Diagnosis of Event Sequences with LFIT - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Diagnosis of Event Sequences with LFIT

Tony Ribeiro
Maxime Folschette
Morgan Magnin
Kotaro Okazaki
  • Fonction : Auteur
Lo Kuo-Yen
  • Fonction : Auteur

Résumé

Diagnosis of the traces of executions of discrete event systems is of interest to understand dynamical behaviors of a wide range of real world problems like real-time systems or biological networks. In this paper, we propose to address this challenge by extending Learning From Interpretation Transition (LFIT), an Inductive Logic Programming framework that automatically constructs a model of the dynamics of a system from the observation of its state transitions. As a way to tackle diagnosis, we extend the theory of LFIT to model event sequences and their temporal properties. It allows to learn logic rules that exploit those properties to explain sequences of interest. We show how it can be done in practice through a case study.
Fichier principal
Vignette du fichier
Ribeiro_ILP22_Event_Sequences.pdf (354.03 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03689936 , version 1 (07-06-2022)
hal-03689936 , version 2 (21-11-2022)

Identifiants

  • HAL Id : hal-03689936 , version 2

Citer

Tony Ribeiro, Maxime Folschette, Morgan Magnin, Kotaro Okazaki, Lo Kuo-Yen, et al.. Diagnosis of Event Sequences with LFIT. The 31st International Conference on Inductive Logic Programming (ILP), Sep 2022, Windsor, United Kingdom. ⟨hal-03689936v2⟩
142 Consultations
168 Téléchargements

Partager

More