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Abstract

Motivation: Many techniques have been devel-
oped to infer Boolean regulations from a prior
knowledge network and experimental data. Exist-
ing methods are able to reverse-engineer Boolean
regulations for transcriptional and signaling net-
works, but they fail to infer regulations that control
metabolic networks.
Results: We present a novel approach to infer
Boolean rules for metabolic regulation from time
series data and a prior knowledge network. Our
method is based on a combination of answer set
programming and linear programming. By solving
both combinatorial and linear arithmetic con-
straints we generate candidate Boolean regulations
that can reproduce the given data when coupled to
the metabolic network. We evaluate our approach
on a core regulated metabolic network and show
how the quality of the predictions depends on the
available kinetic, fluxomics or transcriptomics time
series data.
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1 Notations

|X|. The cardinality of a finite set X is denoted
by |X|.

xI . Given a vector x ∈ Dn and a set of indices
I ⊆ {1, · · · , n}, xI denotes the vector of dimension
|I| equal to (xi)i∈I .

B. The Boolean domain is denoted by B = {0, 1}.

β(s). Given a non-negative real vector s ∈ Rn
≥0,

we denote by β(s) ∈ Bn its binarization, i.e. ∀i ∈
{1, . . . , n}, β(s)i = 1, if si > 0, and β(s)i = 0, if
si = 0.

2 Boolean over-approximation of
RMSS

This section is a complement to Sect. 2.1.3 and de-
tails the Boolean relaxation of the Eq.(2.c).

Boolean over-approximation of regulatory-
metabolic steady state (B-RMSS) of a RMN
(N , Inp,P, f) can be defined as a triplet
(v, c, x) ∈ B|R| × B|Ext| × B|Inp|+|P|+|R| (Thuillier
et al., 2021) associating binary reaction states v,
external metabolites availability c, and a regula-
tory state x. The binary reaction states v must
satisfy a relaxed form of Eqs.(1):

(1.arelaxed) ∀m ∈ Int,
∨

r∈RSmr>0

vr ⇐⇒
∨

r∈R,Sr,m<0

vr

(1.brelaxed) ∀r ∈ R, xr = 0 =⇒ vr = 0

(1.crelaxed) ∀m ∈ Inp, ∀r ∈ R, Smr < 0 =⇒ vr ≤ cm

Let us denote by S the set of all the B-RMSS
of the RMN (N , Inp,P, f) (satisfying the relaxed
equations Eqs.(1relaxed). Eq.(2.c) can be relaxed
by considering B-RMSS instead of RMSS, thus:

(2.crelaxed) (v′, c′, x′) ∈ S

It must be noted that the set of binarised RMSS
is included in S, i.e. ∀(v, c, x) ∈ S, (β(v), β(c), x) ∈
S. The converse is not true.
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3 Results

3.1 Experiment conditions of Covert et al.
(2001)

This section is a complement to Sect. 3.2 and de-
tails the initial states of the 5 experiment conditions
described in Covert et al. (2001).

The 5 experiment conditions of Covert et al.
(2001), used to generate our experimental time se-
ries, are shown in Tab. S1. Each experiment is
based on a different set of initial input metabo-
lite concentrations c and the regulatory state x
is initialized such that: (i) ∀r ∈ R, xr = 0,
(ii) ∀i ∈ Inp, xi = β(ci), (iii) for each regula-
tory protein we apply the associated regulatory
rule: xRPcl = β(cCarbon1), xRPO2 = β(cOxygen),
xRPb = 0 and xRPh = β(cHext).

Input metabolite concentration (mmol.L-1) Regulatory protein state
Experiment cCarbon1 cCarbon2 cOxygen cFext cHext xRPcl xRPO2 xRPb xRPh

1 10 10 100 0 0 1 0 0 0
2 0 10 5 0 0 0 0 0 0
3 0 10 100 0 2 0 0 0 1
4 0 5 100 0 10 0 0 0 1
5 1 10 100 0.1 5 1 0 0 1

Table S1: Experiment conditions used to generate
the 5 simulations of (Covert et al., 2001).

3.2 Inferring from non-complete noisy time
series

This section is a complement to Sect. 3.4.

3.2.1 Comparing the d-rFBA simulations

RSS scores (RSSExt and RSSP) of the regulatory
inferred on the 240 instances.
For each of regulatory BN inferred for the 240 in-

stances, we compared the associated d-rFBA time
series of external metabolites and regulatory pro-
teins to the ones of the gold standard model using
the RSSExt score (Fig. S1(a)) and the RSSP score
(Fig. S1(b)).

Kinetic-fluxomics instances. Kinetic-fluxomics
(KF) instances do not contain any information on
the four regulatory proteins states. As expected,
MERRIN is not able to determine the regulatory
proteins states (Fig. S1(b)) from this datatype
leading to the enumeration of a huge number of
compatible BNs. Here, we have restricted the
number of solutions to enumerate to 51, this limit
was reached for each (KF) instance that admit a
solution to the inference problem. Thus, we do not
recommend to use MERRIN on KF instances.

Impact of the degradation rate. Our results show
that MERRIN could not infer any regulatory BNs

on the datatype KFT, KF and KT with a degrada-
tion rate strictly greater than 30%. For T instance,
the number of inferred BNs increased significantly
at 40% and 50% of degradation. Moreover, at high
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Fig. S1: RSS depending on datatype and
degradation level. Each vertical bar corresponds
to the results of MERRIN on the 10 instances asso-
ciated with a considered datatype (KF, KFT, KT,
T) and degradation level (0%, 10%, 20%, 30%, 40%,
50%). The different colors represents the score
range ((a) RSSExt and (b) RSSP) of the solution
(see legend).
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degradation level, both RSSP and RSSExt decrease
drastically: a huge part of the BNs inferred for T
instances have RSSP and a RSSExt greater than
100. Thus, we do not recommend to use MERRIN
on instances having a degradation level higher than
30%.

3.2.2 Inferred regulatory BNs

Enumerations of the 15 different regulatory BNs in-
ferred from 120 instances.

In this section, we focus on the results obtained
on 120 different time-series instances: complete
(KFT), kinetic-transcriptomics (KT) and tran-
scriptomics (T) instances with a noise ranging from
0% to 30% (Sect. 3.4).

Let us consider the metabolic network N , the
set of inputs metabolites Inp and the set of regula-
tory proteins P given as input to MERRIN. There
are 15 different regulatory BNs that have been in-
ferred on the 120 instances, for each inferred reg-
ulatory BN f , the RMN (N , Inp,P, f) is shown in
Fig. S2 with their respective scores: precision, re-
call, RSSP , RSSExt.

Best result. The regulatory BN of Fig. S2(b) is the
one inferred on the complete (KFT) datatype with
0% of degradation. It allows exactly reproducing
the 5 d-rFBA simulations of Covert et al. (2001)
used to generate the input time series. This BN
has been inferred on 58 of the 120 instances and
only on the datatype KFT and KT.

Worst result. Among the 15 regulatory BN, the
regulatory BN of Fig. S2(p) has the worst RSSs
scores: RSSP = 89 and RSSExt = 1194.07. These
scores are due to the absence of regulation control-
ing the reaction Tc2 which inhibit the consumption
of Carbon2 if some Carbon1 is available.
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Fig. S2: (a) Regulatory BN of the gold standard
model (Covert et al., 2001).
(b)-(p) Set of 15 regulatory BNs inferred from
the 120 instances representing kinetic-fluxes-
transcriptomics (KFT), kinetic-transcriptomics
(KT) and transcriptomics (T) observations with a
noise ranging from 0% to 30%.

3.2.3 Comparisons with the gold standard
regulatory BN

Recall and precision scores of the inferred BNs.

Let us focus on the 120 instances (datatype KFT,
KT and T with a degradation level between 0% and
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Fig. S3: Worst recall and precision depending
of data type and degradation level. For each
instance of the considered datatype (KFT, KT, T)
and degradation level (0%, 10%, 20%, 30%), only
the worst recall and worst precision are considered.
Each circle corresponds to a set of instances of
identical datatype and degradation level having the
same worst recall and worst precision.

30%). For each inferred BN, we computed the re-
call and the precision according to the gold stan-
dard regulatory BN. Fig. S3 represents the worst
recall and the worst precision of each one of the 120
instances depending of the datatype and the degra-
dation level. Our results show that, except for 8 in-
stances, MERRIN inferred BNs having a precision
of 1 and a recall between 0.45 and 0.64, meaning
that at least 50% of the edge of the influence graph
of the gold standard are correctly retrieved.

The degradation level seems to have the bigger
impact on the precision score: all, except one, in-
stances with a worst precision lower than 1 have
a degradation level of 30%. For the recall, it ap-
pears that it is the datatype which have the bigger
impact: T instances have smaller recall than the
other KFT and KT instances. This last result can
be easily explained by the fact that T instances do
not have any information on the input metabolite
concentrations, thus it is harder to define if an ob-
served RMSS is due to a specific concentration of
input metabolites or to some regulatory states.
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