A scalable semantic framework for IoT healthcare applications - Archive ouverte HAL
Article Dans Une Revue Journal of Ambient Intelligence and Humanized Computing Année : 2020

A scalable semantic framework for IoT healthcare applications

Rita Zgheib
Thomas Plageman
  • Fonction : Auteur
  • PersonId : 1013405
Vera Goebel
  • Fonction : Auteur
  • PersonId : 1015773
Rémi Bastide

Résumé

IoT-based systems for early epidemic detection have not been investigated yet in the research. The state-of-the art in sensor technology and activity recognition makes it possible to automatically detect Activities of Daily Living (ADL). Semantic reasoning over ADLs can discover anomalies and symptoms for disorders, hence diseases and epidemics. However, semantic reasoning is computationally rather expensive and therefore unusable for real-time monitoring in large scale applications, like early epidemic detection. To overcome this limitation, this paper proposes a new scalable semantic framework based on several semantic reasoning techniques that are distributed over a semantic middleware. To reduce the number of events to process during the semantic reasoning, a Complex Event Processing (CEP) engine is used to detect abnormal events in ADL and to generate the associated symptom indicators. To demonstrate real-time detection and scalability, the proposed framework integrates a new extension of ADLSim, a discrete event simulator that simulates long-term sequences of ADL.
Fichier principal
Vignette du fichier
zgheib2020.pdf (1.06 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03695152 , version 1 (14-06-2022)

Identifiants

Citer

Rita Zgheib, Stein Kristiansen, Emmanuel Conchon, Thomas Plageman, Vera Goebel, et al.. A scalable semantic framework for IoT healthcare applications. Journal of Ambient Intelligence and Humanized Computing, 2020, ⟨10.1007/s12652-020-02136-2⟩. ⟨hal-03695152⟩
92 Consultations
243 Téléchargements

Altmetric

Partager

More