An Immersed Boundary Method by Phi-FEM approach to solve the heat equation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

An Immersed Boundary Method by Phi-FEM approach to solve the heat equation

Résumé

Thanks to a finite element method, we solve numerically parabolic partial differential equations on complex domains by avoiding the mesh generation, using a background regular mesh, not fitting exactly the domain and the real boundary of the domain like immersed boundary methods. Our technique follows the ϕ-FEM paradigm which suppose that the domain is given by a level-set function. The aim of the present paper is to prove a priori error estimates in L 2 (H 1) and L ∞ (L 2) norms for an implicit Euler discretization in time and to give numerical illustrations to highlight the performances of our technique. The advantage of our approach is that it combines optimal convergence accuracy, easy implementation process and fastness.
Fichier principal
Vignette du fichier
phi_fem_heat_equation.pdf (182.32 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03685445 , version 1 (02-06-2022)
hal-03685445 , version 2 (22-03-2023)

Identifiants

  • HAL Id : hal-03685445 , version 1

Citer

Michel Duprez, Vanessa Lleras, Alexei Lozinski, Killian Vuillemot. An Immersed Boundary Method by Phi-FEM approach to solve the heat equation. 2022. ⟨hal-03685445v1⟩
241 Consultations
306 Téléchargements

Partager

More