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Abstract

Motivation: Many techniques have been devel-
oped to infer Boolean regulations from a prior
knowledge network and experimental data. Exist-
ing methods are able to reverse-engineer Boolean
regulations for transcriptional and signaling net-
works, but they fail to infer regulations that control
metabolic networks.

Results: We present a novel approach to infer
Boolean rules for metabolic regulation from time
series data and a prior knowledge network. Our
method is based on a combination of answer set
programming and linear programming. By solving
both combinatorial and linear arithmetic con-
straints we generate candidate Boolean regulations
that can reproduce the given data when coupled to
the metabolic network. We evaluate our approach
on a core regulated metabolic network and show
how the quality of the predictions depends on the
available kinetic, fluxomics or transcriptomics time
series data.

Availability: Software available at
https://github.com/bioasp/merrin

Contact: anne.siegel@irisa.fr

Supplementary information:
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https://doi.org/10.5281/zenodo.6670165

1 Introduction

The regulation of metabolic gene expression is es-
sential for an organism to respond appropriately
to changes in its environment. For three decades
now, methods have been developed to model, sim-
ulate and infer gene regulatory networks (de Jongj,
2002; Bernot et al.,|2004;|Chaves et al.,2010). Even
with the advances of next generation -omics, such

networks remain largely incomplete and unable to
accurately predict complex responses of organisms
submitted to changes in diverse environments.

The methods developed so far to infer Boolean
dynamics of regulatory and signaling networks only
rely on information on the regulatory layer of the
cell, mainly transcriptomics, proteomics and phos-
phoproteomics (Saez-Rodriguez et al., 2009; |Videla
et all 2017; Razzaq et all 2018; [T'siantis et al.,
2018} |Chevalier et al.,|2019). However, studying the
metabolic layer could help to better infer the regu-
latory rules. Catabolic repression is a good illustra-
tion of how metabolism can highlight regulations
inside the cell. This happens when the cell first
consumes one substrate (e.g. hexose) until it is ex-
hausted before starting to consume other substrates
present in the environment (Monod} 1942). Look-
ing only at the metabolites in the environment, we
can infer that a regulation takes place inside the
cell, probably on transporters.

Up to now, very few approaches exploited the
metabolic layer of the organism to obtain regula-
tory information. In (Tournier et al [2017)), Re-
source Balance Analysis (RBA) (Goelzer et al.
2015)) is used to infer logical rules governing the ac-
tivation of metabolic fluxes in response to diverse
extracellular media. However, the authors assume
that no feedback from metabolism to regulation oc-
curs, which does not correspond to the biological
functioning of the cell in most cases.

The fact that metabolic and regulatory layers are
of different nature, and thus formalized differently,
makes the inference of regulations challenging. The
metabolic layer is usually modeled by a metabolic
network consisting of a weighted hypergraph with
metabolites as nodes, reactions as hyperarcs, and
stoichiometry as weights. The (dynamic) response
of the metabolism to the environment is usually
modeled by Flux Balance Analysis (FBA) (Orth
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et all)|2010) resp. dynamic FBA (dFBA) (Mahade-
van et al.l 2002). This approach assumes that the
metabolism of the cell is at quasi steady-state and
that the cellular behavior is optimal with respect to
some objective (usually growth). FBA and dFBA
require solving linear programming problems; the
output is the prediction of metabolic fluxes and
the concentrations of environmental metabolites
and biomass, which are all continuous quantitative
data. On the contrary, the dynamics of the regu-
latory layer is often modeled by Boolean networks
(BNs). Combining both layers to infer regulations
of the cell and taking into account feedbacks be-
tween them thus requires to use a hybrid discrete-
continuous modeling and inference framework, such
as Satisfiability Modulo Theories (SMT), which was
used in |Frioux et al. (2019) to solve a metabolic net-
work completion problem.

In this study, we present a hybrid discrete-
continuous approach to infer metabolic regula-
tions, which combines linear programming for
metabolism with answer set programming for regu-
lations. The input consists of a metabolic network,
a prior knowledge regulatory network with poten-
tial regulations, and time series data. These can
be metabolomics data (kinetics of environmental
metabolites/biomass and/or fluxomics) and/or ex-
pression data from proteomics or transcriptomics.
The output is a set of Boolean regulatory networks
that best explain the available data. We tested our
method on data generated from a dynamic regu-
latory FBA (d-rFBA) model of a core regulated
metabolic network (Covert et al., |2001; [Marmiesse
et al.}|2015)), by simulating both the regulatory and
the metabolic layer in five environments. In order
to assess its robustness, the method was also eval-
uated with noisy and partial data, e.g. transcrip-
tomics and kinetics of environmental metabolites
only.

2 Methods and implementation

2.1 d-rFBA: coupling metabolic and regu-
latory networks

2.1.1 Regulated metabolic networks

(RMN), influence graph

A regulated metabolic network (RMN) consists of
(i) a metabolic layer characterized by linear con-
straints on metabolic fluxes and (ii) a regulatory
layer specified by a Boolean network (BN) which
models the interplay between metabolic fluxes, in-
put metabolites, and regulatory proteins.
Formally, a RMN is a quadruple (A, Inp, P, f)
composed of (i) a metabolic network N =

(Int, Ext, R, S) with a set of internal metabolites
Int, a set of external metabolites Ext, a set of ir-
reversible reactions R and a stoichiometric matrix
S e RUMtHEXtDXIRI - Fach reaction r € R is asso-
ciated with flux bounds I, u, € R,0 <[, < u,; (ii)
a set of input metabolites Inp C Ext; (iii) a set of
regulatory proteins P; (iv) a BN f: B" - B" B =
{0,1}, of dimension n = |Inp| + |R| + |P|. We call
fi : B™ — B the local function of component .

The influence graph G(f) summarizes the regu-
latory dependencies. It is a signed directed graph
with node set InpURUP and a positive (resp. neg-
ative) edge from j to ¢ if there exists x € B™ such
that an increase of x; leads to an increase (resp. de-
crease) of f;(x). We assume that f is locally mono-
tone, i.e., there exists at most one edge from j to
i, but our method does not rely on this assump-
tion. In RMNs, the regulation of reactions has to
be mediated by regulatory proteins P. Therefore,
there is no edge from j to i in G(f) where both
1,7 € Inp U R. Edges between regulatory proteins
i,7 € P, however, are possible.

2.1.2 Regulatory-metabolic steady states
(RMSSs)

Dynamic regulatory Flux Balance Analysis (d-
rFBA) (Covert et al., 2001) extends FBA to derive
a discrete time series of steady states optimal for a
linear objective. In d-rFBA, a regulatory-metabolic
steady state (RMSS) of a RMN (N, Inp, P, f) is
a triple (v,c,x) associating reaction fluxes v at
steady state, concentrations ¢ of external metabo-
lites, and the state x of the Boolean network, which
comprises the Boolean regulatory state of reactions
and regulatory proteins, and the binarization of
the concentration of input metabolites. The re-
action fluxes v are constrained by both the regu-
latory variables x, which can force reaction fluxes
to be zero, and by the concentration of external
metabolites ¢, which set upper bounds on uptake
fluxes. Formally, a RMSS is a triple (v,c,z) €
RIRI x RIExt] 5 BImpI+IRIHIPI gych that

(l.a) SInt,R U= O,

(LO)Vr e Ryl - xp < vp <y - @y
(l.e)Vm € Inp,r € R, Spr
uptake_bound(c,,),

where Sty is the submatrix of S whose
rows correspond to internal metabolites and
uptake_bound(c¢,,) is the maximum flux through
uptake reaction r for input metabolite concentra-
tion ¢, (Varma and Palsson) {1994).

< 0 = v <



2.1.3 Dynamics of RMNs and admissible
time series

The d-rFBA models are executed at two time
scales: the metabolic network, considered as a fast
system, depending on the activity of input metabo-
lites and regulatory proteins, rapidly converges to
a steady state; the regulatory network, considered
as a slow system, gets updated once the metabolic
network is in steady state. The overall dynamics
is guided by the objective of maximizing the flux
through reaction Growth, assumed to reflect the
growth of the cell (Feist and Palssonl 2010]).

Let 3 : RY, — B" be a binarization function
such that Vs € R2,, Vi € {1,...,n}, B(s); = 1
if and only if s; > 0, else 8(s); = 0. Given a
RMSS (v, ck, zk) at time t*, a successor RMSS
(VR HL R k1Y) at time t*+! is computed as fol-
lows:

1. The external metabolite concentrations c¢Ft!

are computed from the previous concentrations
c* by considering constant uptake/secretion
fluxes v* for the whole time period [tF, t5+1].

2. The Boolean state z**! is computed by ap-
plying the regulatory function f to the bina-
rized input metabolites concentrations z1,, =
ﬂ(cﬁy) at time ¢!, together with the bi-
narized reaction fluxes x% = B(v*) and the

Boolean values 2/, = z% of the regulatory pro-
teins at time t*, i.e., ¥t = f(2').

3. (WL kL pk+1) is a RMSS maximizing the
flux through the Growth reaction, i.e., there is
no RMSS (v/, *+1, 2%+1) such that v, 0 >
vlétolwth'

Such simulations can be computed with the
FlexFlux implementation of d-rFBA (Marmiesse
et al.,|2015)), which considers a fixed time step 7 be-
tween successive RMSS, see [Thuillier et al| (2021)
for details.

Let S be the set of all RMSSs of the

RMN (N, Inp, P, f). For input metabolite
concentrations ¢y € RP* and the regula-
tory state xo € BIPIHIPIHRI we denote
by maXGTowthrMSS(COaxO) - maX{vGrowth |

(v, co, o) € S} the maximum growth flux given ¢
and zo. Given reaction fluxes v,v’ € RI®!  external
metabolite concentrations ¢, ¢ € RIF* and regu-
latory states x, 2’ € BIPIHIRITIPI d_rFBA enables
a transition from (v, ¢, x) to (v, ¢, 2’) if and only if
the following constraints are satisfied:

(2.a) ¢ = update(c, v),

(2°b) z' = f(ﬁ(cinp),ﬁ(v),xp),

(2.¢) (v',d,2') €8S,

(2.d) Vigypuin = MaX Growth IMSS(¢/, 2'),

where update(c, v) updates the external metabolite
concentrations ¢ according to reaction fluxes, sto-
ichiometry, and cell volume changes. Eq.(2.c) en-
compasses Egs.(1.a~c). As shown in [Thuillier et al.
(2021), one can derive a necessary Boolean condi-
tion for these constraints (see Suppl. Sect. 2), which
we denote by Eq.(2.Crelaxed)-

2.2 The inference problem for regulatory
rules

Next we address the compatibility between the d-
rFBA dynamics of a RMN and given time series
data for reaction fluxes, regulatory protein states
and input metabolite concentrations.

Observed time series. An observation is a triple
0 = (VGrowth, ¢, Tp), where (i) vgrowth € R denotes
a Growth flux, (ii) ¢ € RI™P| the input metabo-
lite concentrations, (iii) p € (BU {L})!"! repre-
sents regulatory protein states, which can be ei-
ther Boolean values or undefined (“L”). An ob-
served time series is a sequence of observations

To = (00, ,0m),m > 0.

Compatibility between an observed time se-
ries and a RMN. A RMN and an ob-
served time series To = (00, " ,0m), with

0; = (VGrowth;,Ci, Zp;),0 < i < m, are said to be
compatible with maximum distance K € N and
noise rate 0 < e < 1 if there exists a d-rFBA
simulation Ts = (8,...,5),l > m, of the RMN,
with RMSS §j = (ﬁj,éj,i‘j),o < ] < l, and a
function ¢ : {0,...,m} — {0,... I} associating
each observation with a RMSS, such that the
following conditions are satisfied for 0 < i < m:
(3.a) 0 <g(i+1)—g(i) <K,

(S.b) i‘g(i)lnp = ﬁ(ci),
(B.c)VpeP,x;, # L = ig(i)p =,

VGrowth; ~ VGrowth;
(3d) 17—’_6 S G%%U}gh I'MSS(C“I(](Z)) S 17_6

Eq.(3.a) states that consecutive observations are
separated by at most K d-rFBA simulation steps.
Eq.(3.b) ensures the complete match between the
discretized values of the d-rFBA simulation and the
observed inputs. Eq.(3.c) constrains the Boolean
states of proteins in the d-rFBA simulation to
be equal to the observed ones, when available.
Eq.(3.d) states that the simulated growth is close
(up to the allowed noise) to the observed growth.

Inference problem. Eqs.(2) in Sect. charac-
terize the admissible sequences of RMSSs w.r.t. a
given RMN and Egs.(3) the compatibility between



a RMN and an observed time series. The problem
of inferring regulatory rules compatible with a set
of observed time series is:

Problem statement tackled by MERRIN: In-
ferring regulatory rules from observed time series

Input:

1: a set of observed time series
{Tl,... , T}, q > 1;

2: a metabolic network A" = (Int, Ext, R, S);

3: a set of regulatory proteins P;

4: a prior knowledge network (PKN) G whose
nodes belong to InpUPUR and such that there
isnoi > jegwithi,j e InpUR;

5: a noise parameter € € [0, 1[;

6: a maximum distance K € N between observa-

tions.
Output: All BNs f e BIPHRIHPI gych
that:
1: f is locally monotone;
2 G(f) € G;

3: for each T the associated RMN (N, Inp, P, f)
has a d-rFBA simulation Ts compatible with
T? (satisfying Eqs.(3));

4: there is no BN f/ € F smaller than f consid-
ering the local functions in disjunctive normal
form (subset minimality ordering).

In practice, we focus on the smallest (subset-
minimal) compatible BNs by considering a partial
ordering between BNs based on the disjunctive nor-
mal form (DNF) of the local functions (Chevalier
et al.,[2019). However, our approach can be used to
enumerate all compatible BNs, not only the subset-
minimal ones.

2.3 Resolution using hybrid Answer Set
Programming

The inference problem relies on hybrid optimization
as it requires exploring the combinatorial domain of
putative regulatory BNs constrained by the PKN,
and checking both combinatorial constraints link-
ing consecutive states of regulatory proteins accord-
ing to a given observed time series (Eq.(2.b) and
Egs.(3.b-c)) and linear arithmetic constraints re-
lated to the characterization of RMSSs and v g owih
optimization (Egs.(1), Egs.(2.c-d), Eq.(3.d)). To
solve this problem, we used SMT (Satisfiability
Modulo Theory) solving (Barrett and Tinelli, [2018;
Janhunen et al., 2017), by implementing a resolu-
tion framework relying on constraint propagation:
whenever a solution satisfying the combinatorial
part is found, the linear part is checked. If the lin-
ear check succeeds then the solution is accepted.

Algorithm 1 Hybrid Resolution: T =
{T17"' aTq}aN7P7g7€7K

1: Inp < {m | m € Ext,3r € R, Sy > 0}

2: n < |Inp| + |R| + |P|

3F « {f | f €€ B* = B"G(f) € GA
f is locally monotone}

[ASP solving]

4: select f € T wverifying (2.a), (2.b) and
(Q-Crelaxed) R

5. RMN < (N, Inp, P, f)

6: for all 7" € T do

7. select a family of RMSS {5f,---, 3] } of the

RMN satisfying constraints (3.a), (3.b) and
(3.¢)
8: end for

[Linear solving]
9: check with linear programming whether (2.c)
and (3.d) hold
10: if (2.c) and (3.d) hold then

11:  f is a solution

12: else

13:  for all 0j and its associated RMSS 5}, do
14: 0; = (’Ué‘mwthj’cé"x;) and ‘§;c = (6127 é}w‘%i)
15: if ﬁérowthk > (’Uérowthj)/(l - 6) then

16: add Eq.(4) with « = &},

exclude any RMSS associated with 0;- that
do not verify Eq.(4).

17: else if 0¢,500n, < (VGrowtn,)/(1+¢€) then

18: add Eq.(5) with z = &%
exclude any RMSS associated with o§~ that
do not verify Eq.(5)

19: end if

20:  end for

21:  return to step 4

22: end if

If it fails then the solution is rejected and new
constraints are added to the combinatorial part to
avoid alternative solutions which would for sure fail
the linear check as well.

The inference from purely combinatorial con-
straints was formulated using Answer Set Program-
ming (ASP) (Baral, 2003} |Gebser et all 2012)), a
logic programming framework for expressing sym-
bolic satisfiability problems. Modern solvers like
Clingo (Gebser et al.L[2017) support various reason-
ing modes, including subset-minimal enumeration.
The linear arithmetic constraints were formulated
in linear programming.

The constraint propagation exploits a mono-
tonicity property of the objective vgrowtn Of
RMSSs: for fixed input metabolite concentrations,



inhibiting (resp. releasing an inhibition of) a re-
action cannot increase (resp. decrease) the maxi-
mum value of vgrewtn- Thus, given input metabo-
lite concentrations ¢y € RIM™Pl and an optimal
RMSS (v, g, x), we can characterize optimal RMSS
(v, o, 2") for which v, i < Verowtn (Eq.(4))
resp. UIGTowth 2 UGrowth (Eq(5)) by requiring

4) Vr € R,z < =, resp. (5) Vr €
R, zl. > x,.
This allows performing constraint propagation dur-
ing the combinatorial resolution and further reduc-
ing the number of linear programming checks.

Algorithm and implementation. The hybrid reso-
lution of the inference problem is detailed in Al-
gorithm [I] For the sake of simplicity, we explain
the global solving scheme on the full time series
T, although the software implementation extends
this algorithm to incomplete time series. In prac-
tice, Algorithm 1 is implemented by extending the
Clingo solver, using its Python API, with a lin-
ear constraint propagator, implemented with the
python PuLP library, and the solver COIN
. Each problem instance was ex-
ecuted on Fedora 34 with an 8 core processor i7-
1165G7@2.80GHz and 16GB of RAM.

3 Results

3.1 MERRIN workflow

The MEtabolic Regulation Rule Inference (MER-
RIN) software implements the workflow in Fig.
to infer regulatory rules of a RMN from possibly in-
complete and noisy observed time series (Sect.
and using Algorithm 1.

MERRIN takes as input (i) a metabolic network
N = (Int, Ext, R, S) in SBML format, (ii) a set of
regulatory proteins P (ii) a set of observed time se-
ries T = {T%,...,T9} with their type (complete,
kinetic-fluxomic, kinetic-transcriptomic, transcrip-
tomic) in CSV format, and (iii) a prior knowledge
network (PKN) G in text format. To allow for in-
complete and noisy time series, two parameters can
be set: (i) K € N the maximum number of interme-
diate unobserved RMSSs for each time series; (ii)

€ [0,1] the estimated noise rate. For the rest of
the paper, we will consider € = 0.3 and K = 10.

The search space F consists of all Boolean net-
works (BNs) f of dimension n = |Inp| + |R| + |P|
whose influence graph G(f) is a subgraph of the
PKN G. The size of F is doubly exponential in n.
MERRIN returns as output all subset-minimal lo-
cally monotone regulatory BNs f € F such that the
associated RMN (N, Inp, P, f) is compatible with

Time series data

(kinetics, metabolomics,
transcriptomics, proteomics,
fluxomics)

Compression and
binarization

Metabolic network .
Prior Knowledge
Network (PKN)

!

Combinatorial
constraints
ASP Model

Dlscretlzed
time series data

Regulatory
network
candidate

Linear
constraints
LP Model

constralms
verified ?

constraints
verified ?

Update
Search
space

constraints
verified ?

Set of regulatory networks that
verify time series data

(a) MERRIN software

5 Use Cases

TIME SERIES

Dynamic RFBA[ | kineticsFluxomicsTranscriptomic

RMN

DATA TYPES

DEGRADATION LEVELS
x10 x10 x10 Xx10 XIO x10
MERRIN DEGRADED TIME
INFERENCE SERIES

(b) Data generation procedure

240 SIMULATIONS
VARYING DATA
TYPES AND DATA
DEGRADATION

Fig. 1:  (a) Workflow of the MERRIN soft-
ware for metabolic regulation rule inference. (b)
Degraded time series generation procedure:
generation of 240 time series for the RMN of
(Covert et all,[2001)), with different levels of incom-
pleteness and noise.

the observed time series 7' = {T*,... T},

3.2 Application to a
metabolic model

core regulated

Problem instance. To validate our approach, we
applied MERRIN to synthetic data generated for
a core regulated metabolic network originally pro-
posed in (Covert et al., 2001), which we refer to as
the gold standard. (i) The metabolic layer of the
gold standard (see Fig.[2(a))), also serving as input
for MERRIN, contains 20 reactions and 8 exter-
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The nodes are regulatory proteins. Edges represent the Boolean functions: green edges denote activation,
red edges inhibition. Yellow highlighted edges are the inferred regulation from the complete noise-free

time series. @ Set of permitted interactions use

for the inference. Red edges, solid and dot, are

inhibitions. Green edges, solid and dot, are activations. The set of solid edges describes the influence
graph of the regulatory network of @ FlexFlux simulations of the inferred RMN (yellow highlighted
regulations in using the experimental conditions of (Covert et al. [2001). These simulations are

identical to the simulations of the reference RMN.

nal metabolites, among them the 5 inputs Carbonl,
Carbon2, Oxygen, Fext, Hext. (ii) The regulatory
layer of the gold standard involves the four regula-
tory proteins RPcl, RPO2, RPb, RPh. (iii) In order
to explore alternative regulatory rules that could
explain the observed time series data, we consider
the PKN in Fig. 2(b)} which includes for each edge
in the influence graph of the gold standard all possi-
ble combinations of signs and directions. Moreover,
two edges from Carbon2 to RPcl, and four edges
between RPcl and Tcl were added as possible al-
ternative regulations to be explored. It follows that
the search space to be explored by MERRIN con-
tains ~ 1.8 x 10'° locally monotone BNs, including
the gold standard.

Degraded time series generation. We used the
workflow in Fig. to generate a benchmark of
240 time series sets. First FlexFlux (Marmiesse
et al., 2015)) was used to generate complete kinetic-
fluzomic-transcriptomic (KFT) d-rFBA simulation
data for the five environmental conditions of the
core RMN (see Suppl. Sect. 3.1), each yielding 301
RMSS (initial biomass = 0.1g.L~!, steps = 300,
intervals = 0.01h). Then, for each complete KFT
time series, we generated (i) a kinetic-fluzomic
(KF) time series by removing the values of the reg-
ulated proteins, (ii) a kinetic-transcriptomic (KT)
time series by discretizing all fluxes to binary values
(iii) a transcriptomic (T) time series by discretizing
all fluxes and metabolite concentrations to binary



values. The resulting time series were further com-
pressed by removing redundant time points to em-
ulate biological experiments where only a few se-
lected measurements are made. Finally, for each
of the five environmental conditions and each type
of data (KFT, KF, KT, T), we generated 60 ran-
dom time series at different noise rates (0%, 10%,
20%, 30%, 40% and 50%), by randomly deleting
time points and increasing or decreasing quantita-
tive values. Altogether we obtained 240 sets of 5
incomplete and/or noisy time series, each including
6 to 18 time points after the compression step.

Inference scores. The quality of MERRIN predic-
tions was evaluated on two different levels. First,
we measured the distance between the observed
time series, on which the inference was based, and
the time series obtained by simulating the inferred
model. The distance between two RMSS time series
S={s -, sm}and § = {8°,--- 5"} w.r.t. aset
of components A was computed as the residual sum
of squares (RSS): RSSA = 31" 0 > calsh — 84)2.
We used RSSp to measure the accuracy of the pre-
diction of the time series for the four regulatory
proteins (RPcl, RPO2, RPh, RPb) and RSSgys
to measure the accuracy of the prediction of the
time series of the eight external metabolites (Car-
bonl, Carbon2, Oxygen, Hext, Fext, Dext, Eext,
Biomass).

Second, we measured the ability of MERRIN to
infer the expected regulations using the recall and
precision of the inferred BN. Given BNs f and f ,
the recall of G(f) w.r.t. G(f) is the fraction of edges
of G(f) in G(f), i.e., recall = |G(f)NG(f)I/IG(f)I;
where |G(f)| denotes the number of edges. The

precision of G(f) w.r.t. G(f) is the fraction of

edges of G(f) in G(f), i.e., precision = |G(f) N

GHI/IG).

3.3 Performance of MERRIN on complete
data

MERRIN was first applied to the complete noise-
free kinetic-fluxomics-transcriptomics (KFT) time
series corresponding to the five different environ-
mental conditions. On this input, MERRIN in-
ferred exactly one smallest regulatory BN in 6.95s.
The inferred regulatory rules are shown with yel-
low highlighted edges in Fig. The BN contains
seven regulatory rules (for RPO2, RPcl, RPh, RPb,
Tc2, R2a and R8a) of the gold standard, three of
which regulate reaction activity. It has a precision
of 1, meaning that all seven regulatory rules are in
the gold standard; and a recall of 0.64, because four
of the regulatory rules of the gold standard have not

been retrieved (rules for Rba, R5b, R7 and Rres).
Both RSSSs are equal to 0: although the recall is not
1, the d-rFBA simulations of the five experiments
with the inferred regulatory BN (Fig. match
exactly the complete noise-free time series. The un-
recovered regulatory rules of the gold standard are
not necessary to explain the observed time series.
This is consistent with the discussion in (Covert
et al.,[2001)) that the regulation of Rres is not neces-
sary for the optimal solution. Biologically, this reg-
ulation is only present to ensure that unnecessary
respiratory enzymes decay in an anaerobic environ-
ment. However, since enzyme amounts are not ex-
plicitly represented in the d-rFBA framework, the
time series do not reflect this biological behavior,
hampering the inference of the regulation. Simi-
larly, R5a and Rb5b were introduced in the RMN
to model that aerobic and anaerobic carbon syn-
thesis is catalyzed by different enzymes. However,
these enzymes are not included in the model and
both reactions are strictly equivalent. It is there-
fore not surprising that MERRIN cannot infer the
regulation stating which of the two reactions should
be selected. Finally, the missing regulation of R7
in the inferred RMN is explained by the fact that
R7 cannot be activated in d-rFBA simulations op-
timizing growth because its activation would con-
sume carbon and energy, leading to a decrease in
biomass synthesis. Therefore, regulating R7 is not
necessary to explain its activity in the simulations.

3.4 Impact of data
noise

incompleteness and

Range of application of MERRIN. When consid-
ering higher degradation rates (40% and 50%), 9 of
the 60 test instances reached the time limit of 600s
(see Suppl. Sec. 3.2.1). The number of BNs also
increased drastically at 50% degradation, as well
as the RSS scores, suggesting that the degradation
rate of 30% is the limit for the MERRIN approach.
As shown in Suppl. Sect. 3.2.2, we also tested the
case of kinetic-fluxomics instances. Such instances
do not contain any information on the four regula-
tory protein states, making it difficult to infer regu-
latory rules between proteins and reactions. As ex-
pected, MERRIN is not able to correctly determine
the regulatory rules controlling them. This leads to
time-consuming enumeration of a very large num-
ber of BNs, all compatible with the observed time
series, but considering all the possible regulatory
protein states. Based on these results, we suggest to
use MERRIN only on kinetics and transcriptomics
real data sets. According to the design of MER-
RIN, proteomics data can be viewed as alternative
to transcriptomics data if they are available. There-
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Fig. 3: RSS depending on data type and
degradation level. Each vertical bar corresponds
to the results of MERRIN on the 10 instances asso-
ciated with a considered data type (KFT, FT, T)
and degradation type (0%, 10%, 20% and 30%).
Each square corresponds to one solution and its
color to RSS ranges (see legend). A black edge
separates the MERRIN results on the different in-
stances.

fore, in the following, we focus only on the data
types KFT (kinetic-fluxomics-transcriptomics), KT
(kinetics-transcriptomics) and T (transcriptomics)
with a degradation rate between 0 and 30%, which
represents 120 instances.

Number of models inferred by MERRIN. Fig.
shows the number of subset-minimal models in-
ferred by MERRIN in the given time limit for
the 120 tested instances . When a solution was
reached in the time limit, MERRIN inferred at
most two subset-minimal models. In total, 134
BNs were inferred from the 120 instances. Among
these 134 BNs, there were only 15 different BNs,
see Fig. 2 in the Suppl. Sect. 3.2.2. For each of
these models, we computed the precision and recall
(see Sect[3.2)) with respect to the gold standard (see
Suppl. Sect. 3.2.3, Fig. 3). For 110 instances out of
120, the precision is equal to 1, meaning that all the

regulatory rules inferred in these BNs are present
in the gold standard. The maximum recall is equal
to 0.64, while the minimum recall is 0.55.

Performance. Among the 120 instances of our
benchmark, only one has reached the time limit
(grey square in Fig. [§). For this instance, we do
not have any information whether or not there is
a solution. In 3 out of the 120 instances (Fig. ,
MERRIN reported that no BN satisfied the con-
straints. This happens only at 30% noise rate. For
the 116 other instances, the average inference time
was 25.975s.

Simulation scores. For each of the 134 BNs in-
ferred, we compared the associated d-rFBA time se-
ries of external metabolites and regulatory proteins
to the ones of the gold standard using the RSSgys
score (Fig. [3(a)) and the RSSp score (Fig. [3(b)).
In Fig. (3] green squares correspond to cases where
MERRIN inferred a unique BN whose associated
RMN has exactly the same r-dFBA simulations as
the gold standard (RSSgyx = 0 (Fig. [§(a)) and
RSSp = 0 (Fig. B[b))). Interestingly, the same
BN was inferred for each green square, and this
BN is the same as the one obtained on complete
data (Fig. Yellow squares of Fig. [3| stand for
BNs reproducing the gold standard RMN simula-
tions with a very small error. These errors are due
to missing regulatory rules. For example, all the
BNs with RSSgyt | 1 and RSSp = 1 are BNs for
which the regulatory rule of reaction R2a has not
been inferred. Red squares correspond to the worst
possible RSSgx: (> 1000), equivalent to cases in
which no regulatory rules were inferred. This hap-
pens twice among the 120 experiments.

Impact of degradation rate. A vertical bar of 10
green squares in Fig. |3| means that MERRIN in-
ferred, for each of the 10 test instances, a unique
BN that perfectly matches the gold standard. This
occurred only for KT and KFT instances with no
degradation in the input time series. RSSgy and
RSSp increased with the degradation rate, as one
should expect. However, most of the RSS scores
are very small, emphasizing that the inferred BNs
can almost perfectly reproduce the gold standard
when the degradation rates is less than 30%.

Impact of the type of data. The results are iden-
tical for the complete (KFT) and the kinetic-
transcriptomics (KT) instances (except one KP at
30%, which reached the time limit of 600s). This
could be expected since MERRIN reasons over bi-
narized fluxomics data, which once binarized are



identical to the qualitative information provided by
transcriptomics data. In addition, the inferred BNs
from the KFT and KT time series reproduce the
gold standard with good precision most of the time,
except in two cases (red squares).

For transcriptomics (T) time series instances, our
results show that no inferred BN was able to per-
fectly reproduce the gold standard. However, for
each inferred BN both RSSg,; and RSSp are small:
RSSp < 1 for all, except for two instances, and
RSSgy¢ < 1. This suggests that without infor-
mation on external metabolite concentrations, it
is harder for MERRIN to explain if the observed
RMSS is due to some regulations or to a specific
combination of external metabolite concentrations.
In this case, regulatory rules, such as the rule con-
trolling the reaction R2a, are missed.

4 Discussion and conclusion

We introduced MERRIN, a novel approach to in-
fer rules for metabolic regulation in changing en-
vironments. MERRIN is based on the d-rFBA
framework, which combines discrete simulations of
Boolean networks, modeling the activity of regu-
latory proteins, with the prediction of metabolic
response, based on linear programming.

Advantages of using constraint propagators. A
characteristic of the inference problem is that the
set of BNs verifying both combinatorial and linear
constraints is small compared to the set of BNs ver-
ifying only the combinatorial constraints. To ad-
dress this issue, our resolution implements a Sat-
isfiability Modulo Theory (SMT) approach with a
dedicated algorithm for combining Boolean satis-
fiability with linear programming: we designed a
constraint propagation strategy on top of the An-
swer Set Programming solver Clingo by exploiting
a monotonicity property of the optimization ob-
jective in RMNs. This strategy reduced substan-
tially the number of candidate solutions to be vali-
dated, by generalizing counterexamples satisfying
the combinatorial constraints but not the linear
ones encountered during the search.

Possible strategies to infer all regulatory rules.
MERRIN infers regulations only when they im-
prove the fitting between observations and simu-
lations, which depends on the underlying optimal-
ity principle (here optimizing growth). Since the
presence of some regulations from the gold stan-
dard does not affect the fitting, it is not possible
for MERRIN to infer them. Inferring more regula-
tions would require to introduce enzyme amounts

and their synthesis. Methods such as r-deFBA (Liu
and Bockmayr, [2020)), should allow solving this is-
sue.

Impact of the synchronous simulation assumption.
The d-rFBA framework as defined in (Covert et al.,
2001; | Marmiesse et al.,2015) uses synchronous sim-
ulation of BNs (the state of all regulatory proteins
is updated simultaneously). While our implemen-
tation allows considering asynchronous simulation,
this results in a less constrained model. Indeed, the
fact that a regulatory protein has the same state in
two consecutive steady states could be explained ei-
ther with the application of a regulatory rule, or by
the absence of an update. Therefore, considering
asynchronous updates would probably require con-
sidering further time constraints in order to match
the experimental observations.

Use of synthetic data to validate network inference.
The validation of methods related to the inference
of regulatory rules can be misleading since there is
no reference multi-layer data set or reference RMN
allowing large-scale validations. As discussed in
(Covert et al) 2001) and confirmed in (Thuillier
et al) [2021)), even in the most complete (small-
scale) gold standard RMN introduced in (Covert
et al., |2001)), some regulatory rules introduced ac-
cording to literature-based knowledge have no im-
pact on the RMN simulation. To address this issue
and to test our approach, we used a benchmark
strategy consisting in generating several types of
data from the simulations of a gold standard. This
allowed testing the robustness of the MERRIN ap-
proach in different scenarios of data types (combi-
nations of kinetics, fluxomics and transcriptomics
data) and noise (up to 50% noise introduced in the
data). We argue that such a benchmark strategy
could be used in a similar way to test the robustness
of any other dynamical network inference method
when only few reference data are available.

Impact of data types and quality. According to our
results, the performance of MERRIN on kinetic and
transcriptomics data is similar to complete data (ki-
netic, fluxomics and transcriptomics). This sug-
gests that inferring regulatory rules of metabolic
networks actually would not require fluxomics data,
which are most probably the hardest data to obtain
experimentally. In this direction, a perspective to
extend the MERRIN approach would be to iden-
tify the best experimental designs to discriminate
the models associated with the PKN. In addition,
MERRIN seems to be sensitive to noise only for
single fluxomics data. In all other cases, up to 30%



noise in the data has few impact of the MERRIN
performance.

Scalability. The computation times in this study
are encouraging for inferring regulations in larger
networks. Handling linear constraints reduces to
FBA, which can be done efficiently on genome-scale
networks. However, this has to be done many times
during combinatorial search. Thus, for inferring
large-scale regulated metabolic networks improved
constraint propagation techniques may become nec-
essary to further prune the combinatorial search
space.
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