Attention Networks for Time Series Regression and Application to Congestion Control - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Attention Networks for Time Series Regression and Application to Congestion Control

Résumé

This paper studies a new attention-based recurrent architecture, lighter and less computationally expensive than a global attention network. This type of architecture achieves better performance than commonly used recurrent networks for time series regression. An application to congestion control is considered, where the history of round trip times (RTT) evolution history is used to monitor congestion control. The performance of the proposed new congestion control strategy is evaluated with both synthetic and real traces, showing that it can be efficiently used to estimate the congestion state of a network.
Fichier principal
Vignette du fichier
Attention_IFIP.pdf (831.75 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03668711 , version 1 (16-05-2022)

Identifiants

Citer

Victor Perrier, Emmanuel Lochin, Jean-Yves Tourneret, Patrick Gélard. Attention Networks for Time Series Regression and Application to Congestion Control. The 4th International Workshop on Network Intelligence in conjunction with IFIP Networking, Jun 2022, Catania, Italy. ⟨10.23919/IFIPNetworking55013.2022.9829808⟩. ⟨hal-03668711⟩
102 Consultations
804 Téléchargements

Altmetric

Partager

More