Cross-dataset Learning for Generalizable Land Use Scene Classification
Résumé
Few-shot and cross-domain land use scene classification methods propose solutions to classify unseen classes or un-seen visual distributions, but are hardly applicable to real-world situations due to restrictive assumptions. Few-shot methods involve episodic training on restrictive training subsets with small feature extractors, while cross-domain methods are only applied to common classes. The underlying challenge remains open: can we accurately classify new scenes on new datasets? In this paper, we propose a new framework for few-shot, cross-domain classification. Our retrieval-inspired approach 1 exploits the interrelations in both the training and testing data to output class labels using compact descriptors. Results show that our method can accurately produce land-use predictions on unseen datasets and unseen classes, going beyond the traditional few-shot or cross-domain formulation, and allowing cross-dataset training
Fichier principal
Gominski_Cross-Dataset_Learning_for_Generalizable_Land_Use_Scene_Classification_CVPRW_2022_paper.pdf (3.55 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|