Series acceleration formulas obtained from experimentally discovered hypergeometric recursions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Series acceleration formulas obtained from experimentally discovered hypergeometric recursions

Paul Levrie
  • Fonction : Auteur
  • PersonId : 1133866

Résumé

In 2010, Kh.\ Hessami Pilehrood and T.\ Hessami Pilehrood introduced generating function identities used to obtain series accelerations for values of Dirichlet's $\beta$ function, via the Markov--Wilf--Zeilberger method. Inspired by these past results, together with related results introduced by Chu et al., we introduce a variety of hypergeometric recurrences that we have discovered experimentally, and we prove these recurrences using the WZ method, and apply these recurrences to obtain series acceleration identities, including a family of summations generalizing a series for $\frac{1}{\pi^2}$ due to Guillera, and a family of summations generalizing an accelerated series for Catalan's constant due to Lupa\c{s}. We also provide ``non-computer'' proofs of our hypergeometric transforms.
Fichier principal
Vignette du fichier
AccelerationV21.pdf (293.5 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03659300 , version 1 (04-05-2022)
hal-03659300 , version 2 (05-11-2022)
hal-03659300 , version 3 (20-12-2022)

Identifiants

  • HAL Id : hal-03659300 , version 1

Citer

Paul Levrie, John Campbell. Series acceleration formulas obtained from experimentally discovered hypergeometric recursions. 2022. ⟨hal-03659300v1⟩
199 Consultations
725 Téléchargements

Partager

More