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Abstract IoT-based systems for early epidemic detec-
tion have not been investigated yet in the research.
The state-of-the art in sensor technology and activ-
ity recognition makes it possible to automatically de-
tect Activities of Daily Living (ADL). Semantic rea-
soning over ADLs can discover anomalies and symp-
toms for disorders, hence diseases and epidemics. How-
ever, semantic reasoning is computationally rather ex-
pensive and therefore unusable for real-time monitoring
in large scale applications, like early epidemic detec-
tion. To overcome this limitation, this paper proposes
a new scalable semantic framework based on several se-
mantic reasoning techniques that are distributed over a
semantic middleware. To reduce the number of events
to process during the semantic reasoning, a Complex
Event Processing (CEP) engine is used to detect ab-
normal events in ADL and to generate the associated
symptom indicators. To demonstrate real-time detec-
tion and scalability, the proposed framework integrates
a new extension of ADLSim, a discrete event simulator
that simulates long-term sequences of ADL.
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1 Introduction

Recent advances in sensor technology, activity recog-
nition for Smart Homes, and Ambient Assisted Living
(AAL) promise a wealth of technology support for indi-
viduals at home and especially for those with a need for
care. However, ambient sensors able to detect whether
individuals are healthy or (start to) develop a disease
cannot be expected to be readily available in the near
future. Activities of Daily Living (ADL) is used for
more than 60 years to assess the functional status of
people (Katz and et al., 1970) and disease detection
like neurodegenerative diseases (Hochgatterer and et al,
2011; Serna and et al., 2007; Lotfi and et al., 2012;
Fernández-Llatas and et al., 2011). Furthermore, recent
AAL and IoT technologies can automatically detect
ADLs (Wu and et al., 2018). Hence, a new IoT-based
framework that enables the analysis of ADL is an alter-
native to ambient health sensors. Analyzing ADLs can
reveal symptoms which in turn be used to estimate the
probability that an individual has a certain disease. For
example, a continuously reduced activity level might in-
dicate fatigue or an unusually high frequency of toilet
visits might indicate diarrhea. (Zgheib and et al., 2017)
proposed SeMoM, a semantic message oriented middle-
ware architecture for IoT-based monitoring of ADLs.
The authors show that semantic interoperability as well
as the integration of expert knowledge in an IoT sys-
tem can be provided through ontologies. For example,
the Disease Ontology (DO) (Schriml and et al., 2011)
and SYMP (Schriml, 2018) are two ontologies that can
be used to describe symptoms and diseases in an IoT
system environment.

Thus, even if sensor technology is not yet ready to
directly detect whether a human has a disease, it is fea-
sible to automatically detect certain diseases through
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continuous ADL analysis to derive symptoms and map
these symptoms to diseases using ontologies. Each step
of such a chain of data processing tasks brings in a
higher level of semantics, thus allowing to eventually
derive information on the occurrence of a specific dis-
ease. Interestingly, the computational complexity is also
increasing step by step in this processing chain. This
might not pose a problem when processing the sensor
data from a single home, but the more data needs to be
processed the bigger is the challenge to perform this in
real-time with a given computing infrastructure. Solv-
ing this scalability issue is the main challenge that we
tackle in this work.

Scalable solutions are important, because the seri-
ous health problems of greatest significance today are
chronic diseases which are frequent in senior citizens
living in retirement homes, or in children living in or-
phan houses (Thakar and Pandya, 2017). These envi-
ronments are prone to acquisition and spread of nosoco-
mial infection because residents share the same sources
of air, food, water, and health care in a crowded in-
stitutional setting (Strausbaugh and et al., 2003). For
instance, the elderly population has gained research at-
tention since it is particularly vulnerable to several dis-
eases that could be infectious. Also, epidemic outbreaks
of infectious diseases in retirements house increases the
mortality rate of the resident population as presented
in (Ziakas and et al., 2016).

In this paper, an extension of the SeMoM archi-
tecture is proposed to monitor diseases and epidemics.
Detecting the outbreak of epidemics means to contin-
uously monitor the health status of large populations
and correlate the detected cases of diseases over time.
Processing the data from large populations introduces a
scalability problem. Especially the last step in the data
processing chain, i.e., the use of an ontology to map
symptoms to diseases is computationally very costly.
Indeed, the time needed for a single invocation of a se-
mantic query (e.g. SPARQL or C-SPARQL query) is
correlated with the amount of data it has to process.
This paper proposes a solution to the scalability prob-
lem, in order to enable real-time epidemic detection in
very large populations.

The core idea to solve this problem is to combine
different data analysis techniques and semantic reason-
ing (like SPARQL and C-SPARQL) in such a way that
the large amounts of activity data are processed with a
system that is dedicated for Complex Event Processing
(CEP). For instance, Esper (espertech, 2006) is CEP-
based engine that is several orders of magnitude faster
than C-SPARQL as shown in (Margara et al., 2018).
The reason for this choice of these different technolo-

gies is the trade-off between performance and the ability
to perform semantic reasoning.

The paper is organized as follows: in Section 2, a
state of the art of the several disease and epidemic de-
tection solutions is presented as well as IoT frameworks
in AAL environments. Section 3 presents a detailed de-
scription of the new Scalable Semantic Framework for
IoT healthcare applications and its application to epi-
demic detection. In Section 4, the experiments and per-
formance evaluation that demonstrate the scalability
of the proposed framework are presented. Finally, Sec-
tion 5 presents the future work and possible research
fields.

2 State of the Art

The core idea of the research work proposed in this
paper is to provide an IoT-based solution that tackles
two problems. The first problem is related to the disease
and epidemic detection in large compounds. The second
problem is the scalability, because semantic reasoning
techniques present high overhead. This section presents
a literature survey of a broad range of research solutions
that studied disease detection, IoT frameworks and rea-
soning techniques.

2.1 From ADL to Epidemic Detection in AAL

Several types of sensors have been proposed as data
sources for activity monitoring. They can be classified
into multimedia-based (Onofri and et al., 2016) and
sensors-based solutions (wearable, smartphone-based or
ambient) as presented in (Avci and et al., 2010; Alessan-
dra and et al., 2016). These solutions have been pro-
posed to analyse and parse a stream of data so that hu-
man activities can be inferred (Pires and et al., 2016).
Human activity has been studied at various levels. Some
works focus on simple tracking of persons, others fo-
cus on estimating the physical state of persons in the
scene and various analyses have been conducted on de-
tecting human actions (simple and complex) (Abdallah
and et al., 2018).In particular, an activity detection sys-
tem in AAL environments automates the recognition of
ADL such as eating, grooming, cooking, drinking, and
taking medicine.

Going beyond the typical activity detection, some
works discussed how to analyze the information related
to the detected activities. As presented in (Ryoo and
Aggarwal, 2006), the high-level understanding of hu-
man activity may enable the detection of the normal be-
havior and abnormal behavior of persons. For example,
fall detection monitoring systems (Lampoltshammer,
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2014; Pierleoni and et al., 2015; Yu and et al., 2012)
consist on recognizing anomalies in the activities of the
person at home. This topic is very well studied due to
its importance in providing a safe aging in place. The
correlation between lifestyle and health status has been
introduced in (Ghayvat and et al., 2018) and disease
detection approach has been defined as a possible direc-
tion of anomaly detection. In (Perriot and et al., 2014),
the authors propose an algorithm to characterize physi-
cal and abnormal activities in COPD (Chronic Obstruc-
tive Pulmonary Disease) patients. Noury et al. (Noury
and et al., 2016) show that abnormal behavior of per-
sons at home reflects the correct functioning of their
homeostasis, thus their health and well being. More-
over, the smart environment can help to identify and
model progression of neurodegenerative disorders (Hochgat-
terer and et al, 2011) such as dementia and Alzheimer (Varathara-
jan and et al., 2017; Krishnan and Cook, 2014) by
evaluating performances in the execution of ADL such
as repeating several times the same activity as shown
in (Serna and et al., 2007). In this trend, the solutions
proposed in (Lotfi and et al., 2012; Fernández-Llatas
and et al., 2011) aim to identify relevant information re-
garding any anomalous behavior for elderly occupants
suffering from dementia.

Anomalies in human behavior such as not eating
and not going to toilet regularly (Hsu and Chen, 2010)
can be seen as symptom indicators to diseases such as
stomach problems or diarrhea. It plays a prominent role
in healthcare analytics and could increase the medical
practitioner’s knowledge. An expert-like decision could
be taken even by a semi-trained individual particu-
larly in response to the medical emergency as described
in (Ukil and et al., 2016).

From the other side, people living in crowded con-
ditions (military, cruise ships, dorms) are at high risk
of contamination of diseases, as are people living in
developing countries who often have a diet that con-
tains contaminated food or water. IoT has been found
recently as an effective and proactive solution which
provides monitoring of viruses and epidemics. Ebola is
one of the deadliest and most infectious viruses which
spreads rapidly and affects a large fraction of the pop-
ulation. In (Sareen et al., 2016), a cloud-based archi-
tecture is proposed for monitoring and controlling the
Ebola disease. It provides automatic categorization of
patients into different categories (uninfected, suscepti-
ble, exposed, infectious, highly infectious, and recov-
ered). The infected users or regions are identified as
involved in the spread of the disease based on the pro-
posed Temporal Network Analysis (TNA). This archi-
tecture is based on wireless body area network (WBAN)
to collect vital parameters of the body and RFID tech-

nology for capturing the close proximity interactions
between users. An extension of this proposal has been
provided in (Sareen and et al., 2017) for monitoring
the Zika virus which has been declared an emergency
by the World Health Organization (WHO) as it has
affected newborn babies with microcephaly and neuro-
logical disorders.

Despite its major and critical effect, disease and epi-
demic detection is not investigated enough in the re-
search domain. As previously presented, the work done
for epidemic detection is centered on detecting one spe-
cific disease/epidemic such as Ebola. This paper covers
this topic and an IoT-based framework is proposed to
enable the analysis of the daily activities of elderly and
the processing of data when deviations of daily activ-
ities are observed. These deviations could infer symp-
toms indications that reveal a possible disease for the
elderly.

2.2 IoT-based Framework Solutions in AAL

Providing an IoT framework consists in defining an ar-
chitecture that connects together numerous physical
sensors, integrates expert knowledge and enables rea-
soning on data based on defined rules. Middleware so-
lutions have been found to address technical interop-
erability issues and communication requirements in an
IoT environment (Razzaque and et al., 2016). Service
Oriented Architecture (SOA) (Wolf and et al., 2010)
and Message Oriented Middleware architecture (MOM)
have been recognized in the literature to provide an
interoperable platform and management services be-
tween sensors and applications in AAL (Ambient As-
sisted Living) context. Especially, MoM (Curry, 2004)
architecture with its publish/subscribe paradigm has
been put into light for its effectiveness in offering loose
coupling communication between IoT components which
enforces scalability in such environments.

Ontologies have been proved to provide a formal and
logic description for sensors and data in AAL environ-
ments (Ziaeefard and Bergevin, 2015; Meditskos et al.,
2016). Specifically, domain applications use ontologies
and semantic description as a way to define types, prop-
erties, and interrelationships of the entities that exist
for a specific domain. In healthcare, many ontologies de-
scribe diseases. For instance, SNOMED-CT (Donnelly,
2006) is a well known ontology that represents an ad-
vanced terminology and coding system for eHealth. The
Disease Ontology (DO) (Kibbe and et al., 2014) repre-
sents human diseases for linking biomedical knowledge
through disease data. It has been developed in 2011 as a
standardized ontology for human disease with the pur-
pose of providing the biomedical community with con-
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sistent, reusable and sustainable descriptions of human
disease terms. An extended version (Kibbe and et al.,
2014) has been presented in 2015. The SYMP (Schriml,
2018) ontology was designed to describe symptoms and
signs for illness around the following concept: ”A symp-
tom is a perceived change in function, sensation or ap-
pearance reported by a patient indicative of a disease”.
In (Mohammed and et al., 2012), authors propose to
align DO and SYMP in order to have a Diseases Symp-
toms Ontology for Medical Diagnosis. They have added
the has Symptom object property to link each disease to
its symptoms. Detecting diseases and epidemics in AAL
environment requires the integration of domain knowl-
edge and linking symptoms with diseases. For that, in
this paper, DO and SYMP ontologies are acquired to
provide expert knowledge description as well as concep-
tualization of the disease domain.

In recent framework approaches, researchers pro-
pose (Lohr et al., 2015; Bispo et al., 2015) to combine
middleware solutions with semantic techniques, because
it provides fully interoperable, flexible, and scalable ar-
chitectures for IoT applications in AAL context. SMArc
(Rodŕıguez-Molina and et al., 2013), OM2M (Alaya and
et al., 2014), and OpenIoT (Kim and Lee, 2014), are ex-
amples of these frameworks. Each solution focuses on
describing sensors data and metadata in a single se-
mantic format (RDF) using domain specific ontologies.
Semantic data is then communicated via a middleware
architecture. The common goal of such frameworks is
to tackle the heterogeneity and the issues related to
the physical infrastructure of sensors in IoT, and to
provide important manageability and collaboration be-
tween IoT applications. SeMoM is a Semantic Message
Oriented Middleware architecture for IoT healthcare
applications proposed in (Zgheib and et al., 2017) and
applied for activity detection use case. The aim of this
architecture is to facilitate sensors data collection and
the inference of new knowledge or information needed
to detect an event such as diseases of the monitored
person. The authors showed the effectiveness of this ar-
chitecture, but the complexity and overhead of semantic
reasoning is still a drawback and affects the scalability.
In this paper, this limitation is studied and an exten-
sion of SeMoM is proposed to tackle this issue. In the
following section, a brief description of SeMoM is pre-
sented and the extension is decribed in the following
section

2.2.1 SeMoM architecture

SeMoM (Semantic Message Oriented Middleware) (Zgheib
and et al., 2017) is an IoT architecture that has been
proposed to deal with the complexity of designing and

Fig. 1 Overview of the SeMoM architecture for IoT Applica-
tions.

managing IoT systems, the heterogeneity of the gen-
erated data, the scalability, and the lack of flexibility.
SeMoM offers a flexible and interoperable communica-
tion system and allows collaboration between IoT ap-
plications. It facilitates the integration of novel appli-
cations that reason based on information from several
data sources. It uses MoM to achieve a loose coupling
communication between software components through
the publish/subsribe model. Data sources (publishers)
and destinations (subscribers) are decoupled from each
other and exchange messages based on predefined topics
expressed as subscriptions through a message broker.

On top of MoM, there is the semantic layer that pro-
vides a semantic enrichment of data and improves the
semantic interoperability through an IoT system. The
Cognitive Semantic Sensor Network ontology (CoSSN)
ontology is responsible for semantic data enrichment.
It is a generic ontology that enables describing domain
concepts and sensors in the same ontology which is
not proposed by other solutions. It can be extended
with application domain concepts such as those related
to healthcare. It includes conceptual entities from the
SSN (Semantic Sensor Network) ontology (Haller and
et al., 2018) related to the description of sensor data
and metadata and sensors observations.

Based on the combination of semantic concepts with
MoM concepts, new components like semantic sensors,
virtual semantic sensors and cognitive sensors have been
defined (see Figure 1) involving both semantic and com-
munication features.

2.3 Reasoning techniques in AAL

In order to process and reason on sensors data, IoT
frameworks should rely on reasoning techniques. Ma-
chine Learning, and semantic techniques are leading
solutions at the time of writing. As an example for
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Machine Learning techniques, authors in (Sareen and
et al., 2017), used the Naive Bayesian Network (NBN)
to detect the possibly infected users and used Google
Maps Web service to provide the geographic position-
ing system (GPS)- based risk assessment to prevent the
outbreak. A clustering analysis technique has been pro-
posed in (Kwok and et al., 2002) to model the normal
behavior of elderly and determine the boundaries of all
clusters. When an event is observed outside the bound-
aries, it is viewed as an anomaly. Predictive techniques
such as Markov model have also been used in anomaly
detection projects such as in MonAMI project (Main-
streaming on AMbient Intelligence) (Novák and et al.,
2012). From the other side, Hoque et al. apply seman-
tic rules that explain specific variations of activities in
specific scenarios in Holmes (Hoque et al., 2015).

In the ODHMAD (Online Daily Habit Modeling and
Anomaly Detection) model (Meng et al., 2017), the au-
thors develop an on-line activity recognition (OAR) al-
gorithm that consists on determining the occurrence of
activities by modeling the activation status of sensors.
Aran et al. (Aran and et al., 2016) propose a probabilis-
tic spatio- temporal model to summarize and describe
natural daily behavior of elderly. Anomalies are then
defined as significant changes from the learned behav-
ioral model and detected using a cross-entropy measure.
They also propose a semantic layer with the purpose of
creating a common format of generated events for dif-
ferent possible sensors.

The most distinguishable feature of the machine
learning techniques is their ability to correlate and com-
bine sensors data with location information to extract
activities such as running or walking. However, these
techniques usually require a long period of learning be-
fore beeing able to predict the activities. Semantic rea-
soning is gaining more interest recently and a number of
systems and languages were produced, aiming at RDF
stream processing (Khrouf and et al., 2016). Their ad-
vantage pertains to the ability of processing semantic
data in a semantic IoT framework. However, their com-
putational complexity affects the scalability and real-
time requirements in IoT.

Integrating middleware approaches with semantic
technologies creates a suitable platform and environ-
ment for IoT applications as shown in (Zgheib and
et al., 2019). But the scalability, and real-time require-
ments remain open challenges for applying semantic
methods. In this paper, we propose to combine CEP
with semantic techniques and to apply it over a se-
mantic middleware approach for epidemic detection.
CEP (Eckert and et al., 2011) encompasses methods,
techniques, and tools for processing events and timely
detection of complex events. DO and SYMP ontolo-

gies provide mapping between symptoms and diseases,
hence they provide the needed domain knowledge that
is required in our framework for disease detection. Rely-
ing on DO ontology requires the use of the SPARQL (Quilitz
and Leser, 2008) query language to retrieve and manip-
ulate data in the DO ontology and the C-SPARQL (Bar-
bieri and et al., 2010) to query Stream of semantic data.

To summarize, many research activities exist to ad-
dress specific diseases such as Ebola and Zika. However,
a thorough search of the relevant literature yielded no
proposal on how to achieve a highly scalable solution
for semantic reasoning over a large number of events to
detect a possible disease/epidemic.

3 Scalable Semantic Framework for early
Epidemic Detection

In this section, the methodology adopted to achieve
high scalability for a semantic framework for early epi-
demic detection is described as well as the different pro-
posed components of this framework.

Fig. 2 Overview of the modular process of the Epidemic De-
tection in nursing home complex.

3.1 Methodology

Figure 2 presents the methodology that has been used
as a basis for the framework. This methodology can be
presented as follows: Anomalies in ADL sequences
can be analyzed as symptom indicators (SI). The
resulting stream of symptoms can be analysed
to detect a disease. When the same disease is de-
tected for many apartments/individuals a pos-
sible epidemic is occurring. For example: An ab-
normal toileting activity can be an indicator to diar-
rhea symptom; a list of diarrhea, vomiting, and fatigue
presents symptoms to gastroenteritis; and when more
then 20% of the apartments present the same disease a
possible epidemic is detected.

The core idea is to rely on a hybrid solution based on
CEP techniques and semantic reasoning on top of Se-
MoM to process these streams of data. ADL sequences
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are generated from each apartment complex, a CEP
based tool is used for pre-processing to generate SI that
capture abnormalities in activities. SI streams are then
semantically enriched in order to apply semantic queries
and detect a potential disease. Finally, a potential epi-
demic is detected based on how many apartments are
infected.

3.2 SeMoM extension

In order to detect a possible epidemic, three required
information have been defined in the presented method-
ology: ADL streams, SIs and Diseases. Based on the
SeMoM architecture, the main data source for ADL
streams are sensors. A scalability analysis of the sys-
tem requires realistic, large scale datasets, e.i., ADL
traces across several months from many apartments.
Such traces do not currently exist. The deployment of
numerous sensors is prohibitively expensive, the collec-
tion of data is constrained by privacy concerns, and the
resulting traces typically do not include the anomalies
we want to detect in the evaluation of the system. To
solve this problem, data is generated with the simulator
ADLSim.

Semantic sensor, Virtual semantic sensor, and cog-
nitive sensors have been defined in SeMoM architec-
ture (Section 2.2.1). In this paper, a semantic hierar-
chy of the different sensors in an IoT environment is
defined and presented in Figure 3. In this hierarchy,
the smartness of sensors is related to the level of rich-
ness of semantic data and the level of knowledge pro-
vided by each sensor. Physical and semantic sensors
are domain-independent sensors that can be used in
any domain, they generate observations that contain re-
spectively sensor output and basic description of sensor
outputs. The virtual semantic and cognitive sensors are
domain-specific sensors, they embed a software com-
ponent to interpret and reason on received data, and
generate new information as well as new knowledge.

The SeMoM architecture is extended and new com-
ponents and sensors have been defined based on the
previously presented hierarchy. The scalable semantic
framework is presented in Figure 4. It is based on four
main components. Each one of them is a specialized
software component and is responsible to detect/receive
data, analyze/reason on them and generate new infor-
mation. To perform this task each component subscribes
to the broker by specifying the topic of interest. When
a new information is ready, each component publishes
it to the middleware by specifying the topic related to
the published information. For instance, the topics de-
fined in the epidemic framework are ADL, SI, disease.

Fig. 3 Overview of the hierarchy of the different connected
sensors in IoT.

and epidemic. The four collaborate and exchange infor-
mation to detect an epidemic as follows:

– ADL component: is a semantic Sensor that use the
CoSSN ontology to describe physical sensors obser-
vations and publishes them to the broker for the
topic ADL. This framework is proposed to be used
with implemented physical devices at home. How-
ever, due to the load of sufficient ADL datasets for
testing and evaluation, physical sensors are replaced
by the ADLSim simulator to generates sequences of
ADL at each home.

– SI component: a virtual semantic sensor and a CEP-
based component that subscribes to ADL topic, de-
tects anomalies in ADL sequences to indicate par-
ticular symptoms (SI), and publishes SI streams to
the broker.

– Disease component: a cognitive sensor and a SPARQL-
based component that subscribes to SI topic, ana-
lyzes the anomalies and uses the expert knowledge
in the DO ontology to detect a potential disease. It
publishes observations containing a possible disease
in a specific apartment.

– Epidemic component: a cognitive sensor and a C-
SPARQL-based component with the goal to reason
on the stream of RDF observations of diseases and
detect a potential epidemic when it occurs. Epi-
demic component subscribes to disease topic and
publishes observations to the broker for the topic
epidemic.

In this section, the architecture of the framework
is presented and the process view of the different com-
ponents is described. SI component is first described
assuming that ADLSim data generator is publishing
ADLs sequences. ADLSim and its extensions are de-
tailed later in Section 3.6
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Fig. 4 Overview of the semantic framework to detect the
spread of disease in a nursing home complex.

3.3 SI component

The main objective of this work is to detect the out-
break of a disease which is observed in terms of symp-
toms the disease causes in an infected human. These
symptoms are derived from ADL sequences streams
which are sent from each apartment to the middleware.

3.3.1 SI Queries: CEP for Symptom Indication

Physical sensors do not have the capability of detecting
symptoms. For this reason, the concept of a Symptom
Indicator (SI) has been created to characterize aspects
of activities in a manner that helps to determine the
likelihood of the presence of particular symptoms.

Detection of in an ADLs stream is implemented us-
ing the Esper CEP library based on the concepts in
a previous work on Event Proximity (Kristiansen and
et al., 2016). A CEP query for SI is called an SI query.
SI queries take as input activity sequences, and contin-
uously assess the magnitudes of selected activities in a
sliding window of 24 hours, called the current situation.
Such magnitudes typically include the total duration,
frequency, and energy expenditure of activities that are
affected by a disease. For instance, gastroenteritis usu-
ally results in diarrhea, which is reflected in the dura-
tion and frequency of toileting. The current situation
exists at two levels: for individual apartments (apart-
ment specific SI) and for the complete apartment com-
plex (complex-wide SI). While complex-wide SI is use-
ful to assess the likelihood of an epidemic, apartment-
specific SI is useful to identify the infected individuals.

The output of SI queries is quantified on a scale
from one to five, where three represents a normal mag-
nitude of the measured activity, two and one represent
low and very low magnitudes, respectively, and four and
five represent high and very high magnitudes, respec-
tively. For any given current situation, the SI values

are determined based on the deviations of activity mag-
nitudes from the learned, normal 24-hour magnitudes.
Based on the observation of normal activity, we apply
maximum likelihood estimation to construct Gaussian
distributions that capture the normal magnitudes. An
SI value of three is emitted whenever the magnitudes
for the current situation lie within ±1 standard devia-
tion (SD) from the normal mean. SI values of two and
four indicate magnitudes that deviate by more than one
SD but less than two SD, below and above the normal
mean, respectively. Similarly, SI one and five denote
magnitudes that deviate by more than two SD above
or below the normal mean, respectively.

When applying the same SI threshold for apartment-
specific SI, our preliminary experiments show that the
resulting SI fluctuate considerably more than the complex-
wide SI. Our analysis shows that this is caused by the
considerably lower amounts of data available for the
current situation. To alleviate this problem, we select
wider SI thresholds for apartment-specific SI.

A key advantage of SI queries stems from the pos-
sibility to define thresholds for when to emit SI events
(called SI emission thresholds), in effect providing a fa-
cility to generate alarms upon abnormal SI. Since such
events are emitted only in abnormal situations, sig-
nificantly fewer events are generated, and significantly
fewer resources are required to analyze the SI, com-
pared to the number of ADLs SI queries analyse. One
can adjust the sensitivity of the SI queries emissions
by adjusting the threshold, e.g., to emit events for high
or low values, or only for very high and low values. In
addition, the queries can be configured to emit daily
SI summaries (called 24-hour SI statistics) to enable a
continuous search for potential long-term trends.

3.3.2 Semantic Enrichment of SI

As explained in Section 3.3.1, SI queries generate SI
streams, e.g., ”SI very high” and ”SI very low” for par-
ticular symptoms when abnormalities occur during ac-
tivities. In order to integrate the SC in the SeMoM ar-
chitecture, we embed it as a virtual sensor in the CoSSN
ontology. This involves the semantic enrichment of each
SI concerning each activity.

For example, a SI for the ActivityLevel sent by the
CEP component will be semantically described as pre-
sented in the Listing 1. In this example, we describe
the SI Observation126 related to the observedProperty
ActivityLevel of the elderly in Apartment 82. The num-
ber of the apartment is added as a featureOfInterest
linked to the observation by the object property has-
FeatureOfInterest. This observation has been observed
at ”1970-03-12T08:14:00:00+10:00”, and the time has



8 Rita Zgheib et al.

been added in the resultTime concept. Finally, the value
of SI = 1 (i.e., ”very low”) in this case is linked to the
observation by the hasSimpleResult object property.

After creating the semantic observations using the
CoSSN ontology, the SC connects to the broker and
publishes the observations in RDF format enabling the
use of this information by other components connected
to the broker. It publishes seven RDF messages related
to the seven SI (see ADLSim section 3.6.1) for each
apartment for a specific time when there is an alert.
Each published message is labeled with the correspond-
ing SI as the topic of the message. For instance, to send
the message in Listing 1, we use publish(”ActivityLevel”,
SI Observation126).

Listing 1 An example of the semantic observation of the SI
”ActivityLevel” sent by ADLSim.

<CoSSN/SI Observation126”> a sosa:Observation;
sosa:observedProperty <CoSSN/ActivityLevel”>
sosa:hasFeatureOfInterest <CoSSN/Apartment82”>
sosa:madeBySensor <CoSSN/VirtualSemanticSensor/SI VirtualSensor82

”>
sosa:resultTime ”1970−03−12T08:14:00:00+10:00”ˆˆxsd:dateTime;
sosa:hasSimpleResult ”1”ˆˆxsd:int;

3.4 Disease Component (DC)

In the proposed solution, the DC subscribes to the SI
information to assess if there is a possible disease in a
specific apartment. In order to map the semantic obser-
vations of SI to a disease, expert knowledge is needed to
link a set of symptoms to a specific disease. This frame-
work relies on the proposed aligned ontology in (Mo-
hammed and et al., 2012). DO and SYMP ontologies
have been aligned in order to have a Diseases Symptoms
Ontology for Medical Diagnosis. The has Symptom ob-
ject property has been created to link each disease to its
symptoms. For example, the gastroenteritis disease has
symptoms: diarrhea, vomiting, nausea, and fatigue as
shown in Figure 5. In our disease detection model, we
rely on the disease/symptom model to detect if there is
a possible disease in a specific apartment.

In the CoSSN ontology, the DC is considered as a
cognitive sensor that detects the SI from SI queries to
publish the corresponding disease to the broker. Be-
tween the detection of SI and the detection of diseases,

Fig. 5 The disease and symptoms model for gastroenteritis.

there are two main steps. The first one is to map the
SI to symptoms and the second is to aggregate these
symptoms and to find the corresponding disease. Based
on this classification, we can infer symptoms related to
the SI. For example, if an SI for the amount of toilet-
ing is ”very high”, a potential symptom is a diarrhea.
When an SI for the activity level is ”very low”, a pos-
sible symptom is fatigue.

When the DC receives all SI for a specific apart-
ment(inhabitant), it analyzes the values and creates a
set of possible symptoms. Then, the Disease Compo-
nent runs a SPARQL query searching the correspond-
ing disease for the set of symptoms. An excerpt of such
query is presented in the Listing 2. It should be noted
that the Disease component uses a cache to limit the
number of accesses to the ontology and accelerate the
simulation. This cache is filled with results of an ontol-
ogy access for future similar requests.

Listing 2 An exerpt of SPARQL query searching for a specific
disease based on set of symptoms.

”prefix oio: <http://www.geneontology.org/formats/oboInOwl#>”
+ ”prefix owl: <http://www.w3.org/2002/07/owl#>”

+ ”prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#>”
+ ”prefix doi: <http://purl.obolibrary.org/obo/doid#>”
+ ”prefix DOID: <http://purl.obolibrary.org/obo/DOID >”
+ ”prefix SYMP: <http://purl.obolibrary.org/obo/SYMP >”
+ ”SELECT ?baseLabel ”
+ ”WHERE {”
+ ”?baseClass rdfs:subClassOf∗ ?superClass .”
+ ”?baseClass rdfs:label ?baseLabel .”

+ ”?baseClass rdfs:subClassOf ?symp1 .”
+ ”?symp1 a owl:Restriction .”
+ ”?symp1 owl:onProperty doi:has symptom .”
+ ”?symp1 owl:someValuesFrom ” + symptoms.get(0) + ” .”

+ ”?baseClass rdfs:subClassOf ?symp2 .”
+ ”?symp2 a owl:Restriction .”
+ ”?symp2 owl:onProperty doi:has symptom .”
+ ”?symp2 owl:someValuesFrom ” + symptoms.get(1) + ” .”

+ ”FILTER (?superClass = DOID:4)”
// subclasses of disease
+ ”}”;

When a new disease is found in a specific apartment
at a specific time, the DC publishes a new message for
the topic ”disease”. The message contains the same in-
formation as a semantic observation described in SSN.
An example of such a published message is presented
in the Listing 3 where we detected a gastroenteritis in
Apartment 82 at ”1970-03-12T08:14:00:00+10:00”.

Listing 3 An example of the semantic observations sent by
the Disease cognitive sensor.

<CoSSN/DiseaseObservation120”> a sosa:Observation;
sosa:observedProperty <CoSSN/Disease”>
sosa:hasFeatureOfInterest <CoSSN/Apartment82”>
sosa:madeBySensor <CoSSN/CognitiveSensor/DiseaseCognitiveSensor”>
sosa:resultTime ”1970−03−12T08:14:00:00+10:00”ˆˆxsd:dateTime;
sosa:hasSimpleResult ”gastroenteritis”ˆˆxsd:string;

The DC allows to infer if a specific disease occurred
in a specific apartment at a specific time thanks to the
DO ontology that provides the needed expert knowl-
edge. However, applying real-time advanced reasoning



A Scalable Semantic Framework for IoT Healthcare Applications 9

on the disease data could infer more relevant informa-
tion. As an example, the duration of a disease in a spe-
cific apartment, the number of infected apartments in a
specific duration or a potential epidemic can be inferred
by applying the C-SPARQL reasoning technique on the
disease data. In the following, we present the Epicemic
Component as a C-SPARQL component for real-time
reasoning on RDF streams of disease.

3.5 Epidemic Component (EC)

Regarding the Oxford dictionaries, an epidemic is ”A
widespread occurrence of an infectious disease in a com-
munity at a particular time”. In this definition there
are no crisp, quantitative rules to apply for epidemic
detection. Hence, monitoring an epidemic in a medical
complex such as a nursing home requires first to define
the needs of the medical staff and the expert knowl-
edge. Several possibilities are available at this stage.
The first one is the need of the carer to know if there is
a spread of a disease in the complex. In such case, we
need to track how the number of infected apartments
evolves over several days. Another possible requirement
arises when a specific disease is already detected in the
complex. Hence, we need to detect as soon as possible
a potential infection in new apartments. The epidemic
component aims to answer the queries of the medical
staff and to provide the related knowledge continuously
based on the received RDF streams of disease.

For that, the EC collects data by subscribing to
the disease topic that tags the streaming of diseases
sent by the Disease Component. Then, it uses the C-
SPARQL reasoning technique to infer the number of in-
fected apartments. The C-SPARQL (Barbieri and et al.,
2010) language is an extension of SPARQL that sup-
ports continuous queries. The queries are registered over
RDF data streams and then are continuously executed.

The knowledge inferred from the C-SPARQL queries
defines a new semantic observation that this component
can publish to the broker again. The EC plays both
roles of publisher and subscriber, so it is described as
a cognitive sensor in the CoSSN ontology. It detects
the streaming of diseases observations and observes the
”Epidemic” property. An example of a possible result
for a C-SPARQL query over the last 10 days that looks
for apartments where the disease have persisted for five
days as shown in Listing 4. The query denotes the first
and last days of infection.

Listing 4 An example of a possible result for C-SPARQL
query

http://www.w3.org/ns/CoSSN/apartment12 ”2329200000”ˆˆhttp://www.
w3.org/2001/XMLSchema#long ”2674800000”ˆˆhttp://www.w3.org
/2001/XMLSchema#long

http://www.w3.org/ns/CoSSN/apartment96 ”2674800000”ˆˆhttp://www.
w3.org/2001/XMLSchema#long ”3020400000”ˆˆhttp://www.w3.org
/2001/XMLSchema#long

http://www.w3.org/ns/CoSSN/apartment95 ”2329200000”ˆˆhttp://www.
w3.org/2001/XMLSchema#long ”2674800000”ˆˆhttp://www.w3.org
/2001/XMLSchema#long

3.6 Epidemic Simulation

Due to the lack of sufficient ADL datasets for testing
and evaluation, ADLSim is used in the proposed frame-
work to generate the data.

3.6.1 ADLSim

ADLSim is the main data source and implemented as
a semantic sensor in the proposed framework that will
publish ADL streams. The onset and duration of per-
formed activities (called activity instances) are simu-
lated based on statistical distributions and rules to han-
dle activity conflicts. It is a discrete event simulator, en-
abling the experimenter to define arbitrary changes in
simulated behavior to occur at any point in simulated
time, of any duration and magnitude, and either gradu-
ally or instantly. It can also produce highly realistic re-
sults when the activity models are parametrised based
on real world traces (Kristiansen and et al., 2018). In
this work, we use one of the most widely citepd publicly
available traces, i.e., the one published by Kasteren et
al. in (Van Kasteren and et al., 2008). The included
activities are selected based on the Katz independence
index (Katz and et al., 1970). This is a widely acknowl-
edged measure in health care of the independence of
people that live alone, and is particularly relevant to
assess the independence of elderly people. Thus, these
activities consist of the most essential ADL, and are
therefore exactly the set of activities we wish to include
in our simulation since most people perform these ac-
tivities every day. These activities are named (IDs in
parenthesis) leave house (1), use toilet (2), take shower
(3), go to bed (4), prepare breakfast (5), prepare dinner
(6) and get drink (7). Their names are accurate indica-
tors of the activity that is performed. Consult (Katz
and et al., 1970; Van Kasteren and et al., 2008) for more
detailed description of the involved activities and how
the real world traces are captured, and (Kristiansen and
et al., 2018) for details on the parametrization of the
corresponding activity models.

To use ADLsim for the evaluation of the proposed
solution, it is extended with multi-apartment support
as well as epidemic and disease models.
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3.6.2 Multi-apartment Simulation

ADLSim was originally designed to simulate activities
within a single apartment. In the current work, it is
therefore necessary to extend ADLSim to support many-
apartment simulations. We follow a two-stage simula-
tion approach. In Stage 1, we perform N separate sim-
ulations of activity within N apartments with the same
simulated duration but with different random seeds and
store the activity traces for all apartments within one
trace file. All activity instances in the trace file are pre-
fixed with the ID of the apartment in which they were
performed. In Stage 2, a single simulation run is per-
formed, taking as input the trace files from Stage 1.
Here, all events from all N simulations are executed in
parallel, simulating the activity in N apartments simul-
taneously. Note that this solution cannot simulate the
effect of interaction between separate apartments.

Infections like gastroenteritis are typically accom-
panied by a reduction in activity level. It is therefore
useful to also extend ADLSim with the ability to sim-
ulate energy use per activity per time unit, that can
be temporarily reduced during simulation to simulate
reductions in activity level. The ADL traces used to
parametrize ADLSim lacks the necessary metrics and
values for energy expenditure. Fortunately, this is not
needed to demonstrate that the queries can detect long-
term, significant changes in activity levels. Instead of
using traditional metrics like calorie consumption, ADL-
Sim associates each activity with a simple metric called
”energy expenditure” quantified in terms of a real num-
ber between 0.0 (extremely low expenditure, e.g., dur-
ing sleep) and 10.0. We also add an additional activity
exercise with the high energy expenditure 10.0 to en-
able the simulation of more drastic changes in activity
levels upon infection.

3.6.3 Epidemic and disease models

The model consists of two sub-models, the epidemic
model and the disease model (in the remainder of this
paper, we refer to these two models collectively as the
epidemic models). The epidemic model is used to simu-
late the spread of the disease, i.e., when and where (in
which apartment) infections occur. The disease model
mimics the various stages of disease development after
an individual is infected. The symptoms of the disease
are manifested as gradual adjustments of the parame-
ters of the activity models in ADLSim.

Epidemic model: The epidemic model has the three
parameters epidemic start, epidemic duration (ED) and
daily infection probability (DIP). The first two deter-
mine the first day of the epidemic relative to the be-

ginning of the simulation, and the number of days the
epidemic lasts. The last parameter denotes the proba-
bility that an apartment is infected for any given day.
An infected apartment will stay infected for the total
duration of the disease, as determined by the param-
eters of the disease model. To mimic the phenomenon
of post-disease immunity, a given apartment can not
be infected more than once during an epidemic. A key
advantage of this simple infection model is that the de-
cision of whether an individual apartment is infected in
a given day corresponds to a Bernoulli trial. Under this
model, the expected number of infected apartments is

1 − (1 − DIP )ED (1)

Disease model: The disease model has three param-
eters symptom onset duration, disease duration, and
symptom recovery duration. The parameters control the
duration of the three main stages of disease develop-
ment, namely the initial stage of gradual symptom on-
set, the intermediate stage with stable symptoms, and
a final recovery stage during which the symptoms grad-
ually diminish. The duration is specified in terms of the
number of days. Symptoms are characterized in terms
of their impact on activity model parameters, such as
the frequency, duration, energy expenditure, and omis-
sion probability of activities. The target values of ac-
tivity parameters are first configured to reflect a par-
ticular disease. Once an individual is infected, the dis-
ease model transitions between three states that cor-
respond to the three above mentioned disease stages.
The impact of symptoms on parameter values is grad-
ually increased during the onset stage and reaches the
target values at the end of the period. The parameter
values are thereafter kept constant during the diseased
state, and gradually returned back to their original val-
ues during the recovering state.

Model output: The effect of the epidemic model is
primarily reflected as changes in the activity traces, i.e.,
in terms of the onset and duration of activities and their
energy expenditure. In addition, the model outputs the
time at which apartments are infected and when they
have recovered.

4 Experiments and Evaluation

This framework has been evaluated for two main fac-
tors, the first one is to check if the framework is able to
detect an epidemic and the second one is the scalability
of the framework. In order to evaluate the detection of
an epidemic, ADLSim has been extended to simulate
a gastroenteritis epidemic in an apartment complex. In
order to evaluate the scalability, a set of experiments
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Table 1 Experiment Parametrization

Component Parameter Values

ADLSim Number of apartments 100
Number of simulated days 90
Number of runs 3

Symptom Indicators Threshold for SI event emissions 3 ± 1, 3±2
Epidemic model Epidemic duration (ED) 10, 30, 60

Daily infection probability (DIP) 0.5%, 1.5%, 3.0%
Epidemic start Day 20

Disease model Onset duration 3 days
Disease duration 9 days
Recovery duration 4 days

Activities affected during disease:
Toileting: duration Increased to 200%
Toileting: time between visits Decreased to 30%
Toileting: probability of interrupting sleep Increased to 100%
Breakfast: omission probability Increased to 75%
Dinner: omission probability Increased to 50%
All activities: activity level Decreased to 50%

have been conducted to check the scalability of each
one of the four main components and the framework as
a whole.

4.1 Gastroenteritis epidemic simulation

Gastroenteritis is a quite common disease among the
elderly. It can be quickly spread between inhabitants
and has been linked to increased mortality among the
elderly van Asten and et al. (2011). In France, the el-
derly were identified as the most frequently infected in
gastroenteritis outbreaks between 2006 and 2009 (Bar-
ret and at al., 2014). Viral gastroenteritis symptoms
may appear within one to three days after infection and
may persist as long as ten days at the severe stage. The
presented experiments have been designed to simulate
the monitoring of 100 apartments in a nursing complex
for 90 days where a gastroenteritis epidemic may occur.
The design of the use-case is based on the literature on
gastroenteritis to be realistic, but it is not a medically
validated application. Its main aim is to demonstrate
the scalability of the proposed semantic ecosystem.

Based on this scenario, it is important that the sim-
ulation models are parameterized to yield (1) various
degrees of abnormalities in activity during a period of
epidemic that approximate what would be expected in
realistic scenarios in order to study to which degree
these abnormalities are detected by the system (Goal
1) and (2) having a sufficient amount of data to facili-
tate scalability analysis (Goal 2). To meet Goal 1 and
2, the epidemic model has been parameterized based
on real-world studies of outbreaks of gastroenteritis in
nursing homes (Gray and et al., 1987; Halvorsrud and
Örstavik, 1980; Goller and et al., 2004; Kirk et al.,
2010). An overview of the parameters is presented in
Table 1. These parameters aim to provide a realistic
epidemic simulation but please note that this point is
not very crucial for the evaluation since we are focusing
on the correctness of the detection of the simulated epi-

demic and not on the validity of the simulated epidemic
model.

The epidemic model: The duration and infection
rate of gastroenteritis in nursing homes change signif-
icantly. For instance, in the three cases in (Gray and
et al., 1987), (Halvorsrud and Örstavik, 1980), and (Goller
and et al., 2004) the infection rate ranges from 36% to
80%, the number of individuals ranges from 42 to 256,
and the time period ranges from 11 to 35 days. There-
fore, different parametrizations are used to cover a wide
range of scenarios, i.e., with all combinations of ED and
DIP where ED is 10, 30, and 60, and DIP is 0.5%, 1.5%,
and 3.0%. According to Equation 1, this yields 4.89%
to 83.92% infected individuals in the simulations. These
infection rates are also reflected in the results in Fig-
ure 6 (e) and (f) (described in Section A).

The disease model: Typical symptoms of gastroen-
teritis are diarrhea, lack of appetite, and fatigue. The
effects of diarrhea are simulated as an increase of toi-
leting in three ways: increasing the duration of each
instance of the toileting activity to 200%, decreasing
the duration between the instances to 30%, and dur-
ing instances, when the need for toileting occurs during
nightly sleep, we increase the probability of interrupt-
ing sleep to go to the toilet from 0% to 100%. Lack of
appetite is simulated by increasing the omission prob-
ability of activities breakfast and dinner from 0% to
75% and 50%, respectively. Finally, fatigue is simulated
by reducing the activity level of all activities to 50%.
It is also necessary to define the duration of the dif-
ferent stages of the disease. Total disease duration de-
pends very much on the gastroenteritis type (Kirk et al.,
2010). We, however, find that a relatively realistic rep-
resentation of the disease is achieved by setting the on-
set, disease, and recovery duration to 3, 9, and 4 days
respectively.

SI Queries: The accuracy of semantic reasoning re-
lies on the selection of appropriate SI queries to pro-
vide reliable input data. SI queries are implemented for
all activities that can be affected by the gastroenteri-
tis disease (i.e., SI queries that characterize the total
duration and number of instances of toileting and ac-
tivities for having meals). In addition, SI queries are
implemented for the total activity level, and for activi-
ties that are not affected by the disease (i.e., the number
of times an individual had a drink and the total dura-
tion of sleep) to demonstrate the ability of SI queries
to specifically target specific activities. All SI queries
have both apartment-specific and complex-wide vari-
ants. They are configured to generate events only when
the SI level exceeds a pre-defined threshold (depending
on the experiments, summarized in Table 1) in addition
to providing SI summaries once every day.
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4.2 Evaluation of the accuracy of epidemic detection

In order to evaluate the accuracy of the proposed frame-
work, first a set of experiments has been conducted
in order to evaluate whether the simulated epidemic
and disease models work as expected. The correspond-
ing experiments are presented in the Appendix A. The
results of these experiments demonstrate 1) that the
epidemic model and all aspects of the SI queries work
as intended and 2) that using the most restrictive SI
emission thresholds can significantly reduce the number
of events emitted and thus save considerable amounts
of event processing resources while preserving clearly
detectable changes in SI values during the epidemic.
Therefore, the following experiment Set 2 relies on SI
emission thresholds. This experiment provided a reli-
able simulation of epidemic so it can be used to evaluate
the accuracy of the framework in detecting epidemics.

4.2.1 Experiment Set 2: Evaluation of the framework
in detecting a gastroenteritis epidemic

The Experiment Set 2 evaluates the accuracy of the
semantic-based detection of simulated diseases and epi-
demic. For instance, the Epidemic Component (EC) is
responsible of the detection process in the proposed
framework hence, this experiment set is designed to
evaluate the EC and to validate if it detects the infected
apartments when an epidemic occurs. For that, 27 sub-
experiments have been conducted varying the ED, DIP
and the seed values according to Table 1. This exper-
iment allows to compare the results with the ground
truth provided by Experiment 1.1, hence, deducing the
recall and precision evaluation parameters based on the
False/Positives values. The C-SPARQL query used in
this experiment is presented in Listing 5. It consists of
searching in the last ten days, the apartments where the
disease lasts for five days. We chose the number five (5)
as a threshold because the gastroenteritis disease be-
comes worrying when it persists more than three days
(with a maximum of 10 days).

Listing 5 C-SPARQL query for the detection of infected
apartments for more than three days

String queryFindApartments =
”REGISTER QUERY HowManyApartmentEpidemic AS ”
+ ”PREFIX : <http://www.streamreasoning.org/ontologies/epidemic−

onto#> ”
+ ”PREFIX ssn: <http://www.w3.org/ns/ssn/> ”
+ ”PREFIX sosa: <http://www.w3.org/ns/sosa/> ”
+ ”PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> ”
+ ”SELECT DISTINCT ?apart ”
+ ”?resultTime1 ?resultTime5 ”
+ ”FROM STREAM <http://streamreasoning.org/streams/diseases>
[RANGE 10d STEP 1s] ”
+ ”WHERE { ”
+ ”?diseaseObservation1 sosa:hasFeatureOfInterest ?apart . ”
+ ”?diseaseObservation2 sosa:hasFeatureOfInterest ?apart . ”
+ ”?diseaseObservation3 sosa:hasFeatureOfInterest ?apart . ”
+ ”?diseaseObservation4 sosa:hasFeatureOfInterest ?apart . ”
+ ”?diseaseObservation5 sosa:hasFeatureOfInterest ?apart . ”

+ ”?diseaseObservation1 sosa:resultTime ?resultTime1 . ”
+ ”?diseaseObservation2 sosa:resultTime ?resultTime2 . ”
+ ”?diseaseObservation3 sosa:resultTime ?resultTime3 . ”
+ ”?diseaseObservation4 sosa:resultTime ?resultTime4 . ”
+ ”?diseaseObservation5 sosa:resultTime ?resultTime5 . ”

+ ”?diseaseObservation1 sosa:hasSimpleResult ?disease . ”
+ ”?diseaseObservation2 sosa:hasSimpleResult ?disease . ”
+ ”?diseaseObservation3 sosa:hasSimpleResult ?disease . ”
+ ”?diseaseObservation4 sosa:hasSimpleResult ?disease . ”
+ ”?diseaseObservation5 sosa:hasSimpleResult ?disease . ”

+ ”FILTER (?resultTime5 = ?resultTime4 + (1000∗60∗60∗24)) .”
+ ” && (?resultTime4 = ?resultTime3 + (1000∗60∗60∗24)) .”
+ ” && (?resultTime3 = ?resultTime2 + (1000∗60∗60∗24)) .”
+ ” && (?resultTime2 = ?resultTime1 + (1000∗60∗60∗24)) .”
+ ” && (?resultTime1 > 1465200000 && ?resultTime5 < 4320000000 ) .”
+ ”}”;

The evaluation of Experiment 2 relies on the F1-score
presented as F1 formula in (2).

F1 = 2 · precision · recall

precision + recall
(2)

This F1-score is equal to the weighted average of Pre-
cision and Recall functions. The Precision function is
equal to the ratio of correctly predicted positive apart-
ments to the total predicted positive apartments.

Precision = TP

TP + FP
(3)

The Recall function is equal to the ratio of correctly
predicted positive apartments to the all apartments in
the actual monitoring system. Therefore, the F1-score
takes True Positives (TP), False Positives (FP) and
False Negatives (FN) into account. True Positives count
infected apartments that are detected during the infec-
tion period. False positive count apartments detected
as infected outside of the epidemic period. False Neg-
atives count infected apartments that are not detected
as infected during the epidemic period.

Recall = TP

TP + FN
(4)

4.2.2 Results and Discussion

The results of the nine sub-experiments with ED=10 of
the Experiment Set 2 are presented in Table 2. Table 3
presents an excerpt of the 18 sub-experiments (ED=30
and ED=60) as they show the same behavior.

Table 2 shows that when the ED is equal to ten
days, the F1-score varies between 0.846169 and 0.9735.
Precision is at its lowest when the DIP is at its high-
est with a value of 0.898. Recall evolves with the same
pattern and has its lowest value (0.846169) with a DIP
of 3%. Table 3 presents the same behavior with a small
diminution of the F1-score when the ED increases (F1-
score: 0.8-0.94 for ED=30 and 0.79-0.93 for ED=60).

Trends in the experiment results show that the F1-
score is diminishing when the DIP increases. This can
be explained by the increasing number of events to deal
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with in the C-SPARQL module. Indeed, C-SPARQL is
known to have a rather bad resolution (1s) (Barbieri
and et al., 2010) which means that it is not fully able
to process large amount of data in a short time pe-
riod. So, the more events to process, the lower the F1-
score. It should be noted that the number of infected
apartments increases when the duration of the DIP is
increased leading to an increasing number of symptom
indicators to process. The DIP has then a direct impact
on both precision and recall. The false negatives for the
lowest DIP has been studied also to understand why
the precision is not at 100%. This result makes sense as
we are looking for five consecutive days of infection in
the C-SPARQL query, but the framework does not use
a stochastic model to generate infection on ADLSim
whose traces serves as a ground truth for the compu-
tation of the F1-score. Therefore, it can happen that
infection are generated with a day without symptoms
during a five-days time window which leads to no de-
tection by the C-SPARQL module.

4.3 Evaluation of the scalability of the proposed
architecture

A key contribution in this work is to enable semantic
data analysis for large-scale scenarios. Experiment Set
3 have been conducted to evaluate the scalability over
semantic reasoning. It consists of six experiments that
evaluate scalability aspects of each of the five compo-
nents in the system individually.
4.3.1 Experiment Set 3: Scalability Analysis

Experiment Set 3 is designed to analyse whether each
component in the proposed architecture is scalable, i.e.,
it has low processing overhead that scales (sub-)linearly
with input workload, and that the architecture as a
whole facilitates semantic analysis in scenarios with high
volume and velocity data.

Thus, this experiment set measures the processing
overhead of each individual component and relates this
to the number of input events processed and output
events generated. For the architecture, it is important
to show that the event frequency is significantly reduced
on the path from the low-level CEP pre-processing with
SI queries, which are highly efficient but lack semantic
reasoning, to the high-level semantic reasoning which
naturally requires more processing time per event.

The main goals of this experiment are to measure
(1) the time spent for event and query processing, and
(2) the number of output events produced. For each
experiment, one additional downstream component is
enabled to study the added processing overhead of each
new component.

The six experiments have been conducted according
to the following protocol: Experiment 3.1 targets ADL-
Sim and the epidemic models. In Experiment 3.2 and
3.3, SI queries are enabled. In Experiment 3.4, seman-
tic reasoning is enabled but the events produced are not
transmitted over MQTT since we focus on the overhead
of semantic enrichment. In Experiment 3.5, the DC is
enabled. As the framework runs a SPARQL query only
when new sets of symptoms are detected by the DC,
this experiment measures the processing time of each
SPARQL query. In Experiment 3.6, all components in
the architecture are enabled. This experiment measures
the processing time of each C-SPARQL query running
when new triples enter the window. In all experiments,
except Experiment 3.3, the SI emission thresholds are
highly restrictive ”high” and ”low”. In Experiment 3.3,
the thresholds from Experiment 1.2 are used, i.e., to
generate SI values whenever the SI value changes from
three (”normal”) to ”very high” and ”very low” .

4.3.2 Results and Discussion

The results from Experiments 3.1 to 3.4 are presented
in Table 4, and those from Experiments 3.5 and 3.6
are presented in Table 5. Each row has results for one
of the six experiments. The first column denotes the
experiment and the involved components. The second
and third columns show the number of input events
processed by the component, and the number of out-
put events produced as a result, respectively. Since the
output events from one component constitute the in-
put events of the component that subsequently pro-
cesses these events, the same number of input and out-
put events is detected. Since ADLSim generates first
event stream, the ”number of input events” is not ap-
plicable (N/A). The fourth column presents the pro-
cessing duration spent per workload. Both the num-
bers of events and processing duration depend on the
parametrization and random variables of the particular
sub-experiments. Therefore, each experiment presents
the ranges of event numbers and processing times ob-
served across all 27 sub-experiments.

As a result, ADLSim produces between 251386 and
256898 events, where each event denotes the beginning
and end of activity instances. About one microsecond
is spent generating each output event, which is at least
one order of magnitude lower than the processing per
workload unit spent in any other component. We also
see that ADLSim produces at least two orders of mag-
nitude more events than any other component. For se-
mantic reasoning to be feasible, it is therefore crucial
that the SI queries significantly reduce this number of
events. Experiments 3.2 and 3.3 confirm that the num-
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Table 2 F1-score Table for nine sub-experiments of Experiment 2.1, ED=10

ED 10
DIP 0.5% 1.5% 3%
Seed 1 2 3 1 2 3 1 2 3

Precision 0.9735 0.963299 0.933 0.9555 0.9499 0.9163 0.9069 0.89855 0.898
Recall 0.9735 0.941875 0.9688 0.90299 0.896 0.8853 0.8075 0.81422 0.799994

F1-score 0.9735 0.95247 0.950563 0.922163 0.900533 0.854318 0.854309 0.854309 0.846169

Table 3 F1-score Table for nine sub-experiments of Experiment 2.1, ED=60

ED 60
DIP 0.5% 1.5% 3%
Seed 1 2 3 1 2 3 1 2 3

Precision 0.909444 0.9322 0.9533 0.89185 0.896 0.906 0.929 0.9034 0.902
Recall 0.71819 0.8233 0.9088 0.74765 0.723 0.7166 0.753 0.7774 0.71

F1-score 0.80258 0.8743723 0.9305183 0.813409 0.800257 0.800246 0.831792 0.835677 0.794566

Table 4 Results from the scalability evaluation for Experiments 3.1, 3.2, 3.3 and 3.4.

Experiment Number of input events Number of output events Processing time

Experiment 3.1: ADLSim and epi-
demic models

N/A 251386 to 256898 0.96 to 1.02 µs / output event

Experiment 3.2: CEP with SI thresh-
old low and high

251386 to 256898 25788 to 28613 31.05 to 36.85 µs / input event

Experiment 3.3: CEP with SI thresh-
old very low and very high

251386 to 256898 2367 to 3851 30.70 to 35.14 µs / input event

Experiment 3.4: Semantic enrichment
with SI threshold very low and very high

2357 to 3851
(equivalent to

16499 to 26957
observations)

16499 to 26957 1.90 to 4.61 to ms / input event

ber of events is reduced by two and three orders of
magnitude, respectively. By comparing the difference
between the processing time of ADLSim and that of
the SI queries, it is clear that the processing overhead of
SI queries per input event is less than 37 microseconds
in all cases. With an average of 28 activity instances
per day per apartment, the SI queries are able to pro-
cess three months of activity traces within 15 seconds,
which is clearly more than sufficient to facilitate rapid
detection of diseases and epidemics. Furthermore, when
comparing the results from Experiments 3.2 and 3.3.,
it shows that the number of output events increases
by one order of magnitude with less restrictive SI emis-
sion thresholds, but that the added processing duration
increases only slightly. This shows that the processing
overhead of SI queries primarily depends on the number
of input events.

The SI component is receiving input from ADLSim
with ”very high” and ”very low” thresholds. Each input
consists of an event composed of seven SI per apartment
per day. In Experiment 3.4, the SI component semanti-
cally enrich each SI as a separate observation, hence the
same input/output is observed. However, the difference
shown in Table 4 can be explained by multiplying the
number of input events by seven. Regarding the seman-
tic overhead, Experiment 3.4 shows that the processing
overhead for each SI input is between 1.90 and 4.61 ms.
The output of the SI component is the input for the Dis-

ease Component that applies SPARQL queries to infer
a disease. This should decrease the number of events in
the output by aggregating the input data.

The results of Experiment 3.5 presented in Table 5
confirm the decreasing number of events in the out-
put. Moreover, the processing overhead is between 46
to 1000 ms per query which is the time to search in
the DO ontology and extract the result. Each SPARQL
query depends on the number of symptoms received
and the detected diseases. This experiment shows that
the processing overhead also depends on the input data.
Finally, in Experiment 3.6 the C-SPARQL component
(1) receives the output events from the SPARQL com-
ponent, (2) applies queries with temporal considera-
tions and (3) generates 0 to 60 messages related to the
number of infected apartments. This experiment shows
that the overall system is able to substantially decrease
the number of events. The first component in ADLSim
sends a number of events in the range of 251386-256898
while the last component (DC) generates a number of
events in the range of 0-60. The processing overhead of
C-SPARQL is between 5 to 10 ms depending on the
amount of RDF streams received and processed per
time unit.

4.4 Summary and key insights

Results previously presented demonstrate that the pro-
posed architecture with the semantic reasoning is suit-
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Table 5 Results from the scalability evaluation for experiments 3.5 and 3.6

Experiment Number of input events Number of output events Processing time

Experiment 3.5: SPARQL 16499 to 26957 2205 to 3086 46-1000 ms/query
Experiment 3.6: C-SPARQL 2205 to 3086 0-60 5-10ms/query

able for diseases and epidemic detection with a F1-score
above 0.79. The precision of the detection of apart-
ments where there is an infection is around 90%. Re-
garding the epidemic detection, the proposed system
is able to detect an outbreak of a particular disease
with three to five days deviation. The SI queries are
able to process large-scale activity data with very low
processing overhead, even on a regular consumer lap-
top. Thus, SI queries are by far efficient enough to fa-
cilitate rapid detection of diseases and epidemics in a
large scale, on-line analysis setting. The semantic rea-
soning techniques SPARQL and C-SPARQL have ef-
ficient knowledge-based processing with an affordable
overhead processing as in just a few seconds we com-
plete querying of three months of data. The results
also show that the processing time per unit of work-
load per component is similar across all parameteriza-
tions in all experiments. This means that the total pro-
cessing overhead increases linearly with the the num-
ber of apartments and/or the number of activities per-
formed per day. These results demonstrate that the pro-
posed framework is scalable. These results demonstrate
that the proposed ontology-based solution with seman-
tic reasoning can be used for the detection of epidemic
outbreaks and it is sufficiently scalable.

5 Conclusions and Future work

In this paper, a scalable semantic framework is pro-
posed for disease and epidemic monitoring in a com-
pound of elderly. This framework would have signifi-
cant effect in improving safety and aging in place for
elderly as long as they desire staying at home. For ex-
ample, this framework could be connected to alarm sys-
tems of kitchen, compound managers and authorities
so they react fast when a problem issues. It also can
be helpful for existing healthcare monitoring applica-
tion such as fall detection systems when the the frame-
work detects anomalies in ADLs. This framework pro-
motes scalability without sacrificing the fundamental
ability of semantic reasoning to detect adverse events
of the type found during epidemics. This framework
solves this problem by preceding semantic reasoning
with CEP processing that reduces the large number of
ADL events to a stream of SI with at least one order of
magnitude fewer events. The resulting SI are analyzed
according to the DO ontology using SPARQL to detect

individual disease instances, which is used as input to
C-SPARQL for continuous detection of epidemics. To
enable realistic evaluation, ADLSim has been extended
and added to the framework as the first element in the
pipeline to simulate realistic ADL sequences, and to
simulate the impact of diseases on ADL.

While the queries and model parameterizations are
inspired by real-world instances of gastroenteritis, the
current framework focuses on the accuracy of how our
queries can detect what was simulated. Future work
will focus on the accuracy of the queries and models,
therefore will include working with health profession-
als to develop and evaluate models for more realistic
epidemic simulation. Moreover,RDF-stream query lan-
guages are a trending and new research topic. It would
be interesting to test other RDF stream processors such
as CQELS (Le-Phuoc and et al., 2011) for instance to
deal with the granularity issue that have been encoun-
tered with C-SPARQL.
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A Evaluation of epidemic simulation in
ADLSim

To obtain reliable results from Experiment Sets 2 and 3, it
is necessary to first ensure that our simulation models and SI
queries work as intended. This section presents a set of experi-
ments designed for this purpose, and discusses the results.

A.0.1 Experiment Goals and Design

The main goals of these experiments are to show that (1) the
epidemic model behaves as intended, (2) the output from the
SI queries correspond to the impact of the epidemic model, and
(3) that the results vary realistically with the values of key
parameters (listed in Table 1).

We conduct two experiments, Experiment 1.1 and 1.2. Each
experiment includes one sub-experiment per combinations of
the three ED and three DIP parameters shown in Table 1. This
enables us to study epidemics ranging from very mild to very
severe. We conduct each sub-experiment three times with dif-
ferent seeds and which results in 3×3×3 = 27 sub-experiments
per experiment. In Experiment 1.1, we use highly conservative
thresholds for SI event emissions. SI values are emitted only
when they change to ”very low” or ”very high”. In Experiment
1.2, we increase the sensitivity of the queries to emit events
whenever the value changes from ”normal” to any other value.
This way we can study the impact on the number of events
emitted for further semantic reasoning. In addition, we gen-
erate every simulated day 24-hour SI statistics regarding the
entire apartment complex.

A.0.2 Results and Discussions

To get a comprehensive understanding of our results, we present
statistics across all runs and parameter values as well as plots
that provide a deeper look at individual runs for a sub-set of
the results.

Figure 6 presents the results from Experiment Set 1. Graphs
(a), (b), (c), and (d) present results from the first run in Ex-
periment 1.1 with ED = 30 and DIP = 1.5% (left) and 3%
(right). The epidemic begins at simulated Day 20. Graphs (a)
and (b) show the complex-wide 24-hour SI statistics (y-axes)
for all simulated days (x-axes), and Graphs (c) and (d) show
the number of apartments (y-axes) with SI values ”very low”
and ”very high” for all simulated days (x-axes). Graphs (e) and
(f) show statistics across all runs for all parameter values from

Experiment 1.1 and 1.2. They show the average (lines) and SD
(error bars) of the number of emitted SI events (left y-axes)
across all three runs per combination of DIP (x-axes) and ED
(with different line colors). Note the differences in the left y-
axes in Graphs (e) and (f). The box plots show the average
number of the infected individual across all three runs (right y-
axes) per combination of DIP (x-axes) and ED (with different
box colors).

The results in Graphs (a), (b), (c), and (d) show a clear im-
pact on the complex-wide SI of the simulated epidemic, namely
that the SI values during the epidemic have significantly larger
absolute values during the epidemic as well as before and after
the epidemic. This effect is also clearly larger with DIP = 3%
than with DIP = 1.5%. We also see that only the queries af-
fected by the disease are impacted, i.e., the bottom five queries.
Notice that although the epidemic lasts from Day 20 to Day 50,
the main impact on the complex-wide SI values is found some-
what later. Three factors contribute to this. The most impor-
tant factor is that a certain amount of time after the epidemic
onset is required for a sufficient number of individuals to be
infected to have a significant impact on the aggregate activity
magnitudes in the whole apartment complex. Second, due to the
gradual onset of symptoms, three days pass after an individual
is infected until the full effect of the symptoms is manifested.
Finally, at the end of the epidemic period, a certain number
of individuals are still symptomatic for some time until recov-
ery, which shows up in the SI queries. There are occasional,
abnormal SI values before and after the epidemic explained by
natural variations in behavior. These are trivially exposed as
false positives by jointly considering a larger set of samples
and/or samples from multiple SI queries. These results thus in-
dicate that the complex-wide SI queries respond correctly to
the simulated epidemic.

The results in Graphs (c) and (d) show that also the apartment-
specific SI values are as expected, i.e., the period with the epi-
demic results in a significantly larger number of apartments
with indications of decreased activity levels reduced intake of
food, and increased toileting. The effect is again clearly more
pronounced with the largest DIP. We can thus conclude that
also the apartment-specific SI work as intended.

Figure 6 (e) and Figure 6 (f) show that the least restrictive
SI thresholds (”high” and ”low”, Figure 6 (e)) yield an order of
magnitude more SI events than the most restrictive thresholds
(”very high” and ”very low”, Figure 6 (f)). This has a signifi-
cant impact on the number of resources required for subsequent
analysis. We also see that the epidemic is clearly detectable by
visual inspection in Graphs (a) and (b) even with the most re-
strictive thresholds. It is therefore advisable in this scenario to
employ highly restrictive SI thresholds to minimize the emission
rate of SI events. The box plots finally show that the number
of infected apartments agrees well with Equation 1, and that
these numbers are proportional to the number of emitted SI.
Thus, we find that the SI thresholds and the epidemic models
work as intended.

Summary and key insights: Results from Experiment Set
1 demonstrate that the epidemic model and all aspects of the
SI queries work as intended. We also find that using the most
restrictive SI emission thresholds can significantly reduce the
number of events emitted and thus save considerable amounts
of event processing resources while preserving clearly detectable
changes in SI values during the epidemic. We therefore decide
to use these SI emission thresholds in Experiment Set 2.
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(c) Experiment 1.1, number of emitted SI events,
DIP = 1.5%
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(d) Experiment 1.1, number of emitted SI events,
DIP = 3.0%
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(e) Experiment 1.1, number of emitted SI events,
SI emission thresholds ”high” and ”low”
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(f) Experiment 1.2, number of emitted SI events,
SI emission thresholds ”very high” and ”very low”

Fig. 6 Results from Experiments Set 1.


