Tony Ribeiro

Maxime Folschette

Morgan Magnin

Kotaro Okazaki

Lo Kuo-Yen

Katsumi Inoue

Diagnosis of Event Sequences with LFIT

Keywords: dynamic systems, logical modeling, explainable artificial intelligence Cumberland Lodge, Windsor, UK

la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Discrete event systems have been formalized as a wide range of paradigms, e.g., Petri nets [START_REF] Petri | Kommunikation mit Automaten[END_REF], to model dynamical behaviors. In this paper, we propose to focus on learning dynamical properties from the trace of executions of such system, i.e., sequences of events. Such a setting can be related to fault diagnosis, which has been the subject of much interest [START_REF] Pencolé | Diagnosability of event patterns in safe labeled time petri nets: a model-checking approach[END_REF]. It consists of identifying underlying phenomena that result in the failure of a system. It takes as input a model and a set of observations of the system under the form of event sequences. In our case, we only consider the event sequences as input and propose a method independent of the model paradigm.

Since its first establishment in the 80s and 90s, Inductive Logic Programming (ILP) has been identified as a promising approach to tackle such a diagnosis problem [START_REF] Muggleton | Inductive logic programming: derivations, successes and shortcomings[END_REF] and several works followed [START_REF] Katzouris | Incremental learning of event definitions with inductive logic programming[END_REF][START_REF] Sato | Fault diagnosis for distributed cooperative system using inductive logic programming[END_REF]. Learning From Interpretation Transition (LFIT) [START_REF] Inoue | Learning from interpretation transition[END_REF] is an ILP framework that automatically builds a model of the dynamics of a system from the observation of its state transitions. Our goal here is to extend LFIT to exploit temporal properties to explain event sequences of interest. Figure 1 illustrates the general LFIT learning process. Given some raw data, like time-series of gene expression, a discretization of those data in the form of state transitions is assumed. From those state transitions, according to the semantics of the system dynamics, several inference algorithms modeling the system as a logic program have been proposed. In [START_REF] Ribeiro | Learning any memory-less discrete semantics for dynamical systems represented by logic programs[END_REF], we extended this framework to learn system dynamics independently of its update semantics. For this purpose, we proposed a modeling of discrete memory-less multi-valued systems as logic programs in which each rule represents the possibility for a variable to take some value in the next state. This modeling permits to characterize optimal programs independently of the update semantics, allowing to model the dynamics of a wide range of discrete systems. To learn such semantic-free optimal programs, we proposed GULA: the General Usage LFIT Algorithm that now serves as the core block to several methods of the framework. In this paper, we show how to use GULA in order to learn logic rules that combine temporal patterns to explain event sequences of interest. We use a case study to show some of the difficulties and interests of the method.

Dynamical Multi-Valued Logic Program

In this section, the concepts necessary to understand the modeling we propose in this paper are formalized.

Let V = {v 1 , • • • , v n } be a finite set of n ∈ N variables,
Val the set in which variables take their values and dom : V → ℘(Val) a function associating a domain to each variable, with ℘ the power set. The atoms of multivalued logic (MVL) are of the form v val where v ∈ V and val ∈ dom(v). The set of such atoms is denoted by

A = {v val ∈ V × Val | val ∈ dom(v)}.
Let F and T be a partition of V, that is: V = F ∪ T and F ∩ T = ∅. F is called the set of feature variables, which values represent the state of the system at the previous time step (t -1), and T is called the set of target variables, which values represent the state of the system at the current time step (t). A MVL rule R is defined by:

R = v val0 0 ← v val1 1 ∧ • • • ∧ v valm m
where m ∈ N, and ∀i ∈ 0; m , v vali i ∈ A; furthermore, every variable is mentioned at most once in the right-hand part:

∀j, k ∈ 1; m , j ̸ = k ⇒ v j ̸ = v k .
The rule R has the following meaning: the variable v 0 can take the value val 0 in the next dynamical step if for each i ∈ 1; m , variable v i has value val i in the current dynamical step. The atom on the left side of the arrow is called the head of R, denoted head(R) := v val0 0 , and is made of a target variable: v 0 ∈ T . The notation var(head(R)) := v 0 denotes the variable that occurs in head(R). The conjunction on the right-hand side of the arrow is called the body of R, written body(R), and all variables in the body are feature variables: ∀i ∈ 1; m , v i ∈ F. In the following, the body of a rule is assimilated to the set {v val1

1 , • • • , v valm m };
we thus use set operations such as ∈ and ∩ on it, and we denote ∅ an empty body. A dynamical multi-valued logic program (DMVLP) is a set of MVL rules.

Definition 1 (Rule Domination). Let R 1 , R 2 be MVL rules. R 1 dominates R 2 , written R 1 ≥ R 2 if head(R 1) = head(R 2) and body(R 1) ⊆ body(R 2).
The dynamical system we want to learn the rules of, is represented by a succession of states as formally given by Definition 2. We also define the "compatibility" of a rule with a state in Definition 3, and with a transition in Definition 4.

Definition 2 (Discrete state). A discrete state s on a set of variables X of a DMVLP is a function from X to (dom(v)) v∈X . It can be equivalently represented by the set of atoms {v s(v) | v ∈ X } and thus we can use classical set operations on it. We write S X to denote the set of all discrete states of X .

Often, X ∈ {F, T }. In particular, a couple of states (s, s ′) ∈ S F × S T is called a transition.

Definition 3 (Rule-state matching). Let s ∈ S F . The MVL rule R matches s, written R ⊓ s, if body(R) ⊆ s.
The final program we want to learn should both: (1) match the observations in a complete (all transitions are learned) and correct (no spurious transition) way; (2) represent only minimal necessary interactions (no overly-complex rules). The following definitions formalize these desired properties.

Definition 4 (Rule and program realization).

Let R be a MVL rule and

(s, s ′) ∈ S F ×S T . The rule R realizes the transition (s, s ′) if R⊓s∧head(R) ∈ s ′ . A DMVLP P realizes (s, s ′) if ∀v ∈ T , ∃R ∈ P, var(head(R)) = v∧R realizes (s, s ′). P realizes a set of transitions T ⊆ S F × S T if ∀(s, s ′) ∈ T, P realizes (s, s ′).

Definition 5 (Conflict and Consistency

). A MVL rule R conflicts with a set of transitions T ⊆ S F ×S T when ∃(s, s ′) ∈ T, R⊓s∧∀(s, s ′′) ∈ T, head(R) / ∈ s ′′ .
Otherwise, R is said to be consistent with T . A DMVLP P is consistent with a set of transitions T if P does not contain any rule R conflicting with T . Definition 6 (Suitable and optimal program). Let T ⊆ S F ×S T . A DMVLP P is suitable for T if: P is consistent with T , P realizes T , and for any possible MVL rule R consistent with T , there exists R ′ ∈ P s.t. R ′ ≥ R. If in addition, for all R ∈ P , all the MVL rules R ′ belonging to DMVLP suitable for T are such that R ′ ≥ R implies R ≥ R ′ , then P is called optimal and denoted P O (T).

In [START_REF] Ribeiro | Learning any memory-less discrete semantics for dynamical systems represented by logic programs[END_REF], we proposed the General Usage LFIT Algorithm (GULA) that guarantees to learn the optimal program of a set of transitions: let T ⊆ S F × S T , GULA(A, T, F, T) = P O (T) (Theorem 5 of [START_REF] Ribeiro | Learning any memory-less discrete semantics for dynamical systems represented by logic programs[END_REF]).

The present work builds upon the definitions presented above. The aim is to use GULA to learn about the possible influence of additional properties along the original observations. If those properties respect the following proposition, they can appear in rules learned by GULA, encoded as regular MVL atoms.

Proposition 1 (Properties encoding).

-Let V := V F ∪ V T a set of MVL feature and target variables; -Let A := A F ∪ A T be the corresponding feature and target atoms; -Let S F ⊆ A F be feature states (one atom of A F per variable of V F); -Let V P be a set of variables, V P ∩ V = ∅, and A P the corresponding atoms; -Let P : S F → S V P a function computing a property on feature states; -Let T ⊆ S F × S T be a set of transitions; -Let T ′ := {(s ∪ P (s), s ′) | (s, s ′) ∈ T } be the encoding of property P on T ; -Then, GULA(A ∪ A P , T ′ , F ∪ V P , T) = P O (T ′) and the rules of P O (T ′) contain atoms of property P only if it is necessary to realize a target.

Proof sketch. By construction from Theorem 1 of [START_REF] Ribeiro | Learning any memory-less discrete semantics for dynamical systems represented by logic programs[END_REF] and from Definition 6. ⊓ ⊔ Proposition 1 allows to encode additional properties of the observation as regular GULA input. For a given target atom, the atoms corresponding to a property will appear in the rules of the optimal logic program only if the property is a necessary condition to obtain this target atom. One use of such encoding is to obtain more understandable rules as shown in the following sections.

Diagnosis of Labelled Event Sequences

Event sequences have the advantages to be considered as raw output data for many dynamical systems while being able to represent the dynamics of a large set of discrete models (Petri nets, logic programs, . . .). As such, it is easy to use them to assert the set of desirable (or undesirable) sequences. In this section, we propose a modeling of event sequences and their temporal properties into the LFIT framework. It allows to use GULA to learn logic rules that exploit those properties to explain sequences of interest.

Discrete Event System

Labelled Event Sequences GULA Explanations

Preprocessing Postprocessing

INPUT OUTPUT

Our Focus

Fig. 2: This paper focuses on the modeling and encoding of labelled event sequence for GULA to learn explanation rules exploiting temporal properties.

Modeling Labelled Event Sequences

Definition 7 (Sequence). A sequence s is a tuple s = (s i) i∈[0,|s|-1] . In the rest of the paper, we note s i the i th element of s.

An event sequence classification problem (ESCP) is a triple (E, Seq pos , Seq neg): -E = {e 0 , . . . , e m } is a set of elements called events; -Seq ⊆ E n is a set of sequences of events of size n ∈ N; -Seq pos ⊆ Seq is the set of positive examples; -Seq neg ⊆ Seq is the set of negative examples; -Seq pos ∩ Seq neg = ∅.

Such classification problem can be encoded into MVL, allowing GULA to learn a classifier in the form of a DMVLP. The algorithm takes as input a set of atoms A, a set of transitions T , a set of feature variables F and a set of target variables T . An ESCP can be encoded as follows.

Proposition 2 (MVL encoding of ESCP). Let (E, Seq pos , Seq neg) be an ESCP. The encoding of this ESCP is done as follows:

-A := {ev e i | 0 ≤ i < n, e ∈ E} ∪ {label pos , label neg } the set of MVL atoms; -F := {ev i | 0 ≤ i < n} the set of feature variables; -T := {label} the set of target variables;

-f : Seq → S F with s f -→ {ev e i ∈ A | i ∈ [0, |s|] ∧ s i = e} to encode positions; -T := {(f (s), {label pos }) | s ∈ Seq pos } ∪ {(f (s), {label neg }) | s ∈ Seq neg } the set of transitions.
Example 1. Let us consider an ESCP with 3 events and sequences of size 4.

Consider the following ESCP (E, Seq pos , Seq neg) where not all sequences are detailed:

-E = {e 0 , e 1 , e 2 } -Seq pos = {(e 1 , e 1 , e 0 , e 2), (e 1 , e 0 , e 1 , e 2), (e 1 , e 0 , e 0 , e 2), (e 1 , e 0 , e 2 , e 1), . . .} -Seq neg = {(e 1 , e 1 , e 1 , e 1), (e 1 , e 1 , e 1 , e 0), (e 1 , e 1 , e 1 , e 2), (e 1 , e 1 , e 0 , e 1), . . .} Now consider the corresponding MVL encoding: (A, T, F, T):

-A = {ev e0 0 , ev e1 0 , ev e2 0 , ev e0 1 , ev e1 1 , . . .} ∪ {label pos , label neg } -F = {ev 0 , ev 1 , ev 2 , ev 3 } -T = {label} -T = {({ev e1 0 , ev e1 1 , ev e0 2 , ev e2 3 }, {label pos }), ({ev e1 0 , ev e0 1 , ev e1 2 , ev e2 3 }, {label pos }), . . . ({ev e1 0 , ev e1 1 , ev e1 2 , ev e1 3 }, {label neg }), ({ev e1 0 , ev e1 1 , ev e1 2 , ev e0 3 }, {label neg }), . . .}
Using the encoding of Proposition 2, the call to GULA(A, T, F, T) will output a set of rules P such that using rule matching (Definition 3) we obtain a correct classifier, as stated by Theorem 1. Indeed, all rules of P that match a positive or negative observation has the correct label as head and there is always at least one rule that matches each observation. ⊓ ⊔ To ease rule readability in the following examples, atom a i is written a(i).

Example 2. Let us consider the set of events E := {e 0 , e 1 , e 2 } and sequences of size 4. The following set of positive examples Seq pos = { (e1, e1, e0, e2), (e1, e0, e1, e2), (e1, e0, e0, e2), (e1, e0, e2, e1), (e1, e0, e2, e2), (e0, e1, e1, e2), (e0, e1, e0, e2), (e0, e1, e2, e1), (e0, e1, e2, e2), (e0, e0, e1, e2), (e0, e0, e0, e2), (e0, e0, e2, e1), (e0, e0, e2, e2), (e0, e2, e1, e1), (e0, e2, e1, e2), (e0, e2, e2, e1), (e0, e2, e2, e2) }.

All other possible sequences are negative examples: Seq neg = Seq \ Seq pos , thus: Seq neg = { (e1, e1, e1, e1), (e1, e1, e1, e0), (e1, e1, e1, e2), (e1, e1, e0, e1), (e1, e1, e0, e0), (e1, e1, e2, e1), (e1, e1, e2, e0), . . . , (e2, e2, e2, e0), (e2, e2, e2, e2) }.

Using the encoding of Proposition 2 we obtain the following : GULA(A, T, F, T) = label(pos) ← ev0(e0), ev1(e1), ev3(e2). label(pos) ← ev0(e0), ev2(e1), ev3(e2). label(pos) ← ev0(e0), ev2(e2), ev3(e1). label(pos) ← ev0(e0), ev2(e2), ev3(e2). label(pos) ← ev0(e0), ev1(e2), ev2(e1), ev3(e1). label(pos) ← ev0(e0), ev1(e0), ev3(e2). label(pos) ← ev0(e1), ev1(e0), ev3(e2). label(pos) ← ev0(e1), ev1(e0), ev2(e2), ev3(e1). label(pos) ← ev0(e1), ev1(e1), ev2(e0), ev3(e2). label(neg) ← ev0(e2). label(neg) ← ev3(e0). label(neg) ← ev2(e0), ev3(e1). label(neg) ← ev1(e2), ev2(e0). label(neg) ← ev1(e0), ev2(e1), ev3(e1). label(neg) ← ev1(e1), ev2(e1), ev3(e1). label(neg) ← ev0(e1), ev1(e2). label(neg) ← ev0(e1), ev2(e1), ev3(e1). label(neg) ← ev0(e1), ev1(e1), ev2(e1). label(neg) ← ev0(e1), ev1(e1), ev2(e2). label(neg) ← ev0(e1), ev1(e1), ev3(e1).

This DMVLP correctly classifies each sequence of Seq pos and Seq neg (see Theorem 1) but position atoms (ev) are not enough to explain simply the whole dynamics.

In Example 2, the encoding of Proposition 2 is arguably not enough for the rules to explicitly explain the real influence of the system. The positive rules (whose head is label(pos)) are very specific and it is not easy to make sense from them individually. But we can see at least that all of them contain both e 0 and e 2 , thus their relationship must be of importance. Some negative rules are of interest too: the two first ones tell us that e 2 cannot start the sequence (label(neg) ← ev 0 (e 2).) and e 0 cannot finish it (label(neg) ← ev 3 (e 0).), thus their ordering is also of importance.

With this simple encoding, the learned rules are mere consequences of the real property behind this example, but none of them fully represents the property itself. In order to have more meaningful rules, we could encode some properties of interest as new variables and atoms by following Proposition 1. The idea is to propose an encoding of some simple general temporal property which can be combined to capture and explain the hidden property of the observed system.

Encoding Elementary LTL Operators

Linear Temporal Logic (LTL) [START_REF] Pnueli | The temporal logic of programs[END_REF] is a modal temporal logic used to characterize the occurrence of properties in a unique linear dynamical path, like the event sequences studied in this paper. It is mainly composed of the following operators:

In Example 3, most rules are again obscure consequences of the real property. But some rules are explicit: label(neg) ← F e 2 (f alse) and label(neg) ← F e 0 (f alse), state that both e 0 and e 2 must be present in a positive sequence.

Encoding Complex LTL Properties

LTL allows to model interesting temporal patterns as shown in [START_REF] De Giacomo | Reasoning on LTL on finite traces: Insensitivity to infiniteness[END_REF] where they study infinity sensibility of some specific LTL formula. Table 1 shows some examples of these properties. Encoded as new variables, these properties can be used to enhance the explainability of the rules learned in our running example. Using the encoding of Example 3 and the 18 properties considered in [START_REF] De Giacomo | Reasoning on LTL on finite traces: Insensitivity to infiniteness[END_REF] is not enough to construct a rule that explains all positive examples of Example 2. Here, we need to consider an additional property, the "not precedence": G(b =⇒ ¬F (a)), i.e., a cannot appear before b.

Example 4. Using these properties and GULA as in Example 3, we obtain: label(pos) ← existence e 0 (T rue), existence e 2 (T rue), not precedence e 2 e 0 (T rue). label(pos) ← not precedence e 0 e 2 (F alse), not precedence e 2 e 0 (T rue). Table 1: Examples of sequence properties from [START_REF] De Giacomo | Reasoning on LTL on finite traces: Insensitivity to infiniteness[END_REF].

label(pos) ← existence e 2 (T rue), not precedence e 2 e 0 (T rue), ev 0 (e 0). label(pos) ← existence e 0 (T rue), not precedence e 2 e 0 (T rue), ev 3 (e 2). . . .

In Example 4, the first rule is the exact representation of the function applied to generate the example, which was: F (e 0) ∧ F (e 2) ∧ G(e 2 =⇒ ¬F (e 0)). The second rule uses not precedence e 0 e 2 (F alse) as a divert way to ensure the existence of both e 0 and e 2 . The two other rules make use of explicit positions to get the existence of either e 0 or e 2 .

Discussion

In Example 4, we see a few examples of rules that could be discarded. Indeed, GULA learns many rules that are redundant when the meaning of the property is known (which GULA is oblivious of). Given a subsumption relationship between the encoded properties, a post-processing of the learned rules could be done to simplify or discard rules. Furthermore, in these examples, we guided the rule learning by only giving the property of interest to GULA ("existence" and "not precedence") and the optimal program is already almost a thousand rules: 801 label(pos) rules and 108 label(neg) rules. The rules shown in Example 4 can be found by weighting and ordering rules according to the number of examples they match. The two first rules are the only ones matching all 17 positive sequences of Example 2. If given all 18 properties of [1] and the "not precedence" property, the optimal program will, in theory, still contain the rules shown in Example 4 plus many others. But it would require to handle more than 100 variables to do so, which is too much for GULA to handle in reasonable time.

In practice, it is more interesting to use PRIDE [9], GULA's polynomial approximated version, to explore the search space in reasonable time. Although PRIDE outputs a subset of the optimal program and thus can miss interesting rules, it can be given some guidance in the form of heuristics, such as variable ordering, to find those "best" rules we are interested in here. All the examples of this paper have been generated using the open source python package pylfit 6and are available as a Jupiter notebook7 on the pylfit Github repository.

Conclusion

In this paper, we proposed an extension of LFIT theory that allows to encode properties of transitions as additional variables, allowing GULA to learn rules that exploit them. We proposed a modeling of event sequences and their temporal properties allowing to use GULA to learn rules combining properties to explain sequences of interest. Being able to include properties of transitions in the learning process can be useful in a various range of application fields. For instance, in biology, some information on the dynamics of the system to be modelled is expressed as a LTL property by modelers. Inclusion of such knowledge in the global learning process can give more expressive rules about the dynamics and lead to a better understanding of the studied systems by the biologists. We showed through a case study that such encoding can indeed allow to learn more meaningful rules and to capture complex temporal patterns.

However, by encoding properties, we increase the number of variables considered, which leads to a combinatorial explosion of the run for GULA. Its polynomial approximated version PRIDE would be preferred in practice, with additional heuristics allowing to guide its search towards comprehensive rules.

Fig. 1 :

 1 Fig.1: Assuming a discretization of time series data of a system as state transitions, we propose a method to automatically model the system dynamics.

Theorem 1 .

 1 Let (E, Seq pos , Seq neg) be an ESCP. Let A, T, F, T , f be as in Proposition 2. The following holds:∀l ∈ {pos, neg}, ∀s ∈ Seq l , {head(R) | R ∈ GULA(A, T, F, T), R⊓f (s)} = {label l }Proof sketch. By construction from Theorem 1 of[START_REF] Ribeiro | Learning any memory-less discrete semantics for dynamical systems represented by logic programs[END_REF], Definition 6 and Proposition 2.

 a must appear at least once Absence 2 ¬F (a ∧ F (a)) a can appear at most once Choice F (a) ∨ F (b)) a or b must appear Exclusive choice (F (a) ∨ F (b)) ∧ ¬(F (a) ∧ F (b)) Either a or b must appear, but not both Resp. existence F (a) =⇒ F (b) if a appear, then b must appear as well Coexistence (F (a) =⇒ F (b)) ∧ (F (b) =⇒ F (a)) Either a and b both appear, or none of them Response G(a =⇒ F (b)) Every time a appears, b must appear afterwards Precedence ¬(U (a, b) ∨ G(a)) b can appear only if a appeared before Not coexistence ¬(F (a) ∧ F (b)) Only one among a and b can appear, but not both

Package pylfit source code is available at: https://github.com/Tony-sama/pylfit/

Case study notebook: https://github.com/Tony-sama/pylfit/blob/master/ tests/evaluations/ilp2022/lfit-sequence-patern-learning.ipynb

-F(ϕ): ϕ eventually has to hold (Finally); -G(ϕ): ϕ has to hold on the entire subsequent path (Globally); -U(ψ, ϕ): ψ has to hold at least until ϕ becomes true, which must hold at the current or a future position (Until). These operators over a sequence s can be encoded into a feature state following Proposition 1 and the interpretation given below:

-F inally(s, e) ≡ e ∈ s -Globally(s, e) ≡ e ′ ∈ s =⇒ e ′ = e -U ntil(s, e 1 , e 2) ≡ ∃i ∈ [1, |s|],

Example 3. Following Proposition 1, we can encode those LTL properties as additional MVL variables and atoms: , G e f alse 0 , . . .}, {label neg }),

, F e true

2

, G e f alse 0 , . . .}, {label neg })} We can now use GULA to learn rules that exploit those encoded properties. GULA(A ∪ A P , T ′ , F ∪ V P , T): label(pos) ← ev 3 (e 2), F e 1 (true), U e 1 e 2 (f alse). label(pos) ← ev 3 (e 2), F e 1 (true), U e 1 e 0 (true).

• • • label(neg) ← F e 2 (f alse). label(neg) ← F e 0 (f alse).

• • • The resulting DMVLP P O (T ′) contains 824 rules, divided into 735 with label(pos) and 89 with label(neg).