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Abstract

Thanks to a finite element method, we solve numerically parabolic partial differential equations on complex domains
by avoiding the mesh generation, using a background regular mesh, not fitting exactly the domain and the real bound-
ary of the domain like immersed boundary methods. Our technique follows the ϕ-FEM paradigm which suppose
that the domain is given by a level-set function. The aim of the present paper is to prove a priori error estimates in
L2(H1) and L∞(L2) norms for an implicit Euler discretization in time and to give numerical illustrations to highlight
the performances of our technique. The advantage of our approach is that it combines optimal convergence accuracy,
easy implementation process and fastness.

Keywords: Numerical analysis, finite element method, heat equation, fictitious domain, level-set, Dirichlet
conditions
2000 MSC: 65M85, 65M60, 35K05, 65M12

1. Introduction

The classical finite element method needs a computational mesh fitting the boundary of the physical domain. In
some applications in engineering or bio-mechanics, the construction of such meshes may be very time consuming,
or even impossible. Alternative approaches, such as Immersed Boundary Methods (IBM) (see e.g. [1] for a review),
can work on unfitted meshes but are usually not very precise. More recent variants, such as CutFEM [2] or SBM
[3], demonstrate optimal convergence orders, but are less straightforward to implement than the original IBM. In
particular, CutFEM needs special quadrature rules on the cells cut by the boundary.

A new IBM-like method, named ϕ-FEM, combining the optimal convergence and the ease of implementation, was
recently proposed in [4, 5]. Initially developed for stationary elliptic PDEs, it has been extended in [6] to a broader
class of equations, including the time-dependent parabolic problems, without any theoretical analysis. The goal of the
present note is to provide such an analysis in the case of the Heat-Dirichlet problem

∂tu − ∆u = f in Ω × (0,T ), u = 0 on Γ × (0,T ), u(·, 0) = u0 in Ω, (1)

where T > 0, Ω ⊂ Rd, d = 2, 3 is a bounded domain with a smooth boundary Γ given by a level-set function on Rd

Ω := {ϕ < 0} and Γ := {ϕ = 0} . (2)

The Dirichlet boundary conditions are taken into account in our scheme via a product with the level-set function ϕ.
An appropriate stabilization is introduced to the finite element discretization in order to obtain well-posed problems.
A somewhat unexpected feature of this stabilization is that it works under the constraint on the steps in time and space
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of the type ∆t ⩾ ch2. This does not affect the practical interest of the scheme since it is normally intended to be
used in the regime ∆t ∼ h. We shall provide a priori error estimates for this scheme in L2(H1) and L∞(L2) norms of
similar orders as for the standard FEM, cf. [7]. Moreover, the numerical simulations show that our approach can be
considerably faster.

2. Definitions, assumptions, description of ϕ-FEM and the main result.

We assume that Ω lies inside a box O ⊂ Rd and that Ω and Γ are given by (2). The box O is covered by a
simple quasi-uniform simplicial (typically Cartesian) background mesh denoted by T Oh . We introduce the active
computational mesh Th :=

{
T ∈ T Oh : T ∩ {ϕh < 0} , ∅

}
on Ωh =

(
∪T∈Th T

)o, the subdomain of O composed of mesh
cells intersecting Ω, cf. Fig. 1. Here, ϕh is a piecewise polynomial interpolation of ϕ on T Oh . We shall also need
a submesh T Γh , containing the elements of Th that cut the approximate boundary Γh := {ϕh = 0}: T Γh = {T ∈
Th : T ∩ Γh , ∅}. Finally, we denote by F Γh the set of the internal facets E of mesh Th belonging to the set T Γh ,
F Γh := {E (internal facet of Th) such that ∃ T ∈ Th : T ∩ Γh , ∅ and E ∈ ∂T }.

Introduce a uniform partition of [0,T ] into time steps 0 = t0 < t1 < . . . < tN = T with tn = n∆t. The basic
idea of ϕ-FEM is to introduce the new unknown w = w(x, t) and to set u = ϕw so that the Dirichlet condition u = 0
is automatically satisfied on Γ since ϕ vanishes there. Using an implicit Euler scheme to discretize (1) in time and
denoting f n(·) = f (·, tn), we get the following discretization in time: given un = ϕwn find un+1 = ϕwn+1 such that

∆t−1(ϕwn+1 − ϕwn) − ∆(ϕwn+1) = f n+1 . (3)

To discretize in space, we introduce the finite element space of degree k on Ωh: V (k)
h = {vh ∈ H1(Ωh) : vh|T ∈

Pk(T ), ∀ T ∈ Th} for some k ⩾ 1. Supposing that f and u0 are actually well defined on Ωh (rather than on Ω only),
we can finally introduce the ϕ-FEM scheme for (1) as follows: find wn+1

h ∈ V (k)
h , n = 0, 1, . . . ,N − 1 such that for all

vh ∈ V (k)
h∫

Ωh

ϕhwn+1
h

∆t
ϕhvh +

∫
Ωh

∇(ϕhwn+1
h ) · ∇(ϕhvh) −

∫
∂Ωh

∂

∂n
(ϕhwn+1

h )ϕhvh + σh
∑

E∈F Γh

∫
E

∂(ϕhwn+1
h )
∂n

 [∂(ϕhvh)
∂n

]

− σh2
∑

K∈T Γh

∫
K

ϕhwn+1
h

∆t
− ∆(ϕhwn+1

h )
∆(ϕhvh) =

∫
Ωh

(
un

h

∆t
+ f n+1

)
ϕhvh − σh2

∑
K∈T Γh

∫
K

(
un

h

∆t
+ f n+1

)
∆(ϕhvh) (4)

with un
h = ϕhwn

h for n ⩾ 1 and u0
h ∈ V (k)

h an interpolant of u0. ϕh is the piecewise polynomial interpolation of ϕ in
V (k)

h . This scheme contains two stabilization terms: the ghost stabilization (the sum of the facets in F Γh ) as in [8], and
a least-square stabilization that reinforces (3) on the mesh cells in T Γh .

Hypothesis 1. We assume the regularity hypothesis on the mesh (quasi-uniform is sufficient) and on Γ of [4, Ass.
1-2] (the regularity of Γ is related to the one of ϕ which needs to be Ck). We assume moreover Ω ⊂ Ωh.

Remark 1. Our approach can be easily generalized to non-homogeneous Dirichlet boundary conditions u = uD on
Γ × (0,T ). We can pose then un

h = ϕhwn
h + Ihug(·, tn) where ug is some lifting of uD from Γ to Ωh and Ih stands for an

interpolation by finite elements. Scheme (4) should be then modified accordingly, adding some terms depending on
ug in the right-hand side.

Theorem 1. Assume Hypothesis 1, f ∈ H1(0,T ; Hk−1(Ωh)) and u ∈ H2(0,T ; Hk−1(Ω)) being the exact solution to
(1), un(·) = u(·, tn) and wn

h be the solution to (4) for n = 1, . . . ,N. For σ large enough, there exist the space-mesh
independent constants c,C > 0 (depending on T) such that if ∆t ⩾ ch2 then N∑

n=0

∆t|un − ϕhwn
h|

2
H1(Ω)


1
2

⩽ C∥u0 − u0
h∥L2(Ωh) +C(hk + ∆t)

(
∥u∥H2(0,T ;Hk−1(Ω)) + ∥ f ∥H1(0,T ;Hk−1(Ωh))

)
and

max
1⩽n⩽N

∥un − ϕhwn
h∥L2(Ω) ⩽ C∥u0 − u0

h∥L2(Ωh) +C(hk+ 1
2 + ∆t)

(
∥u∥H2(0,T ;Hk−1(Ω)) + ∥ f ∥H1(0,T ;Hk−1(Ωh))

)
.
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Note that the hypotheses on f and u in the Theorem above imply u ∈ H1(0,T ; Hk+1(Ω)) thanks to the elliptic regularity
at each time t. However, it would not be sufficient to demand the regularity H2(0,T ; Hk−1(Ω)) ∩ H1(0,T ; Hk+1(Ω))
from u alone. Indeed, this would imply f ∈ H1(0,T ; Hk−1(Ω)) but, in ϕ-FEM, f should be defined and sufficiently
regular on Ωh rather than on Ω. The other way round, the Theorem’s hypothesis on f , combined with a compatibility
condition between f and u0, would imply the required regularity of u if k = 1, cf. [9, Theorems 5 and 6, Chapter 7.1].
However, one would need to control higher derivatives in time of f in order to assure the regularity of u for k > 1. In
summary, we need indeed to assume enough regularity of both u and f .

Before the proof of Theorem 1, we recall the results from [4] about ϕ-FEM for the Poisson equation with Dirichlet
boundary conditions.

Lemma 2 (cf. [4, Lemma 3.7]). Consider the bilinear form

ah(u, v) =
∫
Ωh

∇u · ∇v −
∫
∂Ωh

∂u
∂n

v + σh
∑

E∈F Γh

∫
E

[
∂u
∂n

] [
∂v
∂n

]
+

∑
K∈T Γh

σh2
∫

K
∆u∆v.

Provided σ is chosen big enough, there exists an h-independent constant α > 0 such that

ah(ϕhvh, ϕhvh) ⩾ α|ϕhvh|
2
H1(Ωh), ∀vh ∈ V (k)

h .

Lemma 3 (cf. [4, Theorem 2.3]). For any f ∈ Hk−1(Ωh), let wh ∈ V (k)
h be the solution to

ah(ϕhwh, ϕhvh) =
∫
Ωh

fϕhvh − σh2
∑

K∈T Γh

∫
K

f∆(ϕhvh)

and u ∈ Hk+1(Ω) be the solution to
−∆u = f inΩ, u = 0 onΓ

extended to ũ ∈ Hk+1(Ωh) so that u = ũ onΩ. Provided σ is chosen big enough, there exists an h-independent constant
C > 0 such that

|ũ − ϕhwh|H1(Ωh) ⩽ Chk∥ f ∥Hk−1(Ωh) and ∥ũ − ϕhwh∥L2(Ωh) ⩽ Chk+ 1
2 ∥ f ∥Hk−1(Ωh).

Remark 2. This result is proven in [4] under the more stringent assumption f ∈ Hk(Ωh) which was used to assure
ũ ∈ Hk+2(Ωh) and to provide an interpolation error of ũ by a product ϕhwh. However, in [10, Lemma 6] we have
proven a better interpolation estimate ∥ũ − ϕhIhw∥Hs(Ωh) ⩽ Chk+1−s∥ f ∥Hk−1(Ωh) (s = 0, 1) for ũ = ϕw and the Scott
Zhang interpolant Ih. Thus, f ∈ Hk−1(Ωh) is actually sufficient.

Lemma 4 (see e.g. [4, Lemma 3.4] together of the Poincare inequality). There exists an h-independent constant C
> 0 such that for all vh ∈ V (k)

h
∥ϕhvh∥L2(Ωh) ⩽ CP|ϕhvh|H1(Ωh).

Proof of Theorem 1. Assuming Hypothesis 1, there exists ũ ∈ H2(0,T ; Hk−1(Ωh)),an extension of u to Ωh, such that

∥ũ∥H2(0,T ;Hk−1(Ωh)) ⩽ C∥u∥H2(0,T ;Hk−1(Ω)) (5)

Let wn
h be the solution to our scheme, which we rewrite as

∫
Ωh

ϕh
wn+1

h − wn
h

∆t
ϕhvh + ah(ϕhwn+1

h , ϕhvh) −
∑

T∈T Γh

σh2
∫

T
ϕh

wn+1
h − wn

h

∆t
∆(ϕhvh)

=

∫
Ωh

f n+1ϕhvh −
∑

T∈T Γh

σh2
∫

T
f n+1∆(ϕhvh) (6)
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for n ⩾ 1 while ϕhw0
h should be replaced with u0

h for n = 0.
For any time t ∈ [0,T ], introduce w̃h(t, ·) = w̃h ∈ V (k)

h , as in Lemma 3, with f replaced by f − ∂tũ evaluated at time
t:

ah(ϕhw̃h, ϕhvh) =
∫
Ωh

( f − ∂tũ)ϕhvh − σh2
∑

K∈T Γh

∫
K

( f − ∂tũ)∆(ϕhvh). (7)

Let w̃n
h = w̃h(tn) and en

h := ϕh(wn
h − w̃n

h) for n ⩾ 1 and e0
h := u0

h − ϕhw̃0
h. Taking the difference between (6) and (7)

at time tn+1, we get∫
Ωh

en+1
h − en

h

∆t
ϕhvh + ah(en+1

h , ϕhvh) −
∑

T∈T Γh

σh2
∫

T

en+1
h − en

h

∆t
∆(ϕhvh)

=

∫
Ωh

∂tũn+1 − ϕh
w̃n+1

h − w̃n
h

∆t

 ϕhvh −
∑

T∈T Γh

σh2
∫

T

∂tũn+1 − ϕh
w̃n+1

h − w̃n
h

∆t

∆(ϕhvh).

Taking vh = wn
h − w̃n

h, i.e. ϕhvh = en+1
h , applying the equality

∥en+1
h ∥

2
L2(Ωh) − (en

h, e
n+1
h )L2(Ωh) =

∥en+1
h ∥

2
L2(Ωh) − ∥e

n
h∥

2
L2(Ωh) + ∥e

n+1
h − en

h∥
2
L2(Ωh)

2
,

and estimating the terms in the RHS by Cauchy-Schwarz and inverse inequalities (∥∆en+1
h ∥L2(T ) ⩽ Ch−2∥en+1

h ∥L2(T )) we
deduce that

∥en+1
h ∥

2
L2(Ωh) − ∥e

n
h∥

2
L2(Ωh) + ∥e

n+1
h − en

h∥
2
L2(Ωh)

2∆t
+

(I)︷          ︸︸          ︷
ah(en+1

h , e
n+1
h )−

(II)︷                         ︸︸                         ︷
σh2

∫
ΩΓh

en+1
h − en

h

∆t
∆en+1

h

⩽ C

∥∥∥∥∥∥∂tũn+1 − ϕh
w̃n+1

h − w̃n
h

∆t

∥∥∥∥∥∥
L2(Ωh)

∥en+1
h ∥L2(Ωh)︸                                                   ︷︷                                                   ︸

(III)

. (8)

Thanks to the coercivity lemma 2, the term (I) can be bounded from below by α|en+1
h |

2
H1(Ωh). We now use the Young

inequality (with some ε > 0) and the inverse inequality ∥∆en+1
h ∥L2(T ) ⩽ CIh−1|en+1

h |H1(T ) to bound the term (II):

(I) − (II) ⩾ α|en+1
h |

2
H1(Ωh) −

σh2

2ϵ(∆t)2 ∥e
n+1
h − en

h∥
2
L2(ΩΓh ) −

ϵσC2
I

2
|en+1

h |
2
H1(ΩΓh ) ⩾

3
4
α|en+1

h |
2
H1(Ωh) −

1
2∆t
∥en+1

h − en
h∥

2
L2(ΩΓh ),

where we have chosen ϵ so that ϵσC2
I /2 = α/4 and then assumed σh2/(ϵ∆t) ⩽ 1. This will allow us to control the

negative term above by the similar positive term in (8), and leads to the restriction ∆t ⩾ ch2 with c = σ/ϵ.
We turn now to the RHS of (8), i.e. term (III). By triangle inequality∥∥∥∥∥∥∂tũn+1 − ϕh

w̃n+1
h − w̃n

h

∆t

∥∥∥∥∥∥
L2(Ωh)

⩽

∥∥∥∥∥∥∂tũn+1 −
ũn+1 − ũn

∆t

∥∥∥∥∥∥
L2(Ωh)

+

∥∥∥∥∥∥ ũn+1 − ũn

∆t
− ϕh

w̃n+1
h − w̃n

h

∆t

∥∥∥∥∥∥
L2(Ωh)

. (9)

By Taylor’s theorem with integral remainder

ũn(·) = ũn+1(·) − ∆t∂tũn+1(·) −
∫ tn+1

tn
∂ttũ(t, ·)(tn − t) dt

so that ∥∥∥∥∥∥∂tũn+1 −
ũn+1 − ũn

∆t

∥∥∥∥∥∥
L2(Ωh)

=
1
∆t

∥∥∥∥∥∥
∫ tn+1

tn
∂ttũ(t, ·)(tn − t) dt

∥∥∥∥∥∥
L2(Ωh)

⩽
√
∆t∥∂ttũ∥L2(tn,tn+1;L2(Ωh)).
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Differentiating −∆u = f − ∂tu and (7) in time, thanks to Lemma 3,

∥∂t(ũ(t) − ϕhw̃h)(t)∥L2(Ωh) ⩽ Chk+ 1
2 ∥(∂t f − ∂ttũ)(t)∥Hk−1(Ωh).

Thus, for the second term in (9), we get by the last interpolation estimate:∥∥∥∥∥∥ ũn+1 − ũn

∆t
− ϕh

w̃n+1
h − w̃n

h

∆t

∥∥∥∥∥∥
L2(Ωh)

=
1
∆t

∥∥∥∥∥∥
∫ tn+1

tn
∂t(ũ(t, ·) − ϕhw̃h(t, ·)) dt

∥∥∥∥∥∥
L2(Ωh)

⩽
Chk+ 1

2

√
∆t
∥∂t f − ∂ttũ∥L2(tn,tn+1;Hk−1(Ωh)).

Collecting these estimates and applying the Young inequality with some δ > 0 and Poincaré inequality from Lemma
4, we get

(III) ⩽
C
δ

(
∆t∥∂ttũ∥2L2(tn,tn+1;L2(Ωh)) +

h2k+1

∆t
∥∂t f − ∂ttũ∥2L2(tn,tn+1;Hk−1(Ωh))

)
+
δC2

P

2
|en+1

h |
2
H1(Ωh).

Using these estimates in (8) and taking δ so that δC2
P = α/2 yields

∥en+1
h ∥

2
L2(Ωh) − ∥e

n
h∥

2
L2(Ωh)

2∆t
+
α

2
|en+1

h |
2
H1(Ωh) ⩽ C

(
∆t∥∂ttũ∥2L2(tn,tn+1;L2(Ωh)) +

h2k+1

∆t
∥∂t f − ∂ttũ∥2L2(tn,tn+1;Hk−1(Ωh))

)
.

Multiplying this by 2∆t and summing on n = 0, . . . ,N − 1, we get

∥eN
h ∥

2
L2(Ωh) + α∆t

N∑
n=1

|en
h|

2
H1(Ωh) ⩽ ∥e

0
h∥

2
L2(Ωh) +C(∆t2∥∂ttũ∥2L2(0,T ;L2(Ωh)) + h2k+1∥∂t f − ∂ttũ∥2L2(0,T ;Hk−1(Ωh))).

Thus, observing that the sum above can be stopped at any number n ⩽ N, we get

max
n=1,...,N

∥en
h∥L2(Ωh) +

∆t
N∑

n=1

|en
h|

2
H1(Ωh)


1
2

⩽ C∥e0
h∥L2(Ωh) +C

(
∆t∥∂ttũ∥L2(0,T ;L2(Ωh)) + hk+ 1

2 ∥∂t f − ∂ttũ∥L2(0,T ;Hk−1(Ωh))

)
.

Combining this with Lemma 3 applied to −∆u = f − ∂tu in Ω, which can be rewritten as

max
n=0,...,N

∥ũn − ϕhw̃n
h∥L2(Ωh) ⩽ Chk+1/2∥ f − ∂tũ∥C([0,T ],Hk−1(Ωh)),∆t

N∑
n=1

|ũn − ϕhw̃n
h|

2
H1(Ωh)


1
2

⩽ Chk∥ f − ∂tũ∥C([0,T ],Hk−1(Ωh))

the regularity of ũ, cf. (5) and f , together with the bound ∥ · ∥C([0,T ],·) ⩽ C∥ · ∥H1(0,T ;·) gives the announced result where
C depends on T . □

3. Simulation

We will now illustrate the convergence of our method on a test case in a domain of Fig. 1 (Left). The level-
set function ϕ is the signed distance to the boundary of the domain. Its approximation ϕh is numerically evaluated
thanks to the distance of the Gauss points to the boundary of the domain. We take the exact manufactured solution
u(x, y, t) = exp(x) sin(2πy) sin(t) which gives the right-hand side f and the initial condition u0. The non-homogeneous
boundary conditions are taken into account in ϕ-FEM as in Remark 1 via the lifting ug = u(1 + ϕ).

The results obtained by ϕ-FEM are represented at Fig. 2. We compare them with a standard FEM on quasi-uniform
fitted meshes of similar sizes. In both cases, we use P1 finite elements (k = 1) and set ∆t = h. ϕh is a P3 function.
We compare the L2(H1) and L∞(L2) relative errors of the two methods, with respect to the mesh size h and also the
computation time (this is just the sum of time needed to solve the finite element systems at each time step, without
the time used to construct the meshes). The numerical results fit well the theoretically convergence orders announced
in Theorem 1, namely order 1 for both L∞(L2) and L2(H1) errors. In fact, the L∞(L2) error behaves even better than
in theory since the slope is close to 1.5. Moreover, ϕ-FEM turn out to be significantly faster than conforming FEM
on similar meshes. We remark that even if the domain does not satisfy the regularity hypothesis (its boundary is only
piecewise C1), we observe the optimal convergence of the method.
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Figure 1: Left: considered domain. Center: a conforming mesh for the standard FEM. Right: a uniform Cartesian mesh for ϕ-FEM.
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Figure 2: Heat equation for Standard FEM (red squares) and ϕ-FEM (blue dots) with ∆t = h, P1 elements, σ = 20. Left: L∞(0,T ; L2(Ω)) relative
errors against h. Center: L2(0,T ; H1(Ω)) relative errors against h. Right: L∞(0,T ; L2(Ω)) relative errors against the computation time.

Remark 3. We have here only considered the case of a first order in time discretization, using an implicit Euler
scheme but our method also seems to converge optimally in the case of a second order time discretization even if it
is not included in the present paper. Indeed, the scheme introduced in (4) can be easily adapted to Crank-Nicolson or
BDF2 time discretizations, instead of implicit Euler. Furthermore interesting numerical results on such schemes are
available in the github repository1 as the code of the simulations.
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