , that is, the Young diagram of ` is contained in that of _, and we call the following set

Y(_/`) :=
{
(𝑖, 𝑗)

�� 1 ⩽ 𝑖 ⩽ 𝑘, `𝑖 < 𝑗 ⩽ _𝑖
}

a skew diagram _/` or a skew shape. We denote _/0 := _ the skew shape corresponding to the
Young diagram Y(_). Let _/` be a skew shape. A super semistandard skew tableau, or super skew
tableau for short, of shape _/` over S, is a pair 𝑆 := (_/`,U), whereU : Y(_/`) → S is a map
satisfying the conditions (1). We call Y(_/`) andU the frame and the filling of 𝑆 , respectively.
We denote by St(S) (resp. St(S, _/`)) the set of all super skew tableaux (resp. of shape _/`)
over S. Note that we will identify the set Yt(S, _) with the set St(S, _/0). Let 𝑆 be in St(S, _/`).
If 𝑆 is not a super tableau, then it has at least an inner corner, that is, a box in Y(`) such that the
boxes below and to the right are not in Y(`). An outer corner of 𝑆 is a box such that neither box
below or to the right is in Y(_/`). Note that, in some cases, inner corners of 𝑆 are also outer
corners of it. We denote by R : St(S) → S∗ the column reading map that reads a super tableau
column-wise from bottom to top and from left to right.
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2. The super plactic monoid of type A

Example 2.1.1. Consider the alphabet S = Z>0 with signature given by S0 the set of even
numbers andS1 defined consequently. The following diagram is a super tableau of shape (3, 2, 2, 1)
over S:

𝑡 =

1 2 3
1 3
2 4
4

with R(𝑡) = 42114323.
(2)

The following diagram is a super skew tableau of shape (6, 4, 2, 2, 1, 1)/(3, 2, 2, 1) over S :

𝑆 =

1 2 3
1 3

4
2
4

with R(𝑆) = 42413123,
(3)

where the empty blue box and the blue one filled with 3 denote respectively an inner corner and
an outer corner of 𝑆 .

2.2. A super Robinson–Schensted correspondence. From a super tableau we can obtain a
word over S by taking its column reading. The following algorithm will allow us to invert this
process and obtain a super tableau from any word over S.

Algorithm 2.2.1 ([20]). The right (or row) insertion, denoted by ⇝, inserts an element 𝑥 in S
into a super tableau 𝑡 of Yt(S) as follows:

Input: A super tableau 𝑡 and a letter 𝑥 ∈ S.
Output: A super tableau 𝑡 ⇝

𝑥 .
Method: If 𝑡 is empty, create a box and fill it with 𝑥 . Suppose 𝑡 is non-empty. If 𝑥 ∈ S0

(resp. 𝑥 ∈ S1) is at least as large as (resp. larger than) the last element of the top row of 𝑡 , then
put 𝑥 in a box to the right of this row; otherwise let 𝑦 be the smallest element of the top row of 𝑡
such that 𝑦 > 𝑥 (resp. 𝑦 ⩾ 𝑥). Then replace 𝑦 by 𝑥 in this row and recursively insert 𝑦 into the
super tableau formed by the rows of 𝑡 below the topmost. Note that this recursion may end with
an insertion into an empty row below the existing rows of 𝑡 . Output the resulting super tableau.

For any word𝑤 = 𝑥1 . . . 𝑥𝑘 over S, a super tableau T(𝑤) is computed from𝑤 by inserting its
letters iteratively from left to right starting from the empty super tableau, as follows:

T(𝑤) := (∅ ⇝

𝑤) = ((. . . (∅ ⇝

𝑥1)

⇝

. . .) ⇝

𝑥𝑘 ) .

Note that, for any 𝑡 in Yt(S), the equality T(R(𝑡)) = 𝑡 holds, [20].

Lemma 2.2.2 (Row-bumping lemma, [20]). Let 𝑡 be in Yt(S) and 𝑥, 𝑥 ′ be in S. Consider the
position (𝑖, 𝑗) (resp. (𝑖 ′, 𝑗 ′)) of the new box added to the frame of 𝑡 (resp. (𝑡 ⇝

𝑥)) after comput-
ing (𝑡 ⇝

𝑥) (resp. ((𝑡 ⇝

𝑥) ⇝

𝑥 ′)). The following conditions are equivalent:

i) 𝑥 ⩽ 𝑥 ′, with 𝑥 = 𝑥 ′ only if | |𝑥 | | = 0,

ii) 𝑗 < 𝑗 ′ and 𝑖 ⩾ 𝑖 ′.

8



2.2. A super Robinson–Schensted correspondence

Algorithm2.2.3. Let𝑤 be inS. When computing the super tableauT(𝑤), a standard tableauQ(𝑤)
over [𝑛] can be also computed as follows:

Input: A word 𝑥1 . . . 𝑥𝑘 over S.
Output: A super tableau T(𝑥1 . . . 𝑥𝑘 ) over S and a standard tableau Q(𝑥1 . . . 𝑥𝑘 ) over [𝑛].
Method: Start with an empty super tableau 𝑇0 and an empty standard tableau 𝑄0. For each

𝑖 = 1, . . . , 𝑘 , compute𝑇𝑖−1

⇝

𝑥𝑖 as per Algorithm 2.2.1; let𝑇𝑖 be the resulting super tableau. Add a
box filled with 𝑖 to the standard tableau𝑄𝑖−1 in the same place as the box that belongs to𝑇𝑖 but not
to 𝑇𝑖−1; let 𝑄𝑖 be the resulting standard tableau. Output 𝑇𝑘 for T(𝑥1 . . . 𝑥𝑘 ) and 𝑄𝑘 as Q(𝑥1 . . . 𝑥𝑘 ).

Example 2.2.4. For instance, consider the alphabet S = {1, 2, 3, 4, 5, 6} with signature given
by S0 = {1, 3, 4} and S1 defined consequently. The sequence of pairs produced during the
computation of T(𝑤) and Q(𝑤) starting from the word𝑤 = 2421456356431541 is

(
∅ , ∅

)
,
( 2 , 1 )

,
( 2 4 , 1 2 )

,

( 2 4
2 ,

1 2
3

)
,

( 1 4
2
2

,
1 2
3
4

)
,

( 1 4 4
2
2

,
1 2 5
3
4

)
,

( 1 4 4 5
2
2

,
1 2 5 6
3
4

)
,

( 1 4 4 5 6
2
2

,
1 2 5 6 7
3
4

)
,

(
1 3 4 5 6
2 4
2

,
1 2 5 6 7
3 8
4

)
,(

1 3 4 5 6
2 4 5
2

,
1 2 5 6 7
3 8 9
4

)
,

(
1 3 4 5 6
2 4 5 6
2

,
1 2 5 6 7
3 8 9 10
4

)
,

(
1 3 4 4 6
2 4 5 6
2 5

,
1 2 5 6 7
3 8 9 10
4 11

)
,

(
1 3 3 4 6
2 4 4 6
2 5
5

,
1 2 5 6 7
3 8 9 10
4 11
12

)
,

(
1 1 3 4 6
2 3 4 6
2 4
5
5

,
1 2 5 6 7
3 8 9 10
4 11
12
13

)
,

( 1 1 3 4 5
2 3 4 6
2 4 6
5
5

,

1 2 5 6 7
3 8 9 10
4 1114
12
13

)
,

( 1 1 3 4 4
2 3 4 5
2 4 6
5 6
5

,

1 2 5 6 7
3 8 9 10
4 1114
1215
13

)
,

(
T(𝑤) =

1 1 1 4 4
2 3 3 5
2 4 4
5 6
5 6

, Q(𝑤) =

1 2 5 6 7
3 8 9 10
4 1114
1215
1316

)
.

Algorithm 2.2.5 ([20]). Let 𝑡 be in Yt(S) and 𝑥 in S. Starting with the super tableau 𝑡

⇝

𝑥 ,
together with the outer corner that has been added to the frame of 𝑡 after insertion, we can recover
the original tableau 𝑡 and the element 𝑥 as follows:

Input: A super tableau 𝑡 and an outer corner of 𝑡 .
Output: A super tableau 𝑡 ′ and a letter 𝑥 ∈ S.
Method: Suppose that 𝑦 ∈ S0 (resp. 𝑦 ∈ S1) is the entry in the outer corner of 𝑡 . Find in the

row above this outer corner the entry farthest to the right which is strictly smaller (resp. smaller)
than 𝑦. Then this entry is replaced by 𝑦 and it is bumped up to the next row where the process is

9



2. The super plactic monoid of type A

repeated until an entry is bumped out of the top row. Output the resulting super tableau for 𝑡 ′
and the last element which is bumped out for 𝑥 .

Algorithm 2.2.6. Let𝑤 be in S. Starting from the pair of super tableaux (T(𝑤),Q(𝑤)) obtained
by Algorithm 2.2.3 we can recover the initial word𝑤 as follows:

Input: A pair (𝑇,𝑄) ∈ Yt(S) × Ys( [𝑛]) of same-shape super tableaux containing 𝑘 boxes.
Output: A word 𝑥1 . . . 𝑥𝑘 over S.
Method: Start with 𝑇𝑘 = 𝑇 and 𝑄𝑘 = 𝑄 . For each 𝑖 = 𝑘 − 1, . . . , 1, take the box filled with 𝑖 + 1

in 𝑄𝑖+1, and apply Algorithm 2.2.5 to 𝑇𝑖+1 with the outer corner corresponding to that box. The
resulting tableau is𝑇𝑖 , and the element that is bumped out of the top row of𝑇𝑖+1 is denoted by 𝑥𝑖+1.
Remove the box containing 𝑖 +1 from𝑄𝑖+1 and denote the resulting standard tableau by𝑄𝑖 . Output
the word 𝑥1 . . . 𝑥𝑘 .

This sets up a one-to-one correspondence between words over S and pairs of same-shape
tableaux (𝑇,𝑄) in Yt(S) × Ys( [𝑛]):

Proposition 2.2.7. The map 𝑤 ↦→ (T(𝑤),Q(𝑤)) defines a bijection between words over S and
pairs consisting of a super tableau over S and a standard tableau over [𝑛] of the same shape.

This is the super version of the Robinson–Schensted correspondence between words over [𝑛] and
pairs consisting of a semistandard tableau and a standard tableau over [𝑛] of the same shape, [9].

2.3. The super plactic monoid of type A. The super plactic monoid over S is the monoid,
denoted by P(S), generated by the set S and subject to the following family of super Knuth
relations, [20]:

𝑥𝑧𝑦 = 𝑧𝑥𝑦, with 𝑥 = 𝑦 only if | |𝑦 | | = 0 and 𝑦 = 𝑧 only if | |𝑦 | | = 1,
𝑦𝑥𝑧 = 𝑦𝑧𝑥, with 𝑥 = 𝑦 only if | |𝑦 | | = 1 and 𝑦 = 𝑧 only if | |𝑦 | | = 0, (4)

for any 𝑥 ⩽ 𝑦 ⩽ 𝑧 of elements of S. The congruence generated by the relations (4), is denoted
by ∼P(S) , and called the super plactic congruence. Two words over S are super plactic equivalent if
one can be transformed into the other with respect ∼P(S) . For instance, consider the readings of
the super tableau 𝑡 presented in (2) and the super skew tableau 𝑆 presented in (3), we have

R(𝑡) = 42114323 ∼P(S) 42141323 ∼P(S) 42411323 ∼P(S) 42413123 = R(𝑆) . (5)

Since the relations (4) are Z2-homogeneous, the monoid P(S) is a supermonoid. For any 𝑤

in S∗, we have𝑤 ∼P(S) R(T(𝑤)), [13]. Moreover, the set Yt(S) satisfies the cross-section property
for ∼P(S) , that is:

Property 2.3.1 ([20]). For all𝑤 and𝑤 ′ in S∗, we have𝑤 ∼P(S) 𝑤 ′ if and only if T(𝑤) = T(𝑤 ′).

We define an internal product ★Yt(S) on Yt(S) by setting 𝑡 ★Yt(S) 𝑡
′ := (𝑡 ⇝R(𝑡 ′)), for

all 𝑡, 𝑡 ′ in Yt(S). By definition the relations 𝑡 ★Yt(S) ∅ = 𝑡 and ∅ ★Yt(S) 𝑡 = 𝑡 hold, showing that
the product ★Yt(S) is unitary with respect to ∅. Following Property 2.3.1, we deduce that the
product ★Yt(S) is associative and the monoids (Yt(S),★Yt(S) ) and P(S) are isomorphic.
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2.4. The super jeu de taquin

Lemma 2.3.2. Let𝑤 and 𝑣 be two words over S and let𝑤 ′ and 𝑣 ′ be the words obtained respectively
from𝑤 and 𝑣 after removing the 𝑖 largest and the 𝑗 smallest letters for any 𝑖 and 𝑗 . If𝑤 and 𝑣 are
super plactic equivalent, then𝑤 ′ and 𝑣 ′ are so.

Proof. It is sufficient by induction to prove that the words obtained by removing the largest or the
smallest letters from𝑤 and 𝑣 are super plactic equivalent. We prove the case of the largest, the
other being similar. Suppose that𝑤 = 𝑢𝑥𝑧𝑦𝑢 ′ and 𝑣 = 𝑢𝑧𝑥𝑦𝑢 ′ (resp.𝑤 = 𝑢𝑦𝑥𝑧𝑢 ′ and 𝑣 = 𝑢𝑦𝑧𝑥𝑢 ′)
for all 𝑢,𝑢 ′ in S∗ such that 𝑥 ⩽ 𝑦 ⩽ 𝑧 in S with 𝑥 = 𝑦 only if | |𝑦 | | = 0 (resp. | |𝑦 | | = 1) and 𝑦 = 𝑧

only if | |𝑦 | | = 1 (resp. | |𝑦 | | = 0). We consider two cases depending on whether or not the element
that is removed from 𝑤 and 𝑣 is one of the letters 𝑥 , 𝑦, or 𝑧. If this element is not one of these
letters, then the resulting words are obviously super plactic equivalent. Otherwise, the removed
letter must be the letter 𝑧 and then the resulting words are equal, showing the claim. □

2.4. The super jeu de taquin. We recall from [13] the super jeu de taquin procedure which
transforms super skew tableaux into super tableaux over S as follows. A forward sliding is a
sequence of the following sliding operations:

𝑦
𝑥

→ 𝑥 𝑦 , for any 𝑥 ⩽ 𝑦 with 𝑥 = 𝑦 only if | |𝑥 | | = 0,

𝑥
𝑦

→ 𝑥
𝑦

, for any 𝑥 ⩽ 𝑦 with 𝑥 = 𝑦 only if | |𝑥 | | = 1,

𝑥
→ 𝑥 , 𝑥 → 𝑥 , → , for any 𝑥,

starting from a super skew tableau and one of its inner corners, and moving the empty box until
it becomes an outer corner. The super jeu de taquin on a super skew tableau 𝑆 consists in applying
successively the forward sliding algorithm starting from 𝑆 until we obtain a super tableau, denoted
by Rect(𝑆), and called the rectification of 𝑆 , [13]. Two super skew tableaux are super jeu de taquin
equivalent if one can be obtained from the other by a sequence of sliding operations. We show
that if two super skew tableaux are super jeu de taquin equivalent, then their reading words are
super plactic equivalent, [13]. Moreover, we show the following property:

Property 2.4.1 ([13]). For all 𝑆, 𝑆 ′ ∈ St(S), Rect(𝑆) = Rect(𝑆 ′) if and only if R(𝑆) ∼P(S) R(𝑆 ′).

We deduce that starting with a given super skew tableau, all choices of inner corners lead to
the same rectified super tableau, [13]. This is the confluence property of the super jeu de taquin.

Example 2.4.2. For instance, the super jeu de taquin on the super skew tableau 𝑆 in (3) applies
eight occurrences of forward sliding:

𝑆 =

1 2 3
1 3

4
2
4

→
1 2 3

1 3
4

2
4

;
1 2 3

1 3
4

2
4

→
1 2 3

1 3
4

2

4

→
1 2 3

1 3
4

2
4

;

11



2. The super plactic monoid of type A

1 2 3
1 3

4
2
4

→
1 2 3

1 3
2 4

4

→
1 2 3

1 3
2 4
4

;

1 2 3
1 3

2 4
4

→
1 2 3

1 3
2 4
4

→
1 2 3

1 3
2 4
4

;

1 2 3
1 3

2 4
4

→
1 2 3

1 3
2 4
4

→
1 2 3

1 3
2 4
4

→
1 2 3

1 3
2 4
4

;

1 2 3
1 3

2 4
4

→
1 2 3
1 3

2 4
4

→
1 2 3
1 3

2 4
4

→
1 2 3
1 3

2 4
4

;

1 2 3
1 3

2 4
4

→
1 2 3

1 3
2 4
4

→
1 2 3

1 3
2 4
4

;

1 2 3
1 3
2 4
4

→
1 2 3
1 3
2 4
4

→
1 2 3
1 3
2 4
4

→
1 2 3
1 3
2 4
4

= Rect(𝑆)

with R(𝑆) = 42413123 ∼P(S) 42114323 = R(Rect(𝑆)), as shown in (5).

2.4.3. The reverse sliding. A reverse sliding is a sequence of the following reverse sliding
operations, [13]:

𝑦
𝑥

→
𝑥 𝑦

, for any 𝑥 ⩽ 𝑦 with 𝑥 = 𝑦 only if | |𝑥 | | = 0,

𝑥
𝑦

→ 𝑥
𝑦
, for any 𝑥 ⩽ 𝑦 with 𝑥 = 𝑦 only if | |𝑥 | | = 1,

𝑥 →
𝑥
,

𝑥
→

𝑥
, → , for any 𝑥,

starting from a super skew tableau and one of its empty outer corners, and moving this box until
it becomes an inner corner. Starting from the resulting super skew tableau of a forward sliding,
together with the outer corner that was removed, and by applying the reverse sliding, we recover
the initial super skew tableau with the chosen inner corner.
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3. A super-RSK correspondence with symmetry

2.4.4. Super jeu de taquin and insertion. Let 𝑆 and 𝑆 ′ be super skew tableaux in St(S) of
shape (_1, . . . , _𝑘 )/(_′1, . . . , _′𝑘′) and (`1, . . . , `𝑙 )/(` ′1, . . . , ` ′𝑙 ′), respectively. We denote by [𝑆, 𝑆 ′]
the super skew tableau of shape

(`1 + _1, . . . , `𝑙 + _1, _1, . . . , _𝑘 )/(` ′1 + _1, . . . , `
′
𝑙 ′ + _1, _1, . . . , _1, _

′
1, . . . , _

′
𝑘′),

obtained by concatenating 𝑆 ′ over 𝑆 , as illustrated in the following diagram:

[𝑆, 𝑆 ′] =
𝑆 ′

𝑆

.

We define the insertion product ★St(S) : St(S) × St(S) → Yt(S) by setting 𝑆 ★St(S) 𝑆
′ :=

(∅ ⇝R(𝑆)R(𝑆 ′)), for all 𝑆, 𝑆 ′ in St(S). This insertion product satisfies the following equal-
ity 𝑆 ★St(S) 𝑆

′ = Rect( [𝑆, 𝑆 ′]) in Yt(S), for all 𝑆, 𝑆 ′ in St(S), [13].

3. A super-RSK correspondence with symmetry

In this section, we introduce a super version of the RSK correspondence over a signed version.
Using a matrix-ball interpretation, we show that this correspondence satisfies the symmetry
property in complete generality.

3.1. A super-RSK correspondence. Let (S, | |.| |1) and (S′, | |.| |2) be signed alphabets. We define
an alphabet structure on the product set S ×S′ by considering the following order < defined by

(𝑥1, 𝑦1) < (𝑥2, 𝑦2) if 𝑥1 < 𝑥2 or
{
𝑥1 = 𝑥2 ∈ S0 and 𝑦1 < 𝑦2
𝑥1 = 𝑥2 ∈ S1 and 𝑦2 < 𝑦1.

(6)

Moreover, the signature map | |.| | : S ×S′ → Z2 is defined by | | (𝑥,𝑦) | | = | |𝑥 | |1 + ||𝑦 | |2. From
now on, and if there is no possible confusion, we will denote by | |.| | the signature maps of S, S′
and S ×S′. A signed two-rowed array on the alphabets S and S′ is a 2 × 𝑘 matrix(

𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
with 𝑥𝑖 ∈ S and 𝑦𝑖 ∈ S′, for all 𝑖 = 1, . . . , 𝑘 , such that the following condition holds:

(𝑥𝑖 , 𝑦𝑖) ⩽ (𝑥𝑖+1, 𝑦𝑖+1), and (𝑥𝑖 , 𝑦𝑖) = (𝑥𝑖+1, 𝑦𝑖+1) only if | | (𝑥𝑖 , 𝑦𝑖) | | = 0. (7)

Algorithm 3.1.1. Let S and S′ be signed alphabets. Starting from a signed two-rowed array𝑤
on S and S′, we compute a pair of same-shape super tableaux (T(𝑤),Q(𝑤)) whose entries are
the ones of the second and the first row of𝑤 , respectively, as follows:

Input: A signed two-rowed array𝑤 =

(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
on S and S′.
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3. A super-RSK correspondence with symmetry

Output: A pair (T(𝑤),Q(𝑤)) ∈ Yt(S′) × Yt(S) of same-shape super tableaux with 𝑘 boxes.
Method: Start with an empty super tableau 𝑇0 and an empty super tableau 𝑄0. For each

𝑖 = 1, . . . , 𝑘 , compute 𝑇𝑖−1

⇝

𝑦𝑖 as per Algorithm 2.2.1 and let 𝑇𝑖 be the resulting super tableau.
Add a box filled with 𝑥𝑖 to the super tableau 𝑄𝑖−1 in the same place as the box that belongs to 𝑇𝑖
but not to 𝑇𝑖−1; let 𝑄𝑖 be the resulting super tableau. Output 𝑇𝑘 for T(𝑤) and 𝑄𝑘 as Q(𝑤).

Proposition 3.1.2. Algorithm 3.1.1 always halts with the correct output.

Proof. By construction, we have that T(𝑤) is a super tableau over S′ since it is equal to the super
tableau T(𝑦1 . . . 𝑦𝑘 ). We still have to show that Q(𝑤) is a super tableau over S. It is sufficient
to show by induction that each Q𝑖 , for 𝑖 = 1, . . . , 𝑘 , is a super tableau over S. By definition of
the signed two-rowed array, if 𝑥𝑖 ∈ S0 is placed to the right of (resp. under or to the right of)
an entry 𝑥𝑙 ∈ S0 (resp. 𝑥𝑙 ∈ S1) in 𝑄𝑖−1, then 𝑥𝑖 is larger (resp. strictly larger) than 𝑥𝑙 . Similarly,
if 𝑥𝑖 ∈ S1 is placed under (resp. under or to the right of) an entry 𝑥𝑙 ∈ S1 (resp. 𝑥𝑙 ∈ S0) in 𝑄𝑖−1,
then 𝑥𝑖 is larger (resp. strictly larger) than 𝑥𝑙 . Let us now show that if 𝑥𝑖 ∈ S0 is placed under
of an entry 𝑥𝑙 ∈ S0 in 𝑄𝑖−1, then 𝑥𝑖 is strictly larger than 𝑥𝑙 . Suppose the contrary. Then, we
have 𝑥𝑖 = 𝑥𝑙 and thus by Conditions (6) and (7) we have:

𝑦𝑙 ⩽ 𝑦𝑙+1 ⩽ . . . ⩽ 𝑦𝑖 ,

with 𝑦𝑙 = 𝑦𝑙+1 = . . . = 𝑦𝑖 only if | |𝑦𝑙 | | = 0. Hence, following Algorithm 2.2.1, all the boxes added
starting from𝑇𝑙 to𝑇𝑖 must be in different columns which contradicts the fact that 𝑥𝑖 and 𝑥𝑙 belong
to the same column. Similarly, we show that if 𝑥𝑖 ∈ S1 is placed to the right of an entry 𝑥𝑙 ∈ S1
in𝑄𝑖−1, then 𝑥𝑖 is strictly larger than 𝑥𝑙 . Note finally that, by construction, the super tableaux T(𝑤)
and Q(𝑤) are of the same shape and contains 𝑘 boxes. □

Algorithm 3.1.3. Let 𝑤 be a signed two-rowed array on signed alphabets S and S′. Starting
from the pair (T(𝑤),Q(𝑤)) constructed by Algorithm 3.1.1, we can recover the initial signed
two-rowed array𝑤 as follows:

Input: A pair (𝑇,𝑄) ∈ Yt(S′) × Yt(S) of same-shape super tableaux containing 𝑘 boxes.

Output: A signed two-rowed array𝑤 =

(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
on S and S′.

Method: Start with 𝑇𝑘 = 𝑇 and 𝑄𝑘 = 𝑄 . For each 𝑖 = 𝑘 − 1, . . . , 1, take the box filled with the
largest entry 𝑥𝑖+1 in 𝑄𝑖+1 and if there are several equal entries in S0 (resp. S1), the box that is
farthest to the right (resp. left) is selected; apply Algorithm 2.2.5 to 𝑇𝑖+1 with the outer corner
corresponding to that box. Let 𝑇𝑖 be the resulting super tableau and 𝑦𝑖+1 be the element that is
bumped out of the top row of 𝑇𝑖+1. Remove the box containing 𝑥𝑖+1 from 𝑄𝑖+1 and denote the

resulting super tableau tableau by 𝑄𝑖 . Output the 2 × 𝑘 matrix
(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
.

Proposition 3.1.4. Algorithm 3.1.3 always halts with the correct output.

Proof. By construction, we have 𝑥1 ⩽ . . . ⩽ 𝑥𝑘 . Suppose now that 𝑥𝑖−1 = 𝑥𝑖 , for 𝑖 ∈ [𝑘]
with | |𝑥𝑖 | | = 0. Then by constructing, the box that is removed from 𝑇𝑖 lies strictly to the right
of the box that is removed from 𝑇𝑖−1 in the next step. Following Lemma 2.2.2, the entry 𝑦𝑖
removed first is at least as large as the entry 𝑦𝑖−1 removed second, with 𝑦𝑖 = 𝑦𝑖−1, only if | |𝑦𝑖 | | = 0.
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3.1. A super-RSK correspondence

Suppose now that 𝑥𝑖−1 = 𝑥𝑖 , for 𝑖 ∈ [𝑘] with | |𝑥𝑖 | | = 1. Then by constructing, the box that is
removed from 𝑇𝑖 lies strictly below the box that is removed from 𝑇𝑖−1 in the next step. Following
Lemma 2.2.2, we obtain that 𝑦𝑖−1 ⩾ 𝑦𝑖 , with 𝑦𝑖 = 𝑦𝑖−1, only if | |𝑦𝑖 | | = 1. Hence, the output 2 × 𝑘
matrix satisfies Conditions (6) and (7), and then it is a signed two-rowed array on S and S′. □

It is clear from the constructions that the two processes described by Algorithms 3.1.1 and 3.1.3
are inverse to each other. This sets up a one-to-one correspondence between signed two-rowed
arrays and pairs of same-shape super tableaux on signed alphabets S and S′. We will denote by

sRSK : 𝑤 ↦→ (T(𝑤),Q(𝑤))

this mapping. Hence, we obtain the following first main result of the article:

Theorem 3.1.5 (Super-RSK correspondence). Let S and S′ be signed alphabets. The map sRSK
defines a one-to-one correspondence between signed two-rowed arrays and pairs of super tableaux
on S and S′, such that for any signed two-rowed array𝑤 on S and S′, we have that T(𝑤) and Q(𝑤)
are same-shape super tableaux whose entries are the ones of the second and the first row of 𝑤 ,
respectively.

This is the super version of the Robinson–Schensted–Knuth correspondence between two-rowed
arrays of non-negative integers and pairs of same-shape semistandard tableaux over [𝑛], [9].
More precisely, when S = S′ = S0 = S′0 = [𝑛], we recover the classical RSK correspondence on
Young tableaux of type A. It is worth noting that, in the particular case, when all the elements
of S0 (resp. S′0) are strictly smaller than the ones of S1 (resp. S′1), we recover the super-RSK
correspondence on super tableaux introduced by Berele and Remmel in [3].

Example 3.1.6. Consider S = S′ = [6] with signature given by S0 = S′0 = {1, 3, 4} and S1 = S′1
defined consequently. The sequence of pairs produced during the computation of (T(𝑤),Q(𝑤))

starting from the signed two-rowed array 𝑤 =

(
1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6
2 4 2 1 4 5 6 3 5 6 4 3 1 5 4 1

)
on S and S′ is the

following:

(
∅ , ∅

)
,
( 2 , 1 )

,
( 2 4 , 1 2 )

,

( 2 4
2 ,

1 2
2

)
,

( 1 4
2
2

,
1 2
2
2

)
,

( 1 4 4
2
2

,
1 2 3
2
2

)
,

( 1 4 4 5
2
2

,
1 2 3 3
2
2

)
,

( 1 4 4 5 6
2
2

,
1 2 3 3 3
2
2

)
,

(
1 3 4 5 6
2 4
2

,
1 2 3 3 3
2 4
2

)
,

(
1 3 4 5 6
2 4 5
2

,
1 2 3 3 3
2 4 4
2

)
,

(
1 3 4 5 6
2 4 5 6
2

,
1 2 3 3 3
2 4 4 4
2

)
,

(
1 3 4 4 6
2 4 5 6
2 5

,
1 2 3 3 3
2 4 4 4
2 5

)
,

(
1 3 3 4 6
2 4 4 6
2 5
5

,
1 2 3 3 3
2 4 4 4
2 5
5

)
,
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3. A super-RSK correspondence with symmetry

(
1 1 3 4 6
2 3 4 6
2 4
5
5

,
1 2 3 3 3
2 4 4 4
2 5
5
5

)
,

( 1 1 3 4 5
2 3 4 6
2 4 6
5
5

,

1 2 3 3 3
2 4 4 4
2 5 6
5
5

)
,

( 1 1 3 4 4
2 3 4 5
2 4 6
5 6
5

,

1 2 3 3 3
2 4 4 4
2 5 6
5 6
5

)
,

(
T(𝑤) =

1 1 1 4 4
2 3 3 5
2 4 4
5 6
5 6

, Q(𝑤) =

1 2 3 3 3
2 4 4 4
2 5 6
5 6
5 6

)
.

By applying Algorithm 3.1.3 on (T(𝑤),Q(𝑤)), we recover the initial signed two-rowed array𝑤 .

Example 3.1.7. Let S = S′ = Z>0 with signature given by S0 (resp S′1) the set of even numbers
and S1 (resp. S′0) defined consequently. The sequence of pairs produced during the computation

of (T(𝑤) and Q(𝑤) starting from the signed two-rowed array𝑤 =

(
1 1 2 2 3 3 4 4
3 2 1 2 4 3 1 2

)
on S and S′ is

the following:(
∅ , ∅

)
,
( 3 , 1 )

,
( 2

3
, 1

1
)
,

( 1
2
3

,
1
1
2

)
,

( 1 2
2
3

,
1 2
1
2

)
,

( 1 2 4
2
3

,
1 2 3
1
2

)
,

( 1 2 3
2 4
3

,
1 2 3
1 3
2

)
,

( 1 1 3
2 4
2
3

,
1 2 3
1 3
2
4

)
,

(
T(𝑤) =

1 1 2
2 3
2 4
3

, Q(𝑤) =
1 2 3
1 3
2 4
4

)
.

By applying Algorithm 3.1.3 on (T(𝑤),Q(𝑤)), we recover the initial signed two-rowed array𝑤 .

3.1.8. The symmetry property. Let 𝑤 be a signed two-rowed array on signed alphabets S
and S′. The inverse of𝑤 , denoted by𝑤 inv, is the signed two-rowed array on S′ and S obtained
from 𝑤 by exchanging the rows of 𝑤 , that is, writing the second row of 𝑤 as the first row and
the first row of 𝑤 as the second row, and by sorting the new couples on S′×S according to
Conditions (6) and (7). For instance, the inverse of the signed two-rowed array𝑤 of Example 3.1.6
(resp. Example 3.1.7) is the following:

𝑤 inv =

(
1 1 1 2 2 3 3 4 4 4 4 5 5 5 6 6
2 5 6 2 1 4 5 2 3 5 6 6 4 3 4 3

) (
resp. 𝑤 inv =

(
1 1 2 2 2 3 3 4
2 4 4 2 1 1 3 3

) )
.

We say that𝑤 has symmetry with respect to the map sRSK if it satisfies the following property:

Property 3.1.9. If sRSK(𝑤) = (T(𝑤),Q(𝑤)) then sRSK(𝑤 inv) = (Q(𝑤),T(𝑤)).
Theorem 3.1.10 (Symmetry of the super-RSK correspondence). Let S and S′ be signed alphabets.
All signed two-rowed arrays onS andS′ have symmetry with respect to the super-RSK correspondence
map sRSK.

The rest of this section is devoted to prove this result. We give a geometrical interpretation of
the super-RSK correspondence following Fulton’s matrix-ball construction, [9], for the non-signed
case. This construction will allow us to prove Theorem 3.1.10 using the symmetry of the resulting
signed ball array corresponding to a signed two-rowed array.
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3.2. Super matrix-ball construction

3.2. Super matrix-ball construction. Let S and S′ be signed alphabets. A signed ball array
on S and S′ is a rectangular array of balls filled with positive integers, whose rows (resp. columns)
are indexed with elements of S (resp. S′), from the smaller to the bigger one, allowing the
repetition only of elements in S1 (resp. S′1) and where many balls can occur in the same position.
A signed ball array is empty if it does not contain any ball. For instance, considerS = S′ = [4] with
signature given by S0 (resp. S′1) the set of even numbers and S1 (resp. S′0) defined consequently.
The rectangular array in Figure 1 is a signed ball array on S and S′.

1 2 2 2 3 4

1

1

2

3

3

4

2

1

2 3

3
4

1

2

1

1

1

1

1

1

3

2
1

3

2

2

Figure 1: Example of a signed ball array.

We will use the following notations to describe the relative positions of two boxes in a signed
ball array. A box 𝑏 ′ is West (resp. west) of a box 𝑏 if the column of 𝑏 ′ is strictly to the left of (resp.
left of or equal to) the column of 𝑏. A box 𝑏 ′ is North (resp. north) of a box 𝑏 if the row of 𝑏 ′
is strictly above (resp. above or equal to) the row of 𝑏. Similarly, we define the other positions
corresponding to the east and south directions using capital and small letters to denote strict
and weak positions. A box 𝑏 ′ is Northwest of a box 𝑏 if the row of 𝑏 ′ is strictly above to the
row of 𝑏, and the column of 𝑏 ′ is left or equal to the column of 𝑏. Similarly, we define the other
combinations of positions corresponding to the four cardinal directions using capital and small
letters to denote strict and weak inequalities.

3.2.1. The matrix-ball construction. Let S and S′ be signed alphabets. We will correspond to

each signed two-rowed array𝑤 =

(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
on S and S′, a signed ball array, denoted by Ba(𝑤),

whose rows (resp. columns) are indexed with the elements of the first (resp. second) row of𝑤 and
where the indices from S1 and S′1 are repeated as many times as they appear in𝑤 , as described
in the following three steps:

Step 1. We start with an empty signed ball array, whose rows (resp. columns) are indexed with the
elements of the first (resp. second) row of𝑤 and where the indices from S1 and S′1 are repeated
as many times as they appear in𝑤 . We then associate to each couple (𝑥𝑖 , 𝑦𝑖) in𝑤 for 𝑖 = 1, . . . 𝑘 , a
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3. A super-RSK correspondence with symmetry

ball in a box of the initial empty signed ball array according to the following four cases:

i) Suppose (𝑥𝑖 , 𝑦𝑖) ∈ S0 ×S′0. Following Condition (7), equal couples of this form can occur
in𝑤 . For each couple (𝑥𝑖 , 𝑦𝑖) we associate a ball in the box corresponding to the row indexed
with 𝑥𝑖 and to the column indexed with 𝑦𝑖 in the signed ball array. In this case, the number
of balls in the same position (𝑥𝑖 , 𝑦𝑖) is equal to the multiplicity of the couple (𝑥𝑖 , 𝑦𝑖) in𝑤 .

ii) Suppose (𝑥𝑖 , 𝑦𝑖) ∈ S1 ×S′1. Following Condition (7), equal couples of this form can occur
in𝑤 . For each couple (𝑥𝑖 , 𝑦𝑖) we associate a ball in the empty box of the signed ball array
corresponding to the topmost row indexed with 𝑥𝑖 and the rightmost column indexed with 𝑦𝑖
such that only one ball can occur in the same position, and if there are many rows (rep.
columns) indexed with 𝑥𝑖 (resp. 𝑦𝑖 ) we choose the topmost (resp. rightmost) row (resp.
column) that does not contain any ball.

iii) Suppose (𝑥𝑖 , 𝑦𝑖) ∈ S0 ×S′1. Following Condition (7), we can not have equal couples of this
form in𝑤 . We add a ball in the empty box of the signed ball array that corresponds to the
row indexed with 𝑥𝑖 and to the rightmost column indexed with 𝑦𝑖 , and if there are many
columns that are indexed with 𝑦𝑖 we choose the rightmost one that does not contain any ball.

iv) Suppose (𝑥𝑖 , 𝑦𝑖) ∈ S1 ×S′0. Following Condition (7), we can not have equal couples of this
form in𝑤 . We add a ball in the empty box of the signed ball array that corresponds to the
topmost row indexed with 𝑥𝑖 and to the column indexed with 𝑦𝑖 , and if there are many rows
that are indexed with 𝑥𝑖 , we choose the topmost one that does not contain any ball.

Step 2. If many balls occur in the same position, then we order them arbitrarily by arranging
them diagonally from NorthWest to SouthEast. A ball is northwest of another one if it is in the
same position and NorthWest in this arrangement, or its row and column positions are less than
or equal to those of the second ball with at least one inequality strict. The bottom-rightmost ball
of a signed ball array is the ball in the position that corresponds to the bottom-most row and to
the rightmost column of the given signed ball array, and if many balls occur in this position it
corresponds to the last one to the southeast in the corresponding diagonal arrangement. Similarly,
we define the top-leftmost ball of a signed ball array.

Working from the top-leftmost ball to the bottom-rightmost ball and starting with the first
row of the resulting signed ball array, we number all the balls with positive integers by filling
each ball by the smallest integer that is larger than all the integers occurring in the balls to the
northwest, such that the balls in the same position are numbered with consecutive integers. More
precisely, a ball is numbered with 1 if there are no balls northwest of it. A ball is numbered with a
positive integer 𝑖 if the preceding ball in the same position is numbered with the integer 𝑖 − 1, or
if the ball is the first one in a given position and the largest number occurring in a ball northwest
of the given position is the integer 𝑖 − 1. The resulting signed ball array is denoted by Ba1(𝑤).

For instance, Figure 2 (resp. Figure 3) represents the signed ball array Ba1(𝑤) corresponding
to the signed two-rowed array𝑤 of Example 3.1.6 (resp. Example 3.1.7).
Step 3. If there are 𝑘 > 1 balls filled with the same integer 𝑖 in the resulting signed ball ar-
ray Ba1(𝑤), then they belong by construction to a string from SouthWest to NorthEast. We then
introduce new 𝑘 − 1 balls by putting a ball to the right of each ball in the string but the last,
directly under the next ball. We will use a new color for the added balls as illustrated in Figure 4.
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1 2 2 3 4 5 5 5 6 6

1

2

2

2

3

4

5

5

5

6

6

6

1

2

3

1

1

2

3

2

3

4

5

5

4

4

5

5

Figure 2: Ba1(𝑤) corresponding to𝑤 of Example 3.1.6.

1 2 2 2 3 4

1

1

2

3

3

4

1

2 3

2

1

1

3

3

Figure 3: Ba1(𝑤) corresponding to𝑤 of Example 3.1.7.

We do the same for all the balls filled with the same integer. We then number the new added balls
as per Step 2 without taking into consideration the numbering of the initial non-colored balls and
by just acting on the new balls from the top-leftmost ball to the bottom-rightmost one. We obtain
a new signed ball array, denoted by Ba2(𝑤), that contains the initial non-colored balls and the
new colored ones. We repeat the same process on the new added balls and we construct Ba3(𝑤)
from Ba2(𝑤) by adding new colored balls and by numbering them, and so on, stopping when
no two balls appear in Ba𝑘 (𝑤) for any 𝑘 > 1 with the same number. The resulting signed ball
array is denoted by Ba(𝑤). Note that we will use the same color for all the colored balls added
to compute Ba𝑘 (𝑤) from Ba𝑘−1(𝑤) for any 𝑘 > 1. We denote by Ba0(𝑤) the signed ball array
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3. A super-RSK correspondence with symmetry

𝑖

𝑖

𝑖

𝑖

Figure 4: String for new colored balls

obtained from Ba(𝑤) by eliminating the initial non colored balls and by keeping only the new
colored ones, and by Ba1

0(𝑤) the signed ball array obtained from Ba0(𝑤) by keeping only the
colored balls added to compute Ba2(𝑤) from Ba1(𝑤) and by eliminating all the other colored balls.
For instance, Figure 5 (resp. Figure 6 ) represents the signed ball array Ba(𝑤) corresponding to
the signed two-rowed array𝑤 of Example 3.1.6 (resp. Example 3.1.7).

1 2 2 3 4 5 5 5 6 6

1

2

2

2

3

4

5

5

5

6

6

6

1

2

3

1

1

1

1

1

2

3

2

3

2

3

4

5

2

3

2

3

5

4

4

3

2

1

4

3

2

1

1

5

4

3

2

5

4

3

2

2

Figure 5: Ba(𝑤) corresponding to𝑤 of Example 3.1.6.

3.2.2. Super tableaux for signed ball arrays. Let𝑤 be a signed two-rowed array on signed
alphabets S and S′. We denote by T(Ba(𝑤)) (resp. Q(Ba(𝑤))) the super tableau obtained from
Ba(𝑤) such that its 𝑘-th row lists the indices of the leftmost columns (resp. top-most rows)
of Ba𝑘 (𝑤) where each integer number occurs in the new added balls. That is, the 𝑖-th entry of
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1 2 2 2 3 4

1
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Figure 6: Ba(𝑤) corresponding to𝑤 of Example 3.1.7.

the first row of T(Ba(𝑤)) (resp. Q(Ba(𝑤)))) is the index of the leftmost column (resp. top-most
row) in Ba1(𝑤) where a ball filled with 𝑖 occurs, and the 𝑖-th entry of the 𝑘-th row of T(Ba(𝑤))
(resp. Q(Ba(𝑤))), for 𝑘 > 1, is equal to the index of the leftmost column (resp. top-most row)
in Ba𝑘 (𝑤) where a new colored ball filled with 𝑖 occurs.

Proposition 3.2.3. Let𝑤 be a signed two-rowed array on signed alphabets S and S′. The following
equality (T(Ba(𝑤)),Q(Ba(𝑤))) = (T(𝑤),Q(𝑤)) holds.

Theorem 3.1.10 is then a direct consequence of this proposition, since the matrix-ball con-
struction is symmetric in the rows and columns of the resulting signed ball array. In the rest of
this subsection we will prove Proposition 3.2.3. Before that, we give the following example that
illustrates the symmetry property of the super-RSK correspondence for super tableaux.

Example 3.2.4. Consider the signed two-rowed array𝑤 of Example 3.1.6. The super tableaux
associated to its signed ball array Ba(𝑤) illustrated in Figure 5 are the following:

T(Ba(𝑤)) =

1 1 1 4 4
2 3 3 5
2 4 4
5 6
5 6

, Q(Ba(𝑤)) =

1 2 3 3 3
2 4 4 4
2 5 6
5 6
5 6

which are equal to the ones of𝑤 already computed in Example 3.1.6:

𝑤 =

(
1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6
2 4 2 1 4 5 6 3 5 6 4 3 1 5 4 1

)
sRSK←→

(
T(𝑤) =

1 1 1 4 4
2 3 3 5
2 4 4
5 6
5 6

, Q(𝑤) =

1 2 3 3 3
2 4 4 4
2 5 6
5 6
5 6

)
.
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3. A super-RSK correspondence with symmetry

Moreover, using the matrix-ball construction, we obtain:

𝑤 inv =

(
1 1 1 2 2 3 3 4 4 4 4 5 5 5 6 6
2 5 6 2 1 4 5 2 3 5 6 6 4 3 4 3

)
sRSK←→

(
Q(𝑤) =

1 2 3 3 3
2 4 4 4
2 5 6
5 6
5 6

, T(𝑤) =

1 1 1 4 4
2 3 3 5
2 4 4
5 6
5 6

)

by switching the roles of the rows and the columns of the signed ball array of Figure 5.
Consider now the signed two-rowed array𝑤 of Example 3.1.7. The super tableaux associated

to its signed ball array Ba(𝑤) illustrated in Figure 6 are the following:

T(Ba(𝑤)) =

1 1 2
2 3
2 4
3

, Q(Ba(𝑤)) =

1 2 3
1 3
2 4
4

which are equal to the ones of𝑤 already computed in Example 3.1.7:

𝑤 =

(
1 1 2 2 3 3 4 4
3 2 1 2 4 3 1 2

)
sRSK←→

(
T(𝑤) =

1 1 2
2 3
2 4
3

, Q(𝑤) =

1 2 3
1 3
2 4
4

)
.

Moreover, using the super matrix-ball construction, we obtain:

𝑤 inv =

(
1 1 2 2 2 3 3 4
2 4 4 2 1 1 3 3

)
sRSK←→

(
Q(𝑤) =

1 2 3
1 3
2 4
4

, T(𝑤) =

1 1 2
2 3
2 4
3

)

by switching the roles of the rows and the columns of the signed ball array of Figure 6.

3.2.5. Proof of Proposition 3.2.3. Let𝑤 =

(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
be a signed two-rowed array on signed

alphabets S and S′. We show the result by induction on the number of couples in𝑤 , which is
equal to the number of balls in Ba1(𝑤). The result is obvious when𝑤 contains zero or one couple.
Let

𝑤0 :=
(
𝑥1 . . . 𝑥𝑘−1
𝑦1 . . . 𝑦𝑘−1

)
be the signed two-rowed array obtained from 𝑤 by eliminating its rightmost couple (𝑥𝑘 , 𝑦𝑘 ).
By the induction hypothesis, we have T(𝑤0) = T(Ba(𝑤0)) and Q(𝑤0) = Q(Ba(𝑤0)). Then it is
sufficient to prove the following property:

Property 3.2.6. The equality T(Ba(𝑤)) = T(Ba(𝑤0))

⇝

𝑦𝑘 holds in Yt(S′), and the super
tableau Q(Ba(𝑤)) is obtained from Q(Ba(𝑤0)) by placing 𝑥𝑘 in the box that belongs to T(Ba(𝑤))
but not to T(Ba(𝑤0)).
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By construction, the signed ball array Ba1(𝑤) contains one ball that is not in Ba1(𝑤0), which
we denote by 𝐵, and we suppose is filled with an integer 𝑗 . This ball is the bottom-rightmost ball
of Ba1(𝑤) which belongs to the position corresponding to the bottom-most row indexed by 𝑥𝑘
and to the rightmost (resp. leftmost) column indexed by 𝑦𝑘 if 𝑦𝑘 ∈ S0 (resp. 𝑦𝑘 ∈ S1). Moreover,
the integer 𝑗 is larger than all the numbers of the balls in its position.

Suppose first that there are no more balls filled with 𝑗 in Ba1(𝑤). In this case, all the remaining
balls in Ba1(𝑤) are to the NorthWest of 𝐵, and then they are all filled with integers that are strictly
smaller than 𝑗 . Hence when computing Ba𝑖 (𝑤), for 𝑖 > 1, no colored balls will be added using 𝐵,
and all the rows of T(𝑤) and T(𝑤0) (resp. Q(𝑤) and Q(𝑤0)) below the top-most row are the same.
Moreover, the first row of T(Ba(𝑤)) is obtained from that of T(Ba(𝑤0)) by adding 𝑦𝑘 to the end,
since 𝑗 is the largest integer in Ba1(𝑤), and then Q(𝑤) is obtained from Q(𝑤0) by adding 𝑥𝑘 to
the end of its first row, showing Property 3.2.6.

Suppose now that there are other balls in Ba1(𝑤) filled with 𝑗 . By construction, all these balls
are to the NorthEast of 𝐵. Consider the ball filled with 𝑗 in the position corresponding to the row
indexed with 𝑥 and the column indexed with 𝑦 such that 𝑥 ⩽ 𝑥𝑘 is maximal with 𝑥 = 𝑥𝑘 only
if 𝑥 ∈ S′1 and 𝑦 ⩾ 𝑦𝑘 is minimal with 𝑦 = 𝑦𝑘 only if 𝑦 ∈ S1. When 𝑦𝑘 is inserted in the first row
of T(Ba(𝑤0)), the letter 𝑦 is then bumped from the 𝑗-th box of this row. Indeed, the entries of
the first row of T(Ba(𝑤0)) are the indices of the left-most columns of Ba1(𝑤0) that contains balls
filled with 1, 2, . . .. The first 𝑗 − 1 entries of this row are less than or equal to 𝑦𝑘 , but the 𝑗-th entry
is 𝑦 which is the minimal index that satisfies 𝑦 ⩾ 𝑦𝑘 with 𝑦 = 𝑦𝑘 only if 𝑦 ∈ S1, then the entry 𝑦
is bumped from the 𝑗-th box when inserting 𝑦𝑘 in the first row of T(Ba(𝑤0)). Hence the top-most
row of T(Ba(𝑤)) is the top-most row of T(Ba(𝑤0))

⇝
𝑦𝑘 . Moreover, the super tableau formed

by the rows of T(Ba(𝑤)) below its top-most row is by construction the super tableau T(Ba0(𝑤)),
and the super tableau formed by the rows of T(Ba(𝑤0)) below its top-most row is the super
tableau T(Ba0(𝑤0)). Then it is sufficient to prove that the equality T(Ba0(𝑤)) = T(Ba0(𝑤0))

⇝

𝑦

holds in Yt(S′), and the new box from this insertion is the box that belongs to Q(Ba0(𝑤)) but not
toQ(Ba0(𝑤0)). This follows by induction from Property 3.2.6, provided with the fact that (𝑥𝑘 , 𝑦) is
the position of the bottom-rightmost ball of the signed ball array Ba1

0(𝑤). Indeed, by construction,
there is no entries below the 𝑥𝑘 -th row of Ba1

0(𝑤). Moreover, if there is other ball in the 𝑥𝑘 -th row
of Ba1

0(𝑤), then this ball is added using two balls of Ba1(𝑤) filled with an integer 𝑖 < 𝑗 . The first
ball belongs to the row indexed by 𝑥𝑘 , and the second one lies NorthEast of it, but it is NorthWest
of the bottom-rightmost ball filled with 𝑗 , and then this second ball cannot lie in a column indexed
larger than 𝑦, showing the claim.

3.3. Super-RSK correspondence and taquin. Before we proceed to the construction of the
dual super-RSK correspondence, we prove the following result which relates the super-RSK
correspondence to the super jeu de taquin. This result will be useful for the sequel.

Proposition 3.3.1. Let𝑤 =

(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
be a signed two-rowed array on signed alphabets S and S′

such that sRSK(𝑤) = (T(𝑤),Q(𝑤)), and let 𝑡 be any super tableau in Yt(S′). If we compute the
super tableau ((. . . (𝑡 ⇝

𝑦1)

⇝

. . .) ⇝

𝑦𝑘 ) over Yt(S′), and we add 𝑥1, . . . , 𝑥𝑘 successively in the
new boxes starting with an empty Young diagram of the same shape as 𝑡 , then the entries 𝑥1, . . . , 𝑥𝑘
form a super skew tableau 𝑆 such that Rect(𝑆) = Q(𝑤).
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3. A super-RSK correspondence with symmetry

Proof. Consider a super tableau 𝑡 ′ over Yt(S<) of the same shape as 𝑡 , where S< is a signed
alphabet whose elements are all smaller than the ones of S. Following Theorem 3.1.5, the

pair (𝑡, 𝑡 ′) corresponds to some signed two-rowed array
(
𝑥 ′1 . . . 𝑥

′
𝑙

𝑦 ′1 . . . 𝑦
′
𝑙

)
. Hence, the signed two-rowed

array𝑊 :=
(
𝑥 ′1 . . . 𝑥

′
𝑙
𝑥1 . . . 𝑥𝑘

𝑦 ′1 . . . 𝑦
′
𝑙
𝑦1 . . . 𝑦𝑘

)
corresponds to the pair

( (
𝑡

⇝R(T(𝑤)
)
, 𝑄 ′

)
, where 𝑄 ′ is a super

tableau over Yt(S< ∪S) whose entries 𝑥 ′1, . . . , 𝑥 ′𝑙 are the ones of 𝑡
′, and whose entries 𝑥1, . . . , 𝑥𝑘

are the ones of 𝑆 . Consider now the inverse𝑊 inv of𝑊 . Following Theorem 3.1.10, the signed

two-rowed array𝑊 inv corresponds to the pair
(
𝑄 ′,

(
𝑡

⇝R(T(𝑤)
) )
, and the signed two-rowed

array obtained from𝑊 inv by eliminating the couples (𝑦 ′𝑖 , 𝑥 ′𝑖 ) corresponds to the pair (Q(𝑤), T(𝑤)).
The word of the second row of𝑊 inv is then super plactic equivalent to the word R(𝑄 ′), and when
we remove the 𝑦 ′𝑗 ’s from this word we obtain a word that is super plactic equivalent to R(Q(𝑤)).
However, by construction of 𝑄 ′, when we remove the 𝑙 smallest letters from R(𝑄 ′), we recover
the word R(𝑆). Hence, we deduce by Lemma 2.3.2 that R(𝑆) and R(Q(𝑤)) are also super plactic
equivalent, showing by Property 2.4.1 that Rect(𝑆) = Q(𝑤). □

Example 3.3.2. We show in Example 3.1.7 the following computation:

𝑤 =

(
1 1 2 2 3 3 4 4
3 2 1 2 4 3 1 2

)
sRSK←→

(
T(𝑤) =

1 1 2
2 3
2 4
3

, Q(𝑤) =

1 2 3
1 3
2 4
4

)
.

Consider now the super tableau 𝑡 =

1 1 1
2 3
4 5
4

. We insert the elements of the second row of 𝑤

into 𝑡 , and we place the elements of the first row of𝑤 in the new added boxes starting from an
empty tableau of the same shape as 𝑡 . Then we obtain the following:

1 1 1 3
2 3
4 5
4

→
1

;
1 1 1 2
2 3 3
4 5
4

→
1

1 ;
1 1 1 1
2 3 3
2 5
4
4

→
1

1

2

;

1 1 1 1 2
2 3 3
2 5
4
4

→
1 2

1

2

;
1 1 1 1 2 4
2 3 3
2 5
4
4

→
1 2 3

1

2

;

1 1 1 1 2 3
2 3 3 4
2 5
4
4

→
1 2 3

1 3

2

;
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3.4. A dual super-RSK correspondence

1 1 1 1 1 3
2 3 3 4
2 5
2
4
4

→
1 2 3

1 3

2
4

;
1 1 1 1 1 2
2 3 3 3
2 4
2 5
4
4

→
1 2 3

1 3

4
2
4

= 𝑆,

such that Rect(𝑆) = Q(𝑤), as shown in Example 2.4.2.

3.4. A dual super-RSK correspondence. We recall the left insertion algorithm on super
tableaux which gives us a dual version of the super-RSK correspondence. We first begin by
recalling the super evacuation procedure on super tableaux introduced in [13].

3.4.1. Super evacuation on super tableaux. Let S be a signed alphabet. We denote by Sop

the opposite alphabet obtained from S by reversing its order, and by 𝑥∗ the letter in Sop cor-
responding to 𝑥 in S where | |𝑥∗ | | = 1 (resp. | |𝑥∗ | | = 0) if | |𝑥 | | = 1 (resp. | |𝑥 | | = 0). For all 𝑥,𝑦
in S, we have 𝑥 < 𝑦 if and only if 𝑥∗ > 𝑦∗. For any word 𝑤 = 𝑥1 . . . 𝑥𝑘 over S, we denote
by𝑤∗ = 𝑥∗

𝑘
. . . 𝑥∗1 the corresponding opposite word of𝑤 over Sop. Then, for all 𝑣 and𝑤 in S∗, the

equality (𝑣𝑤)∗ = 𝑤∗𝑣∗ holds, inducing an anti-isomorphism between the free monoids over Sop

and S. By identifying (Sop)op with S, we have (𝑤∗)∗ = 𝑤 , for any𝑤 in S∗. Moreover, we show
that, for all 𝑣 and𝑤 in S, the following equivalence holds, [13]:

𝑣 ∼P(S) 𝑤 if, and only, if 𝑣∗ ∼P(Sop) 𝑤
∗. (8)

Algorithm 3.4.2 ([13]). Let 𝑡 be in Yt(S). An opposite tableau in Yt(Sop) can be constructed
from 𝑡 using the super jeu de taquin, as follows:

Input: A super tableau 𝑡 in Yt(S).
Output: A super tableau 𝑡op in Yt(Sop) with the same shape as 𝑡 .
Method: Start with an empty Young diagram with the same frame as 𝑡 . Remove the box

containing the top-leftmost element 𝑥 in 𝑡 , and perform the super jeu de taquin procedure (2.4) on
the resulting super skew tableau. We obtain a super tableau, denoted by 𝑡∗, whose frame has one
box removed from the one of 𝑡 . Put the letter 𝑥∗ in the initial empty Young diagram in the same
place as the box that was removed from the frame of 𝑡 . Repeat the algorithm on 𝑡∗ and continue
until all the elements of 𝑡 have been removed and the initial empty Young diagram has been filled
with their corresponding letters in Sop. Output the resulting super tableau for 𝑡op.

This procedure, called the super evacuation, is the super analogue of the Schützenberger’s
evacuation procedure, [28]. We show the following property:

Property 3.4.3 ([13]). For any 𝑡 in Yt(S), the super tableau 𝑡op satisfies the following equivalence:

(R(𝑡))∗ ∼P(Sop) R(𝑡op), (9)

and the map 𝑡 ↦→ 𝑡op is an involution on Yt(S).

Let S and S′ be signed alphabets and𝑤 =

(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
a signed two-rowed array on S and S′.

We define𝑤∗ :=
(
𝑥∗
𝑘
. . . 𝑥∗1

𝑦∗
𝑘
. . . 𝑦∗1

)
the signed two-rowed array on Sop and (S′)op whose first and second

rows are the opposites of the ones of𝑤 . In particular, by definition, we have (𝑤∗)inv = (𝑤 inv)∗.
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3. A super-RSK correspondence with symmetry

Proposition 3.4.4. Let S and S′ be signed alphabets and𝑤 a signed two-rowed array on S and S′.
If sRSK(𝑤) = (T(𝑤),Q(𝑤)) then sRSK(𝑤∗) = (T(𝑤)op,Q(𝑤)op).

Proof. Consider𝑤 =

(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
a signed two-rowed array on S and S′. Following Subsection 2.3,

the following equivalence R(T(𝑤)) ∼P(S) 𝑦1 . . . 𝑦𝑘 holds. Then we obtain

R(T(𝑤∗)) ∼P(Sop) 𝑦
∗
𝑘
. . . 𝑦∗1 = (𝑦1 . . . 𝑦𝑘 )∗

(8)∼P(Sop) (R(T(𝑤)))∗
(9)∼P(Sop) R(T(𝑤)op) .

We deduce by Property 2.3.1 that the equality T(𝑤∗) = T(𝑤)op holds in Yt((S′)op). Hence, we
obtain sRSK(𝑤∗) = (T(𝑤)op,Q(𝑤∗)). Similarly, we show that

sRSK((𝑤∗)inv) = sRSK((𝑤 inv)∗) = (Q(𝑤)op,T(𝑤∗)) .

We deduce by Theorem 3.1.10 that (Q(𝑤)op,T(𝑤∗)) = (Q(𝑤∗),T(𝑤)op), showing the claim. □

3.4.5. A dual construction of the super RSK-correspondence. We present a dual way to
construct the super RSK-correspondence using the left insertion algorithm on super tableaux.

Algorithm 3.4.6 ([20]). The left (or column) insertion, denoted by⇝, inserts an element 𝑥 in S
into a super tableau 𝑡 of Yt(S) as follows:

Input: A super tableau 𝑡 and a letter 𝑥 ∈ S.
Output: A super tableau 𝑥 ⇝ 𝑡 .
Method: If 𝑡 is empty, create a box and label it 𝑥 . Suppose 𝑡 is non-empty. If 𝑥 ∈ S0

(resp. 𝑥 ∈ S1) is larger than (resp. at least as large as) the bottom element of the leftmost column
of 𝑡 , then put 𝑥 in a box to the bottom of this column; Otherwise, let 𝑦 be the smallest element
of the leftmost column of 𝑡 such that 𝑦 ⩾ 𝑥 (resp. 𝑦 > 𝑥). Then replace 𝑦 by 𝑥 in this column
and recursively insert 𝑦 into the super tableau formed by the columns of 𝑡 to the right of the
leftmost. Note that this recursion may end with an insertion into an empty column to the right of
the existing columns of 𝑡 . Output the resulting super tableau.

Property 3.4.7. As a consequence of Property 2.3.1, the following commutation property holds
in Yt(S), for all 𝑡 in Yt(S) and 𝑥,𝑦 in S:

𝑦 ⇝ (𝑡 ⇝

𝑥) = (𝑦 ⇝ 𝑡) ⇝

𝑥 .

In particular, for any word 𝑤 = 𝑥1 . . . 𝑥𝑘 in S∗, the super tableau T(𝑤) is also computed by
inserting its elements iteratively from right to left using the left insertion⇝ as follows:

T(𝑤) = (𝑤 ⇝ ∅) := (𝑥1 ⇝ (. . .⇝ (𝑥𝑘 ⇝ ∅) . . .)) .

Algorithm 3.4.8. Let S and S′ be signed alphabets. Starting from a signed two-rowed array𝑤
on S and S′, we can compute the pair of super tableaux sRSK(𝑤) = (T(𝑤),Q(𝑤)) using the left
insertion, as follows:

Input: A signed two-rowed array𝑤 =

(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
on S and S′.

Output: A pair (T′(𝑤),Q′(𝑤)) ∈ Yt(S′) × Yt(S) of same-shape tableaux containing 𝑘 boxes.
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3.4. A dual super-RSK correspondence

Method: Start with an empty super tableau 𝑇 ′
𝑘+1 and an empty super tableau 𝑄 ′

𝑘+1. For each
𝑖 = 𝑘, . . . , 1, compute 𝑦𝑖 ⇝ 𝑇 ′𝑖+1 as per Algorithm 3.4.6 and let 𝑇 ′𝑖 be the resulting super tableau.
Let 𝑄 ′𝑖 be super tableau obtained from 𝑄 ′𝑖+1, by performing the reverse sliding algorithm (2.4.3),
using the box that belongs to 𝑇 ′𝑖 but not to 𝑇 ′𝑖+1, and then place 𝑥𝑖 in the top-leftmost corner of
the result. Output 𝑇 ′1 for T′(𝑤) and 𝑄 ′1 as Q′(𝑤).

Proposition 3.4.9. The output of Algorithm 3.4.8 is equal to sRSK(𝑤) = (T(𝑤),Q(𝑤)).

Proof. Following Property 3.4.7, the super tableaux T(𝑤) and T′(𝑤) are equal. We still have
to show that Q(𝑤) = Q′(𝑤). We will proceed by induction on the number of couples in 𝑤 .
The result is obvious when 𝑤 contains zero or one couple. Let 𝑤 ′ be the signed two-rowed
array obtained from 𝑤 by eliminating its first couple (𝑥1, 𝑦1). By the induction hypothesis,
we have Q(𝑤 ′) = Q′(𝑤 ′). Moreover, on the one hand, and since the super tableau Q′(𝑤) is
computed using the reverse sliding algorithm, we have that Q′(𝑤 ′) = (Q′(𝑤))∗, with the property
that Q′(𝑤) has 𝑥1 in its top-leftmost corner. On the second hand, by applying Proposition 3.3.1
to the signed two-rowed array 𝑤 ′ and the super tableau containing one box filled with 𝑦1, we
obtain that Q(𝑤 ′) = (Q(𝑤))∗, and then Q′(𝑤 ′) = (Q(𝑤))∗, with the property that Q(𝑤) has 𝑥1
in its top-leftmost corner, showing that Q(𝑤) = Q′(𝑤). □

Example 3.4.10. Consider𝑤 =

(
1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6
2 4 2 1 4 5 6 3 5 6 4 3 1 5 4 1

)
of Example 3.1.6. The sequence of

pairs produced during the computation of (T(𝑤),Q(𝑤)) as per Algorithm 3.4.8 is the following:

(
∅ , ∅

)
,

( 1 , 6 )
,

( 1
4

, 6
6

)
,

( 1
4
5

,
6
6
6

)
,

( 1 1
4
5

,
5 6
6
6

)
,

( 1 1
3 4
5

,
5 6
5 6
6

)
,

( 1 1
3 4
4 5

,
5 6
5 6
5 6

)
,

( 1 1
3 4
4 5
6

,
4 6
5 6
5 6
5

)
,

(
1 1
3 4
4 5
5 6

,
4 4
5 6
5 6
5 6

)
,

(
1 1 4
3 3
4 5
5 6

,
4 4 4
5 6
5 6
5 6

)
,

(
1 1 4
3 3
4 5
5 6
6

,
3 4 4
4 6
5 6
5 6
5

)
,

(
1 1 4
3 3
4 5
5 6
5 6

,
3 3 4
4 4
5 6
5 6
5 6

)
,

(
1 1 4
3 3 5
4 4
5 6
5 6

,
3 3 3
4 4 4
5 6
5 6
5 6

)
,

(
1 1 1 4
3 3 5
4 4
5 6
5 6

,
2 3 3 3
4 4 4
5 6
5 6
5 6

)
,

( 1 1 1 4
2 3 3 5
4 4
5 6
5 6

,

2 3 3 3
2 4 4 4
5 6
5 6
5 6

)
,

( 1 1 1 4
2 3 3 5
4 4 4
5 6
5 6

,

2 3 3 3
2 4 4 4
2 5 6
5 6
5 6

)
,

(
T(𝑤) =

1 1 1 4 4
2 3 3 5
2 4 4
5 6
5 6

, Q(𝑤) =

1 2 3 3 3
2 4 4 4
2 5 6
5 6
5 6

)
.
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4. The super Littlewood–Richardson rule

Consider now𝑤 =

(
1 1 2 2 3 3 4 4
3 2 1 2 4 3 1 2

)
of Example 3.1.7. The sequence of pairs produced during

the computation of T(𝑤) and Q(𝑤) as per Algorithm 3.4.8 starting from𝑤 is the following:

(
∅ , ∅

)
,
( 2 , 4 )

,
( 1 2 , 4 4 )

,

( 1 2
3 ,

3 4
4

)
,

( 1 2
3
4

,
3 4
3
4

)
,

( 1 2
2 3
4

,
2 3
3 4
4

)
,

( 1 1 2
2 3
4

,
2 2 3
3 4
4

)
,

( 1 1 2
2 3
2 4

,
1 2 3
2 3
4 4

)
,

(
T(𝑤) =

1 1 2
2 3
2 4
3

, Q(𝑤) =
1 2 3
1 3
2 4
4

)
.

4. The super Littlewood–Richardson rule

In this section, we apply the super-RSK correspondence in order to give a combinatorial version
of the super Littlewood–Richardson rule on super Schur functions over a finite signed alphabet.
Finally, we introduce the notion of super Littlewood–Richardson skew tableaux and we give
another version of the super Littlewood–Richardson rule.

In the sequel, we will assume that S is finite.

4.1. Super Littlewood–Richardson coefficients. Let _, ` and a be in P such that a/_ is a
skew shape. We want to compute the number of ways a given super tableau 𝑡 in Yt(S, a) can be
written as the product of a super tableau 𝑡 ′ in Yt(S, _) and a super tableau 𝑡 ′′ in Yt(S, `).

For any super tableau 𝑡 in Yt(S, a), we set

Yt(S, _, `, ⊣ 𝑡) :=
{
(𝑡 ′, 𝑡 ′′) ∈ Yt(S, _) × Yt(S, `)

�� 𝑡 = 𝑡 ′ ★Yt(S) 𝑡
′′},

and we call the integer
𝑐a
_,`

:= # Yt(S, _, `, ⊣ 𝑡)

the super Littlewood–Richardson coefficient.
Using the super jeu de taquin and as discussed in 2.4.4, the integer 𝑐a

_,`
is equal to the number

of super skew tableaux of the following form:

[𝑡 ′, 𝑡 ′′] =
𝑡 ′′

𝑡 ′

whose rectification is 𝑡 . We will prove that the integer 𝑐a
_,`

is also equal to the number of super
skew tableaux in St(S, a/_) whose rectification is a given super tableau of shape `.

For any 𝑇 in Yt(S, `), we set

St(S, a/_, ⊣ 𝑇 ) :=
{
𝑆 ∈ St(S, a/_)

�� Rect(𝑆) = 𝑇
}
.
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4.2. Super Littlewood–Richardson rule

We prove in Theorem 4.2.1 that there is a canonical one-to-one correspondence between the
sets Yt(S, _, `, ⊣ 𝑡) and St(S, a/_, ⊣ 𝑇 ). We deduce that the coefficient 𝑐a

_,`
does not depend on 𝑡

and 𝑇 , and depends only on _, ` and a . Note that the later property is proved in [13] using an
interpretation of the super jeu de taquin in terms of Fomin’s growth diagrams.

4.2. Super Littlewood–Richardson rule. We denote by 𝑅S the Z-algebra constructed from
the super plactic monoid P(S) whose linear generators are the monomials in P(S). This algebra
is an associative and unitary ring that is not commutative. A generic element in 𝑅S is realized by
a formal sum of super plactic classes with coefficients from Z. Following Property 2.3.1, a typical
element in 𝑅S is a formal sum of super tableaux. A canonical homomorphism from 𝑅S onto the
ring of polynomials Z[𝑋 ] is obtained by taking each super tableau 𝑡 to its monomial 𝑥𝑡 , where 𝑥𝑡
is the product of the variables 𝑥𝑖 , each occurring as many times in 𝑥𝑡 as 𝑖 occurs in 𝑡 . For instance,
the following monomial

𝑥T(𝑤) = 𝑥3
1𝑥

2
2𝑥

2
3𝑥

4
4𝑥

3
5𝑥

2
6 (resp. 𝑥Q(𝑤) = 𝑥1

1𝑥
3
2𝑥

3
3𝑥

3
4𝑥

3
5𝑥

3
6)

corresponds to T(𝑤) (resp. Q(𝑤)) computed in Example 3.1.6. Moreover, the following monomial

𝑥T(𝑤) = 𝑥2
1𝑥

2
2𝑥

2
3𝑥4 (resp. 𝑥Q(𝑤) = 𝑥2

1𝑥
2
2𝑥

2
3𝑥

2
4)

corresponds to the super tableau T(𝑤) (resp. Q(𝑤)) computed in Example 3.1.7.
We define 𝑆_ (resp. 𝑆_/`) in 𝑅S to be the sum of all super tableaux (resp. super skew tableaux)

of shape _ (resp. _/`) and entries in S, with _ ∈ P (resp. _/` is a skew shape). By taking the
image of 𝑆_ (resp. 𝑆_/`) in Z[𝑋 ], we obtain the so-called super Schur function (resp. super skew
Schur function) 𝑠_ (𝑋 ) (resp. 𝑠_/` (𝑋 )).

Theorem 4.2.1 (The super Littlewood–Richardson rule). Let _, ` and a be partitions in P such
that a/_ is a skew shape. The following identities

𝑆_𝑆` =
∑︁
a

𝑐a
_,`
𝑆a and 𝑆a/_ =

∑̀︁
𝑐a
_,`
𝑆` (10)

hold in 𝑅S .

Proof. Prove that for any 𝑡 in Yt(S, a) and any𝑇 in Yt(S, `), there is a canonical one-to-one corre-
spondence between the sets Yt(S, _, `, ⊣ 𝑡) and St(S, a/_, ⊣ 𝑇 ). Start with (𝑡 ′, 𝑡 ′′) in Yt(S, _, `, ⊣ 𝑡)
and let (

𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
be the signed two-rowed array onS corresponding to the couple (𝑡 ′′,𝑇 ). By inserting the letters𝑦𝑖 ,
for 𝑖 = 1, . . . , 𝑘 , into the super tableau 𝑡 ′, we form a super skew tableau 𝑆 by successively placing
the letter 𝑥𝑖 , for 𝑖 = 1, . . . , 𝑘 , into the new boxes starting with an empty Young diagram of the same
shape as 𝑡 ′. Since the super tableau 𝑡 = 𝑡 ′ ★Yt(S) 𝑡

′′ has shape a , then the super skew tableau 𝑆

has shape a/_ and we deduce by Proposition 3.3.1 that 𝑆 belongs to St(S, a/_, ⊣ 𝑇 ).
Conversely, start with a super skew tableau 𝑆 in St(S, a/_, ⊣ 𝑇 ), and let 𝑇 ′ be in Yt(S<, _)

where S< is a signed alphabet whose elements are all smaller than the ones of S. Let 𝑇 ′′ be
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4. The super Littlewood–Richardson rule

the super tableau in Yt(S< ∪S, a) that contains the super tableau 𝑇 ′ such that when we re-
move 𝑇 ′ from 𝑇 ′′ we obtain the super skew tableau 𝑆 . By Theorem 3.1.5, the couple (𝑡,𝑇 ′′)

corresponds to a unique signed two-rowed array of the following form
(
𝑥 ′1 . . . 𝑥

′
𝑙
𝑥1 . . . 𝑥𝑘

𝑦 ′1 . . . 𝑦
′
𝑙
𝑦1 . . . 𝑦𝑘

)
. Then

the signed two rowed array
(
𝑥 ′1 . . . 𝑥

′
𝑙

𝑦 ′1 . . . 𝑦
′
𝑙

)
corresponds to the couple (𝑡 ′,𝑇 ′), and following Propo-

sition 3.3.1 the signed two-rowed array
(
𝑥1 . . . 𝑥𝑘
𝑦1 . . . 𝑦𝑘

)
corresponds to the couple (𝑡 ′′,𝑇 ), for some

super tableaux 𝑡 ′ in Yt(S, _) and 𝑡 ′′ in Yt(S, `), such that 𝑡 ′ ★Yt(S) 𝑡
′′ = 𝑡 . Hence, we obtain a

pair (𝑡 ′, 𝑡 ′′) in Yt(S, _, `, ⊣ 𝑡). We deduce that the cardinal number of the set St(S, a/_, ⊣ 𝑇 ) is
equal to the coefficient 𝑐a

_,`
, showing the claim. □

Since neither Yt(S, _, `, ⊣ 𝑡) nor St(S, a/_, ⊣ 𝑇 ) in the correspondence of the proof of Theo-
rem 4.2.1 depends on the contents of the super tableaux used to define the other, we deduce the
following result:

Corollary 4.2.2. The cardinal number 𝑐a
_,`

of the sets Yt(S, _, `, ⊣ 𝑡) and St(S, a/_, ⊣ 𝑇 ) is inde-
pendent of choice of 𝑡 and 𝑇 and depends only on _, ` and a .

4.3. Super Littlewood–Richardson skew tableaux. We introduce in this final part the notion
of super Littlewood–Richardson skew tableaux and we give a new combinatorial description of
the super Littlewood–Richardson coefficient. We suppose in the sequel that

S = {𝑚 < . . . < 1 < 1 < . . . < 𝑛}

with S1 = {1 < . . . < 𝑛} and S0 = {𝑚 < . . . < 1}. For any𝑤 in S∗, we denote by |𝑤 |𝑖 the number
of times the element 𝑖 of S appears in𝑤 , and by |𝑤 | the number of elements of S1 appearing in𝑤
such that each element is counted only once. The weight map is the map

wt : S∗ →
(
Z>0 ∪ {0}

)𝑚+𝑛
defined by wt(𝑤) = ( |𝑤 |𝑚, . . . , |𝑤 |1, |𝑤 |1, . . . , |𝑤 |𝑛), for all𝑤 in S∗. We call wt(R(𝑆)) the weight
of a super skew tableau 𝑆 over S.

4.3.1. Super Yamanouchi words. A word𝑤 over S is a super Yamanouchi word if it satisfies
the following two conditions:

i) for every right subword𝑤 ′ of𝑤 , the following property holds:

|𝑤 ′ |𝑚 ⩾ . . . ⩾ |𝑤 ′ |2 ⩾ |𝑤
′ |1 ⩾ |𝑤

′ |,

ii) for every left subword𝑤 ′ of𝑤 , the following property holds:

|𝑤 ′ |1 ⩾ |𝑤 ′ |2 ⩾ . . . ⩾ |𝑤 ′ |𝑛 .
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4.3. Super Littlewood–Richardson skew tableaux

When S = S0, we recover the notion of Yamanouchi words that describes the elements of highest
weights for the crystal structure of the general Lie algebra of type A, [23].

For instance, suppose S = {2 < 1 < 1 < 2}. The word 122 1 1 2 2 is a super Yamanouchi
word over S. However, the word𝑤 = 11221 2 2 is not a super Yamanouchi word over S because
for its right subword𝑤 ′ = 1221 2 2, we have |𝑤 ′ |1 < |𝑤 ′ |.

Lemma 4.3.2. Let 𝑤 and 𝑣 be words over S that are super plactic equivalent. Then 𝑤 is a super
Yamanouchi word if and only if 𝑣 is a super Yamanouchi word.

Proof. Suppose first that 𝑤 = 𝑢𝑥𝑧𝑦𝑢 ′ and 𝑣 = 𝑢𝑧𝑥𝑦𝑢 ′ for all 𝑢,𝑢 ′ in S∗ such that 𝑥 ⩽ 𝑦 ⩽ 𝑧

in S with 𝑥 = 𝑦 only if | |𝑦 | | = 0 and 𝑦 = 𝑧 only if | |𝑦 | | = 1. If 𝑥 < 𝑦 < 𝑧, there is no changes
in the numbers of consecutive elements of S0 (resp. S1) in each right (resp. left) subword of𝑤
and 𝑣 . If 𝑥 = 1 and 𝑦 = 𝑧 = 1 or 𝑥 = 𝑦 = 1 and 𝑧 = 1 such that 𝑤 is a super Yamanouchi word.
Then |𝑢 ′ |1 ⩾ |𝑢 ′ |, and hence 𝑣 is a super Yamanouchi word. Similarly, we show that if 𝑣 is a super
Yamanouchi word, then 𝑤 is so. If 𝑥 = 𝑦 = 𝑘 ∈ S0 and 𝑧 = 𝑘 + 1 ∈ S0 such that 𝑤 is a super
Yamanouchi word. Then by definition, we have |𝑢 ′ |𝑘 ⩾ |𝑢 ′ |𝑘+1, showing that 𝑧𝑥𝑦𝑢 ′ is a super
Yamanouchi word, and then 𝑣 is so. Similarly, we show that if 𝑣 is a super Yamanouchi word,
then𝑤 is so. If 𝑥 = 𝑘 ∈ S1 and 𝑦 = 𝑧 = 𝑘 + 1 ∈ S1 such that𝑤 is a super Yamanouchi word. Then
the following property |𝑢 |𝑘 > |𝑢 |𝑘+1 holds, showing that 𝑢𝑧𝑥𝑦 is a super Yamanouchi word, and
hence 𝑣 is so. Similarly, we show that if 𝑣 is a super Yamanouchi word, then𝑤 is so.

Suppose now that 𝑤 = 𝑢𝑦𝑥𝑧𝑢 ′ and 𝑣 = 𝑢𝑦𝑧𝑥𝑢 ′ for all 𝑢,𝑢 ′ in S∗ such that 𝑥 ⩽ 𝑦 ⩽ 𝑧 in S
with 𝑥 = 𝑦 only if | |𝑦 | | = 1 and 𝑦 = 𝑧 only if | |𝑦 | | = 0. If 𝑥 < 𝑦 < 𝑧, there is no changes in
the numbers of consecutive elements of S0 (resp. S1) in each right (resp. left) subword of 𝑤
and 𝑣 . Suppose 𝑥 = 𝑦 = 𝑘 ∈ S1 and 𝑧 = 𝑘 + 1 ∈ S1 such that 𝑤 is a super Yamanouchi word.
Then by definition, we have |𝑢 |𝑘 > |𝑢 |𝑘+1, showing that 𝑢𝑦𝑧𝑥 is a super Yamanouchi word, and
hence 𝑣 is so. Similarly, we show that if 𝑣 is a super Yamanouchi word, then 𝑤 is so. Suppose
now that 𝑥 = 𝑘 ∈ S0 and 𝑦 = 𝑧 = 𝑘 + 1 ∈ S0 such that𝑤 is a super Yamanouchi word. Then by
definition, the following property |𝑢 ′ |𝑘 > |𝑢 ′ |𝑘+1 holds, showing that 𝑦𝑧𝑥𝑢 ′ is a super Yamanouchi
word, and then 𝑣 is so. Similarly, we show that if 𝑣 is a super Yamanouchi word, then𝑤 is so. □

4.3.3. Super Littlewood–Richardson skew tableaux. We say that a super skew tableau 𝑆

over S is a super Littlewood–Richardson skew tableau if its reading word R(𝑆) is a super Ya-
manouchi word. For instance, the following super tableau over S = {2 < 1 < 1 < 2}
is a super Littlewood–Richardson skew tableau of shape (7, 5, 3, 3, 2, 1, 1)/(4, 3, 2, 2, 1) and of
weight (3, 2, 3, 2):

2 2 2
1 1

2
2

1
1
1

.

For any partition ` in P of height 𝑘 , we define the (𝑛 +𝑚)-uplet ˇ̀ := (`1, ˜̀2) where `1 is the
partition formed by the first𝑚 parts of ` and `2 is the partition formed by its last 𝑘 −𝑚 parts, such
that if𝑚 ⩽ 𝑘 < 𝑚 +𝑛 then the last (𝑚 +𝑛) −𝑘 parts of `2 are zero and if 𝑘 < 𝑚 then the last𝑚 −𝑘
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4. The super Littlewood–Richardson rule

parts of `1 are zero and all the parts of `2 are zero. For instance, suppose S = {2 < 1 < 1 < 2}
and ` = (3, 2, 2, 2, 1). Then ˇ̀ = (3, 2, 3, 2) with `1 = (3, 2), `2 = (2, 2, 1) and ˜̀2 = (3, 2).

Let ` be a partition. Denote by 𝑇 (`) the super tableau of shape ` whose first row contains
only𝑚, the second row contains only𝑚 + 1, and so on row by row, until the𝑚-th row that contains
only 1, and starting from the nonempty (𝑚 + 1)-th box of each column, the corresponding 𝑖-th
column contains only 𝑖 . Then, the super tableau 𝑇 (`) can be divided into two super tableaux: the
first one of shape `1 that contains only the elements of S0 and the second one of shape `2 that
contains only the elements of S1, such that the following equality holds:

wt(R(𝑇 (`))) = (`1, ˜̀2) = ˇ̀.

For instance, suppose S = {2 < 1 < 1 < 2} and ` = (3, 2, 2, 2, 1). Then we have

𝑇 (`) =

2 2 2
1 1
1 2
1 2
1

with `1 = (3, 2), `2 = (2, 2, 1) and ˇ̀ = (3, 2, 3, 2) = wt(R(𝑇 (`))).

It is clear from the definition of𝑇 (`), that it is the only super tableau of shape ` whose reading
is a super Yamanouchi word. Hence, following Lemma 4.3.2, we deduce the following result:

Lemma 4.3.4. Let ` be a partition in P. A super skew tableau over S is a super Littlewood–
Richardson skew tableau of weight ˇ̀ if and only if its rectification is the super tableau 𝑇 (`).

As a consequence, following Theorem 4.2.1, we deduce the following result:

Theorem 4.3.5. Let _, ` and a be partitions inP such that a/_ is a skew shape. The super Littlewood–
Richardson coefficient 𝑐a

_,`
is equal to the number of super Littlewood–Richardson skew tableaux of

shape a/_ and of weight ˇ̀.

Example 4.3.6. Suppose S = {2 < 1 < 1 < 2}, a = (5, 4, 3, 2) and _ = (3, 3, 1). The super
Littlewood–Richardson skew tableaux of shape (5, 4, 3, 2)/(3, 3, 1) are the following:

2 2
1

2 2
1 1

2 2
1

2 2
2 1

2 2
1

2 2
1 1

2 2
1

2 2
2 1

2 2
1

2 1
2 1

2 2
1

2 1
2 1

2 2
1

2 1
1 2

2 2
1

2 1
1 1

2 2
1

2 1
1 1

Following Theorem 4.3.5, we have:

i) 𝑐a
_,`

= 1, for ` = (5, 2), ` = (5, 1, 1), ` = (3, 3, 1),

ii) 𝑐a
_,`

= 2, for ` = (4, 3), ` = (4, 2, 1), ` = (3, 2, 2),
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iii) 𝑐a
_,`

= 0, for other `.

Hence, we obtain the following decomposition in 𝑅S :

𝑆 (5,4,3,2)/(3,3,1) = 𝑆 (5,2) + 𝑆 (5,1,1) + 2𝑆 (4,3) + 2𝑆 (4,2,1) + 2𝑆 (3,2,2) + 𝑆 (3,3,1) .

Note finally that the readings of the genuine highest weight super tableaux introduced in [1]
as highest weight vectors for the crystal graph for the representations of the general linear Lie
superalgebra of type A are super Yamanouchi words. A future work would be to investigate the
combinatorial properties of the representations of the general linear Lie superalgebra 𝔤𝔩𝑚,𝑛 using
the constructions developed in this article.
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