MERRIN: MEtabolic Regulation Rule INference from time series data - Archive ouverte HAL
Article Dans Une Revue Bioinformatics Année : 2022

MERRIN: MEtabolic Regulation Rule INference from time series data

Résumé

Motivation: Many techniques have been developed to infer Boolean regulations from a prior knowledge network and experimental data. Existing methods are able to reverse-engineer Boolean regulations for transcriptional and signaling networks, but they fail to infer regulations that control metabolic networks. Results: We present a novel approach to infer Boolean rules for metabolic regulation from time series data and a prior knowledge network. Our method is based on a combination of answer set programming and linear programming. By solving both combinatorial and linear arithmetic constraints we generate candidate Boolean regulations that can reproduce the given data when coupled to the metabolic network. We evaluate our approach on a core regulated metabolic network and show how the quality of the predictions depends on the available kinetic, fluxomics or transcriptomics time series data.
Fichier principal
Vignette du fichier
Main.pdf (780.61 Ko) Télécharger le fichier
Supplementary_materials.pdf (953.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03701755 , version 1 (22-06-2022)
hal-03701755 , version 2 (27-10-2022)

Identifiants

Citer

Kerian Thuillier, Caroline Baroukh, Alexander Bockmayr, Ludovic Cottret, Loïc Paulevé, et al.. MERRIN: MEtabolic Regulation Rule INference from time series data. Bioinformatics, 2022, 38 (Supplement_2), pp.ii127-ii133. ⟨10.1093/bioinformatics/btac479⟩. ⟨hal-03701755v1⟩
244 Consultations
200 Téléchargements

Altmetric

Partager

More