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Abstract

Few-shot and cross-domain land use scene classification
methods propose solutions to classify unseen classes or un-
seen visual distributions, but are hardly applicable to real-
world situations due to restrictive assumptions. Few-shot
methods involve episodic training on restrictive training
subsets with small feature extractors, while cross-domain
methods are only applied to common classes. The underly-
ing challenge remains open: can we accurately classify new
scenes on new datasets? In this paper, we propose a new
framework for few-shot, cross-domain classification. Our
retrieval-inspired approach1 exploits the interrelations in
both the training and testing data to output class labels us-
ing compact descriptors. Results show that our method can
accurately produce land-use predictions on unseen datasets
and unseen classes, going beyond the traditional few-shot
or cross-domain formulation, and allowing cross-dataset
training.

1. Introduction

With technological advances in remote sensing gener-
ating a growing volume of high resolution images and a
rising interest in geographical data, there is a need to ef-
ficiently process them with computer vision and machine
learning tools to extract semantic information. Along with
object detection [10], object localization [24] or change de-
tection [14], an important task is Remote Sensing Scene
Classification (RSC), which consists in assigning one or
multiple labels describing the semantic content of an image
(with remote sensing images, mostly land-use semantics).

Similarly to general purpose classification, RSC has re-
cently benefited from advances in image processing with
Convolutional Neural Networks (CNN), and now faces the
challenge of generalizing the good performance obtained
on annotated datasets to real-world situations, where visual
characteristics might vary, semantics unseen during train-

1Code available here: github.com/dgominski/generalizablersc
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Figure 1. Comparison of approaches for RSC. Few-shot methods
are trained and tested on a single dataset, often with very small
splits (< 10k images). Cross-domain methods are trained on one
or multiple source dataset(s), and tested on a target dataset with
the same classes. Our proposed few-shot, cross-domain frame-
work trains on an ensemble of datasets and tests on a target dataset,
without any restriction on classes or visual similarity.

ing can be encountered, and identifying a training dataset is
generally not straightforward.

To handle visual variations (what is commonly called the
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domain gap) between the training and the target data, we
are interested in how visual patterns change across different
domains, such as between images with different ground res-
olution. This is usually addressed with cross-domain RSC,
but with the assumption that the set of classes stay the same
between the training dataset and the target dataset.

New semantics, such as new target classes, are handled
by building models that can, using a few clues, distinguish
previously unkown objects or concepts. This is the idea of
few-shot RSC which intends to recognize scene categories
on territorial imagery (e.g. road, agricultural field, forest)
using only a few examples (typically 1 or 5 as a standard).
Existing methods ignore the high similarity among land-use
classes.

For a target dataset in RSC, it is not clear what criterion
should be used to select a training dataset. Class defini-
tion, visual characteristics, and the cost of annotation are
all important constraints. As a rule of thumb in deep learn-
ing: the more annotated data, the better. Thus, the problem
might be elegantly solved by merging existing annotated
datasets with cross-dataset learning. However this comes
with the condition that the classification architecture does
not require a fixed set of classes during training or testing,
and is robust enough to visual variations.

While there are many publications in the above-
mentioned fields of research and significant improvement
has been measured on individual benchmarks, it remains
unclear if this signifies progress towards generalizable RSC,
due to a lack of standardized evaluation, and an abundance
of relatively small benchmark datasets (all eight datasets
considered here have less than 35k images). Surprisingly,
the total volume of annotated images for RSC is not so small
(∼100k images for the datasets we consider here).

In this paper, we go beyond the current formulation
of cross-domain RSC and few-shot RSC. We argue that
the assumptions of having either the same classes (cross-
domain RSC) or visual characteristics (few-shot RSC) are
too restrictive for real-world applications. Accordingly, we
propose a framework allowing classification on an unseen
dataset with new classes and visual characteristics differ-
ent from the training data, using only a few support images.
Using the variety of datasets in RSC and recent advances in
metric learning, we mix datasets together with multi-dataset
training to provide variety and volume. Our contributions
are:

1. A new baseline for cross-domain and few-shot land-
use classification, with no restriction on training and
testing data,

2. A multi-dataset training framework inspired from
content-based image retrieval with a ranking loss,
avoiding the need for a fixed classifier and fully ex-
ploiting the correlations in land-use data,

3. A comprehensive comparison of our proposal against
few-shot and cross-domain methods with state-of-the-
art results, and ablation studies to highlight the promis-
ing ideas towards generalizable RSC.

2. Related works
Among the variety of datasets (presented in Tab. 1) now

available for RSC, RESISC45 2 has a sizeable collection of
31, 500 images. This is at least 10 times smaller than what
is typically used in computer vision to train CNNs (Im-
ageNet [11]: 14 million images, GoogleLandmarks [38]:
4.1 million, MS-COCO [21]: 330k), raising some doubts
about the generalization potential for models trained on
these datasets.

A first idea to handle possible mistmatches between
training and target data is to build models more robust to
visual variations, especially those due to scale (ground res-
olution) and area changes. Accordingly, the recent topic
of cross-domain RSC is answered with methods aiming to
align the distributions of image features from different do-
mains [3, 29, 34]. These methods have the drawback of re-
quiring common classes between the source and target do-
mains.

Concerning the problem of class mismatch, few-shot
classification through episodic learning has been applied
with interesting performance on RSC datasets [22, 43], but
current methods have the major drawbacks of 1. Requir-
ing training data with matching representation characteris-
tics (i.e. same domain along the commonly adopted view
in RSC), in [43] for example, 73% of RESISC45 is used to
train and validate the method ; 2. Using small CNNs due
to the high memory cost of episodic training. In [43] the
reference performance is obtained with ResNet-12, a small
network.

While the aforementioned issues are being treated with
specific technical answers, the straightforward solution of
merging existing training datasets together to learn robust
and accurate features remains relevant in our goal for gen-
eralization [26]. After all, models trained on ImageNet are
known to have good transferability, even to images that do
not have common classes [4] or visual characteristics [5].
This indicates that given enough variety and volume in the
training data, high accuracy can be reached. Accordingly,
multi-dataset training is a promising idea for capitalizing
on the available datasets, but faces the same challenge as
cross-domain RSC: fixed classifiers restrain the problem to
common classes [27]. Lu et al. [25] relaxed this constraint
by using datasets whose union covers the classes of the tar-
get dataset, but still relies on having these classes available
during training.

2We could not download the RSD46-WHU [24] dataset whose access
is reserved to Chinese citizens
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Table 1. Comparison of remote sensing image datasets for land-use classification.

Dataset name AID [39] PatternNet [47] RESISC45 [8] RSI-CB [19] RSSCN7 [49] SIRI-WHU [45] UCM [42] WHU-RS19 [40]
Classes 30 38 45 35 7 12 21 19
Images per class 200-400 800 700 609 400 200 100 50
Images total 10,000 30,400 31,500 24,747 2,800 2,400 2,100 1,005
Spatial resolution (m) 0.5-0.8 0.062-4.693 0.2-30 0.3 - 3 N/A 2 0.3 <0.5
Image size (px) 600 256 256 256 400 200 256 600

We note that scene classification can be reformulated
as metric learning: instead of incorporating the knowledge
from annotated images in the classifier, we can assign class
labels depending on the closest annotated image in a care-
fully chosen feature space. Previous studies have exten-
sively explored this in the context of mainstream few-shot
learning [6, 35] or image retrieval [1, 28], but not in the
context of RSC. Metric learning can be formulated with
different loss functions, such as pairwise comparison with
siamese networks [16], triplet learning [13] or the broader
contrastive loss [31]. Notably, two recent methods [7, 32]
propose to directly optimize the metric used for evaluat-
ing image retrieval systems: the mean Average Precision
(mAP), which considers all the images in the minibatch, re-
moving the need for hard positive or negative mining. This
measure involves rankings (positions of images in the list of
results) which are not differentiable, but can be replaced by
a differentiable approximation. The listwise losses directly
optimize global descriptors, i.e. high dimensionnal vectors
describing images, one vector per image.

3. Method

We formulate the problem as follows. Given the existing
land-use annotated data, we aim to classify images in an
unseen dataset, possibly with different visual characteristics
and/or classes, using a limited support set of k reference
image(s) per class (from the target dataset).

To perform classification, our proposal starts from the
following observations:

• Using a ranking loss has the advantage of removing
any need for a task-specific classifier: we can directly
optimize the feature extractor to produce discrimina-
tive and robust global descriptors,

• Using multiple training datasets has the advantage of
both expanding the number of training samples and in-
troducing variety that will help gain in generalization
ability (provided that the different data distributions do
not disturb the training process, a condition we verify
experimentally in Sec. 4),

• This image retrieval-inspired approach allows us to
use post-processing steps commonly used for exploit-
ing the distribution of reference images in the feature

space. This idea has demonstrated impressive accuracy
boosts with low computational overhead [30].

We choose the Generalized Mean (GeM) pooling op-
eration [31] to produce global image descriptors, as it is
a straightforward but efficient way of selecting meaning-
ful neural activations (with good results in landmark re-
trieval [30]). Our backbone architecture consists of a fully-
convolutionnal CNN and a whitening fully-connected layer
at the end with optional dimension reduction. For an in-
put image, we first compute the 3-dimensionnal feature
map, and get the global whitened descriptor by GeM pool-
ing followed by L2-normalization and whitening. Descrip-
tors are L2-normalized once again after whitening. We use
ResNet50 [15] as the feature extractor, and reduce the out-
put dimension from 2048 to 512 with the whitening layer.

3.1. Training

There are 3 important computational steps:

1. Sampling: Batches are built by combining mini-batches
of k examples from the same class, taken accross the train-
ing datasets. This operation is repeated N times to build a
final batch of N ∗ k images.

2. Feature extraction: The backbone feature extrac-
tor extracts features for the whole batch, features are
pooled to give global descriptors, that are L2-normalized,
whitened (passed through the fully connected layer) and L2-
normalized again.

3. Ranking: The SmoothAP [7] function computes pair-
wise similarities between descriptors, and uses rankings of
similarities to compute an approximation of the Average
Precision (Figure 2 shows a visual representation). For a
given image x, the AP is computed as

APx =
1

Px

∑
i∈Px

R(i,Px)

R(i, B)
, (1)

where Px is the set of positive images for image x in the
batch, B the whole batch, and R the ranking function out-
putting the positions of images sorted by decreasing order
of similarity. Since we construct B by concatenating sub-
sets of k images from the same class, Px is conveniently
defined as the subset to which x belongs. An approxima-
tion is needed for making R differentiable, we invite the
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Figure 2. Training process. Each image in the training batches
is simultaneously pulled closer to positives and pushed apart from
negatives, regardless of their source datasets. Here we only repre-
sent one query (top image).

Figure 3. Testing process. We build class representations (mean
and covariance) from support images, refine image descriptors
with a diffusion process from the k nearest neighbours (here
k = 3), and assign class labels with a Mahalanobis distance.

reader to refer to the original paper [7] for details. Finally,
the loss function is computed as:

LAP =
1

|B|
∑
x∈B

(1−APx) (2)

3.2. Testing

For testing, we start from the few-shot classification
evaluation setup, but make some modifications to allow
evaluation on a whole dataset. Regular few-shot learning
is formulated with the k-shot, N -way notation, where N is
the number of classes used during a testing episode, and k
the number of support examples given for each of these N

classes. In the literature, this episodic testing is repeated a
high number of times and performance is averaged to give
a global accuracy of few-shot classification. Our proposed
evaluation setup, inspired from SimpleCNAPS [6], goes as
follows:

1. Build class representations: For each class of the
dataset, select k random support examples, compute de-
scriptors, build class representations with the mean vector
and covariance. See Algorithm 1 for an algorithmic descrip-
tion.

Algorithm 1 Build class representations for testing
1: Require: Target datasetDt containingCt classes and Tt sam-

ples. The dataset contains images xt and associated labels yt:
Dt = {(x1, y1), . . . , (xTt , yTt)} with yj ∈ [1, Ct].

2: Require: Trained model M .
3: P ← (empty list) . Initialize the class prototypes
4: Σ← (empty list) . Initialize the class covariances
5: V ← (empty list) . Initialize the support vectors
6: for c in {1, . . . , Ct} do
7: E ← {(xj , yj)|yj = c} . Filter samples belonging to

selected class
8: Sc ← (empty list) . Initialize the class support
9: for j in {1, . . . , k} do

10: sj ← RANDOMSELECT(E) . Select a random
sample

11: APPEND(Sc, sj)
12: Vc ←M(Sc) . Compute descriptors for the class support
13: APPEND(P , AVERAGE(Vc)) . Get class mean vector
14: APPEND(Σ, COV(Vc)) . Get class covariance
15: APPEND(V , Vc) . Store vectors
16: Σt ← COV(V) . Get dataset covariance

2. Classify images: For all remaining images in the
dataset, compute descriptors, and get closest class using
class representations. To identify the closest class to each
query, we use the Mahalanobis distance with an estimate
of real class covariance matrices, as proposed by [6]. By
inserting covariance information, the measure of distance is
more precise, taking into account the distribution of support
representation in the feature space. The distance between
query descriptor x and class c, represented by its prototype
Pc and support covariance Σc, is computed with:

d(x, c) =
1

2
(x− Pc)T (Σ̃c)

−1(x− Pc), (3)

where Σ̃c is a class-specific covariance estimate, computed
with:

Σ̃c = λkΣt + (1− λk)Σc + I, (4)

where Σt is the global covariance (the covariance of all
support vectors), and I the identity matrix. The weigth-
ing factor λk is computed as λk = k/(k + 1). The ratio-
nale behind the weighted combination is to balance class
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information (Σc) and dataset information (Σt) to produce a
more robust class covariance estimate, with a higher weight
given to class information when there are more support im-
ages. For k = 1 (1 support image per class), we have
Σ̃c = 0.5Σc + 0.5Σt + I . For k = 5 (5 support images
per class), we have Σ̃c = 5

6Σc + 1
6Σt + I . Once we have

the distances between the query and each class, we assign it
the label of the closest class and evaluate.

Compared to how few-shot learning is usually formu-
lated in the literature, there are two main differences with
our framework. The first is the number of classes used in
evaluation. In our framework, we evaluate with N set to
its maximal value, i.e. the total number of classes in the
dataset. We can refer to this setup as k-shot, all-ways. This
difference makes a significant raise in difficulty, because of
the higher potential for inter-class confusion. The second
difference is the number of samples evaluated for each class,
in regular few-shot learning, for each episode, performance
is evaluated on a restricted set of queries, e.g. 10 [36] or
15 [43]. In our framework, we evaluate with all queries be-
longing to the same class. This difference should not mod-
ify the results, since it is merely an augmentation of the
sample size used to compute the accuracy.

3.3. Diffusion

An optional post-processing step commonly used in im-
age retrieval but surprisingly not in metric-based few-shot
classification is diffusion. Diffusion consists in exploring
the structure of the feature space to refine image descrip-
tors, notably by exploiting inter-image similarities. After
extracting all descriptors for a database with M images, a
MxM similarity matrix is built with pairwise similarities.
This information is then used to identify reciprocal near-
est neighbors and update vectors [44,46], iteratively update
vectors with an update rule [12, 41], or build a graph and
propagate [44]. Here, we use the simple αQE query expan-
sion scheme [31] but our approach is compatible with all of
the above mentioned methods.
αQE performs an exponentially weighted sum of the n

most similar images. If vi is the global vector represent-
ing image xi, the update is conducted using NNn(vi) the n
nearest neighbors of xi in feature space:

vi =
∑

vj∈NNn(vi)

(vᵀi vj)
α ∗ vj (5)

This operation is agnostic of class information. In our pro-
posed framework, we use it with all vectors of the target
dataset to update query vectors, after computing class rep-
resentations and before assigning labels.
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Figure 4. Effect of varying support size k and number of classes
N in the training process, with fixed batch size of 60 (N can be
deduced as 60/k). Vertical bars indicate 95% confidence intervals.
The models are tested on the indicated datasets and trained on the
remaining datasets from Tab. 1. Here we simply assign the label
of the closest image and measure accuracy so performance should
not be compared to the few-shot setting of Tab. 2

4. Experiments

4.1. Training parameters

An essential component of our architecture is the sam-
pler. It can be tuned for inter-dataset and inter-class variety
(parameter N ) and intra-class discriminability (parameter
k). The full batch size corresponds to k ∗N , and according
to the SmoothAP authors’ ablation experiments [7], bigger
batches increase performance, but the computational cost is
naturally limited by the training machine. We consider that
the parameter to adjust here is k, the number of samples
per class, and set N to the maximum possible value on our
setup.

We run a first experiment on a single GPU to assess the
role of k. Figure 4 shows the results with a simple label-
ing scheme, on four datasets. Overall accuracy (OA) is
measured with the label of the first retrieved image, on the
four smallest datasets of Tab. 1, taking all other datasets as
training datasets. Note that the results in Fig. 4 should not
be compared to the results in Tab. 2 since we are not in a
few-shot setup (we use all available labeled images). We
observe approximately equal performance with k ranging
from 3 to 20, with a drop in performance at 30, indicating
that two classes of 30 samples do not provide enough vari-
ety in the training batches. In the following, we use values
(k,N) = (10, 20). This corresponds to a batch size of 200,
fitting memory requirements with 256*256 images on three
NVIDIA RTX2080 Ti (12Go VRAM). For αQE, we use
α = 3 and n = 10, following the authors’ conclusion that
performance does not vary much with different values [31]

1386



Method AID PatternNet RESISC45 RSI-CB RSSCN7 SIRI-WHU UCM WHU-RS19
Supervised

97.21 [23] - 95.17 [23] 99.66 [33] 98.89 [2] 97.83 [48] 98.93 [9] 97.50 [37]
Few-shot (5-shot, 5-way)

RS-MetaNet [18] 74.48±1.11 - 71.49±0.81 - - - 76.08±0.28 -
Zhang et al. [43] - - 84.66±0.12 - - - - -

DLA-MatchNet [20] - - 81.63±0.46 - - - 63.01±0.51 79.89±0.33
TAE-NET [17] - - 82.37±0.52 - - - 77.44±0.51 88.95±0.53

Cross-domain
AANN [3] 70.94 - - - - - 80.50 -
MSCN [25] 79.08 83.91 - - - - 81.50 -

Few-shot cross-domain (5-shot, “all-ways”)
Ours 81.57±0.92 92.94±0.61 71.04±1.23 88.16±1.54 71.03±7.67 71.26±1.78 84.48±1.61 97.05±1.01

Table 2. Comparison of RSC methods. Our proposed setup of few-shot, cross-domain classification does not see any image from the target
dataset during training as few-shot methods do. We test on all images of the target dataset using 5 examples per class, without restricting
to classes seen during training as cross-domain methods do.

4.2. Comparison with state of the art

To our knowledge, there is no existing method in RSC
allowing classification on an unseen dataset without pre-
liminary knowledge, using only a few annotated images per
class. We nonetheless include existing methods in few-shot
and cross-domain RSC to provide a basis for estimating the
accuracy of our framework. Table 2 indicates the results of
various cross-domain and few-shot classification methods
on the eight datasets presented in Tab. 1 against our pro-
posed framework. For each target dataset, we train with our
multi-dataset approach on the remaining seven datatasets.
There are two main sources of randomness in our exper-
iments: dataset and class sampling during training, and
support sampling during testing. Accordingly, we build 5
different models for each target dataset, and test them 5
times with a different support set, which gives 25 samples
per experiment. 95% confidence intervals with Student’s
t-distribution are indicated.

A few notes are necessary to ensure a proper comparison:

• Few-shot methods are trained in a meta-training setup:
datasets are separated in meta-train, meta-val and
meta-test splits. This means that only a fraction of
the dataset is used during testing, and that the best
model has been selected using images with similar vi-
sual characteristics.

• Cross-domain methods are trained on the indicated
source dataset(s). There is, however, often a discrep-
ancy between classes defined in the source dataset and
in the target dataset. Accordingly, methods in the lit-
erature only test on the fraction of the target dataset
which contains the same classes as the source dataset.
For example, if the class “Airplane” is absent from the
dataset AID, images from this class are not used when
evaluating a model trained on UCM.

In our framework, we train on all datasets except the target
dataset, and test on the target dataset. This means that we
do not use a single image from the target dataset neither for
training nor for validation, and test on the whole dataset.

4.3. Comparison to cross-domain methods

The comparison to cross-domain methods is made hard
by the fact that they are tested on subsets of target datasets
in the literature. On AID, PatternNet and UCM, our 5-shot
setup obtains better performance than the state-of-the-art,
using only 5 × 30 = 150 support images for AID, 5 ×
38 = 190 for PatternNet and 5×21 = 110 for UCM, which
represent respectively 1.5%, 0.6% and 5.2% of the datasets.
By contrast, cross-domain methods perform evaluation on
subsets eliminating between 38% on UCM and up to 96%
on PatternNet of images in the target dataset. Compared to
these methods, our data-driven approach does not require
any class redefinition, and the competitive performance we
obtain with multi-dataset training shows that the influence
of an hypothetical domain gap between land-use datasets is
probably over-estimated.

4.4. Comparison to few-shot methods

Similarly, the comparison to few-shot methods is made
hard by the fact that they are 1. tested on small subsets of
the target dataset, 2. trained on small subsets of the same
dataset, 3. tested with episodes, i.e. giving the average accu-
racy when tested on a limited number of classes. Nonethe-
less, we are able to reach unprecedented performance on
AID, UCM and WHU-RS19 with margins of 7%, 3% and
17% respectively in the 5-shot setup, without seeing a single
image of the target dataset during training.

A valid remark can be done regarding the notion of class:
in our multi-dataset training setup, some classes of the tar-
get dataset can be found in some training datasets, which
is not the case for the compared few-shot methods. To
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Table 3. Comparison of our method against few-shot RSC meth-
ods, testing only on unseen classes.

Metric AID RESISC45
Few-shot classification (5-way)

1-Shot OA (%) 56.32±0.55 [18] 69.46±0.22 [43]
5-Shot OA (%) 74.48±1.11 [18] 84.66±0.12 [43]
meta-test ratio 33% 56%

Ours
1-Shot OA (%) 56.83±7.21 63.08±4.44
5-Shot OA (%) 73.27±2.9 83.96±1.95

test ratio 16% 22%

Table 4. Effect of adding αQE.

Target dataset 1-shot +αQE 5-shot +αQE
AID 58.40±2.43 62.83±2.98 79.86±0.76 81.57±0.92
PatternNet 73.62±5.86 78.15±7.04 90.72±0.75 92.94±0.61
RESISC45 43.59±2.30 47.76±2.12 66.86±0.99 71.04±1.23
RSI-CB 64.86±1.99 67.31±2.94 86.29±1.08 88.16±1.54
RSSCN7 52.02±3.48 53.39±4.47 69.36±5.40 71.03±7.67
SIRI-WHU 51.96±3.46 54.41±3.65 73.15±1.45 71.26±1.78
UCM 60.60±5.47 63.33±6.79 83.75±1.96 84.48±1.61
WHU-RS19 87.69±5.47 91.20±4.69 97.17±0.78 97.05±1.01
mean 61.59 64.80 80.90 82.19

verify is our method is dependent on seen classes, we re-
evaluate two of our models on AID and RESISC45, re-
moving all classes that are similar to any class in any of
the training datasets. For example, we do not test classes
“[sparse/medium/dense] residential” on RESISC45 because
classes “[sparse/dense] residential” are present on Pattern-
Net. Results are indicated in Tab. 3, with the ratio of test
images belonging to unseen classes indicated with “test ra-
tio”, in addition to the overall accuracy. The performance
of our models is noisy, due to the small subset used for test-
ing (and to the fact that we only test one model), but stays
on par with the state of the art. For RESISC45, we report
better results with the subset of unseen classes compared
to our previous performance in Tab. 2. This indicates that
our framework does not rely on previous knowledge to con-
duct few-shot classification, and is able to make use of the
support set to identify new classes.

4.5. Influence of diffusion

The ablation study on the αQE diffusion method in Ta-
ble 4 shows that using a simple diffusion scheme brings a
significant boost in accuracy, up to ∼ 4% depending on the
dataset and test setup. This experiment indicates that the
diffusion principle borrowed from image retrieval stays rel-
evant on a classification task. On SIRI-WHU and WHU-
RS19 with the 5-shot setup, however, there is a slight de-
crease in performance, indicating that in some cases αQE
worsens the quality of descriptor by taking unwanted noise
into account.

Table 5. Comparison of our method against cross-domain RSC
methods when using validation from the target dataset.

Metric AID PatternNet RESISC45 UCM
Cross-domain classification

OA (%) 79.08 [25] 83.91 [25] 77.33 [25] 80.50 [3]
test ratio 44% 4% 29% 62%

source dataset(s) UCM RESISC45,AID,UCM AID,UCM AID
Ours, no validation

1-Shot OA (%) 62.83±2.98 78.15±7.04 47.76±2.12 63.33±6.79
5-Shot OA (%) 81.57±0.92 92.94±0.61 71.04±1.23 84.48±1.61

Ours, with validation
1-Shot OA (%) 64.46±3.05 80.46±1.54 52.51±4.18 65.07±4.38
5-Shot OA (%) 81.34±1.87 93.67±0.77 71.89±1.45 81.31±1.69

val ratio 5% 2% 2% 15%
selected epoch 14 7 20 18

4.6. Using validation

We formulate our framework with the goal of perform-
ing classification on an unseen dataset with unseen classes,
using a few reference images per class as support. Accord-
ingly, we restrain from using a validation set and select our
best model with a predefined criterion, here the stabilization
of the training loss happening around 15 epochs. The few-
shot methods we compare to in Tab. 2 all use a validation
set from the target dataset to select their best performing
model, and test on the remaining data.

To measure the influence of using a validation set, we re-
train our models in a similar fashion (seven training dataset,
one target dataset) but using a small set of annotated valida-
tion data from the target dataset (15 samples per class), mea-
suring few-shot classification performance at each epoch,
which allows us to choose the best performing parameters
for each run. We train one model per target dataset.

Table 5 shows the evolution of performance when using
validation. We include cross-domain methods for compari-
son because they correspond to the setup “train on a dataset,
test on another”, but the caveats about different evaluation
setups (see Sec. 4.2) must be kept in mind. We indicate
with “test ratio” the fraction of images used for evaluation
in the target dataset. With a very small validation set, we
achieve a moderate boost of performance on AID, Pattern-
Net and RESISC45, indicating that having some annotated
validation images is beneficial in this cross-dataset setup.
Conveniently, there is no theoretical reason against using
the validation set as the support when evaluating.

4.7. Does class redefinition matter ?

Among the datasets of Tab. 1, there are some common
classes. With our multi-dataset training framework, we re-
main agnostic of class definition and only merge classes
with identical names. This means for example that the “in-
dustrial” class in AID is not merged with the “industrial
area” class in RESISC45, even if they undoubtedly cor-
respond to the same semantic content. If we browse the
classes in our multi-dataset setup, we can merge together
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Table 6. Effect of training with class redefinition with our few-
shot land-use classification method. “Mixed” columns refer to our
baseline approach: datasets are mixed “as-is”, only classes with
exactly the same name are merged. “Merged” columns show the
results when training with class redefinition, where similar classes
are merged together.

1-shot 5-shot
Target dataset Mixed Merged Mixed Merged
AID 62.83±2.98 62.06±4.12 81.57±0.92 79.70±0.77
PatternNet 78.15±7.04 75.08±2.17 92.94±0.61 92.03±0.62
RESISC45 47.76±2.12 48.03±1.08 71.04±1.23 70.06±0.94
RSI-CB 67.31±2.94 68.34±2.81 88.16±1.54 88.37±0.9
RSSCN7 53.39±4.47 57.83±4.44 71.03±7.67 74.46±4.63
SIRI-WHU 54.41±3.65 52.31±5.04 71.26±1.78 69.92±2.52
UCM 63.33±6.79 62.63±5.50 84.48±1.61 81.44±2.23
WHU-RS19 91.20±4.69 91.69±3.2 97.05±1.01 96.42±0.75
mean 64.80 64.75 82.19 81.55

classes that have the same definition or that can be consid-
ered very similar. On the eight datasets we consider, there is
a total of 207 classes. If we mix the datasets and only merge
classes with identical names, the virtual multi-dataset con-
tains 145 classes. Going further, we exhaustively compare
class names and create a list of classes that can be merged,
bringing the total down to 92 classes, and retrain our mod-
els to see the influence of class redefinition. Table 6 shows
the results.

On average, class redefinition (the merged column) does
not seem to provide better models, even if there are some
cases where it does (RSSCN7, RESISC45 1-shot). While
this may seem counterintuitive (the model is unnecessar-
ily distinguishing scenes that are actually the same), it can
be explained by the increased level of granularity obtained
(the details learned to separate sparse residential areas from
dense residential areas can be helpful overall, even on other
classes). Additionally, the SmoothAP ranking loss we use
emphasizes pulling positives together (having all positive
images at the top of the list) rather than pushing negatives
apart (having all negatives images at the bottom of the list):
even if during training, samples from the “sparse residen-
tial” and from the “dense residential” classes are separated,
during testing samples from a more general “residential”
class will still be close in the descriptor space.

5. Conclusion
In this paper, we proposed a new framework for land-

use classification, borrowing ideas from content-based im-
age retrieval and few-shot learning, and making use of the
variety of small datasets in RSC to conduct the task of clas-
sifying images on a new dataset, using a restricted support
set. We showed that our method is resilient to the visual
variations encountered across different sources of data, and
able to recognize classes unseen during training. While a
direct comparison was not possible due to the novelty of

our cross-domain, few-shot “all-ways” setup, we showed
that our approach achieves competitive classification per-
formance on an ensemble of target datasets, in some cases
better than the state of the art with a setup that is arguably
harder. Our complementary experiments highlight the boost
of performance brought by diffusion, the importance but
not necessity of using a validation set for fine-tuning, and
the irrelevance of class redefinition. Overall, these experi-
ments indicate that our land-use classification framework is
“plug-and-play”, i.e. it can be trained with any ensemble of
datasets, and tested on any target dataset, without relying on
pre-existing knowledge about class definition or validation
data.

We argue that our method is a convenient solution for
real-world applications, where one would need to classify
new land-use classes, potentially on a new source of im-
age data, with only a few reference examples. In future
work, we wish to study how our framework can be adapted
to conduct multi-label classification and use multi-spectral
data, so that it can go beyond the “simple” case of singe-
label land-use classification and exploit the richness of data
provided by state-of-the-art technology.
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