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Series acceleration formulas obtained from experimentally discovered hypergeometric recursions

Paul Levrie  John M. Campbell

Abstract

In 2010, Kh. Hessami Pilehrood and T. Hessami Pilehrood introduced generating function
identities used to obtain series accelerations for values of Dirichlet’s 8 function, via the Markov—
Wilf—Zeilberger method. Inspired by these past results, together with related results introduced
by Chu et al., we introduce a variety of hypergeometric recurrences that we have discovered
experimentally, and we prove these recurrences using the WZ method, and apply these recur-
rences to obtain series acceleration identities, including a family of summations generalizing a
series for # due to Guillera, and a family of summations generalizing an accelerated series for
Catalan’s constant due to Lupag. We also provide “non-computer” proofs of our hypergeometric
transforms.

1 Introduction

In the recent article [4], the hypergeometric transform
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was proved using the Wilf-Zeilberger method [28] and was applied to formulate a new proof of Euler’s
formula ((2) = 72/6. The identity in (1) was also used in relation to some problems on binomial-
harmonic sums given in [29]. In this paper, we provide a number of hypergeometric identities
resembling (1) that were obtained experimentally. We prove them with the Wilf-Zeilberger method
28], and use them to formulate and apply series acceleration methods.

Our methods are related to Catalan’s [7] and Fabry’s work [12] on series evaluations, and to the
first author’s previous work concerning series by Wallis, Forsyth, and Ramanujan [23]; also, see [27].
Catalan and Fabry use a method due to Kummer [22] to accelerate the convergence of some series.

Repeated application of Kummer’s transformation leads to new series. One of the examples given

by Fabry is the series
2 0 (_l)nfl
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This example was later taken over by Knopp where we find the following exercise [20, 129.c), p. 272]:
Prove that
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Using this recurrence with p = 1 transforms the series (2) into a new series that converges faster.
Repeated application of the recurrence leads to this series:
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with convergence rate }l [12, p.138]. The above recurrence can be rewritten and generalized in terms
of hypergeometric functions. The result is given in the second part of Theorem 4.



While our hypergeometric recurrences as in Theorem 6 are of interest in their own right, the main
results of this article are our new and fundamentally different proofs of known identities equating
fundamental constants with fast convergent series, together with related evaluations for new fast
converging series. We provide, for example, a new proof of Guillera’s remarkable formula
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that was introduced in 2003 in [14], in a completely different way compared to our methods, and
we introduce generalizations of (3). It is remarkable how the WZ proof certificates for many of
our recurrences are hugely complicated compared to the elegance and simplicity of our closed forms
obtained from these recurrences, as in the Ramanujan-like formula in (3). Note however that the WZ
proofs are straightforward compared to Fabry/Kummer-like proofs of these results. These require
some ingenuity and are all based on special identities enabling a telescoping effect. For the sake of
completeness, these identities are given at the end of this paper.

1.1 Related literature

Much of this article is inspired by the methods and results introduced in [18], in which the following

fast convergent series for Catalan’s constant G = >~ (2(;—}31)2 were introduced:
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The formula shown in (5) had actually been introduced and proved via the WZ method in 2000 by
Lupasg in [25], prior to the 2010 article [18], and a completely different WZ-based proof, relative to
[18, 25], of a formula equivalent to (5) was recently introduced in [6]. Lupas’ formula, as in (5), is
used in the Wolfram Language to calculate G [26], which motivates our further exploring the use of
WZ-based methods to prove and generalize evaluations for fast convergent series as in (5).

The series for G given by Lupag in 2000 [25] and by Kh. Hessami Pilehrood and T. Hessami
Pilehrood [18] and shown in (5) may be proved and generalized in a direct way using a new WZ-
based method given in this article. Our alternate WZ-based proof of this G-formula is of interest in
its own right, since it is completely different compared to the proof approaches used in [6, 18, 25].
The formula in (5) is highlighted as part of Theorem 3 in [18], which gives a series acceleration for
>0 o B(2n + 2)a* for a complex number with |a| < 1, letting
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denote Dirichlet’s beta function. Theorem 3 in [18] is proved using the Markov-WZ pair (F,G),
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and

(=D (50, (5, (L+5), (1= 5), (2n)!

8 (15_a)2n+k+2 (HTa) 2n+k+2

- (40n? 4 56n + 19 — a® + 24nk + 16k + 4k?),

G(n, k) =

in contrast to our application of the WZ method, as opposed to the Markov-WZ method, to obtain
the WZ proof certificate shown in our proof of Lemma 1. Lupag’ formula for G, as in [25], was proved
via the WZ method in [25], and in a completely different way compared to our proof, with reference
to the proof of Theorem 3 in [25].

The above formulas for G also recall Guillera’s [15] WZ-derived formula
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proved in [18] via the MWZ method, but already known to Catalan [7, (32), p. 18]. As in [6], we
record that (5) was included in Lima’s paper [24], where hypergeometric manipulations were used to
prove a series expansion for Catalan’s constant equivalent to the formula
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proved by Guillera in [15].

Our series recursions and accelerations are also related to the work of Chu et al. in [8] and [10].
In [10], the series rearrangement referred to as the modified Abel lemma on summation by parts
is employed to obtain hypergeometric series recursions related to our work. For a hypergeometric
expression h(z,y) involving the variables = and y in its parameters, we prove recursions such as

hz,y) =ri(x,y) + ro(z,y) h(z,y + 1)

for rational functions r(z,y) and rq(x,y), and we then apply such recursions iteratively, yielding
accelerated series formulas. This same kind of approach is used in [10], but we do not make use of
any Abel-type summation results, and we instead employ the WZ method, and, furthermore, our
experimental approaches allow us to obtain recursions for ,F;(—1)-families, but such series do not
seem to be considered in [10]. An advantage of our WZ-based methodologies is due to how the WZ
difference equation

Fn+1,k)—F(n,k)=Gn,k+1)—G(n,k)

may manipulated in order to obtain new and nontrivial hypergeometric identities, using the WZ
pairs introduced in this article, together with WZ-based series manipulations as in [5]. It appears
that the Maple implementation of the WZ method cannot be applied to the recursions due to Chu
and Zhang in [10], which shows how the methods in [10] are nontrivially different from ours, which
rely on the WZ method.

1.2 Organization of the article

The rest of our article, apart from our concluding section on “non-computer” proofs, is mainly
structured and organized in the manner indicated as follows: In each of the following main sections,



we introduce a recursion or recursions for families of ,F}(z)-series for fixed p, ¢, and z, and with
the recurrences being given in terms of the parameters of the generalized hypergeometric functions
under consideration. We present WZ proofs of these recursions, and then apply these recursions
to obtain series acceleration identities, to obtain fast convergent series formulas for fundamental
constants. Given one such fast convergent series, our method naturally gives rise to an infinite
family, by altering the input parameters. In this regard, we choose to emphasize, as in Sections 3.1
and 5.1 below, our infinite families of generalizations of especially remarkable results due to Lupas
[25] and Guillera [14], recalling (3).

In Section 2, we introduce experimentally discovered 3F5(1)-recurrences, yielding formulas for
very fast convergent series, such as

((2) = Loy Bro D —5) )
4 n=2 n2(n_1)2(:)
a series with convergence rate 6%1

In Section 3, we introduce experimentally discovered 3F»(—1)-recurrences, yielding an infinite
family of series generalizing (5).

In Section 4, we introduce an experimentally discovered 5Fj(—1)-recurrence, yielding new WZ
proofs of two of Ramanujan’s series for %, along with the new formula for Catalan’s constant shown
below, which does not follow from the G-evaluations highlighted in (4)—(6) or from the methods from
past references as in [6, 18, 25| on series acceleration identities applied to Catalan’s constant:

1 o= 207(336n* — 464n3 + 216n% — 42n + 3)
=16 Z - (9)
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In Section 5, we introduce experimentally discovered g F5(1)-recurrences, which we apply to obtain
a variety of results, including a new proof of and generalizations of Guillera’s remarkable formula (3)
introduced in 2003 [14].

Finally, in Section 6, we provide “non-computer” proofs of our ,Fj-recurrences, without using the
WZ method.

2 Experimentally discovered 3Fj(1)-recurrences

For the sake of brevity, we assume familiarity with WZ theory [28], generalized hypergeometric series,
the Pochhammer symbol, etc., and we proceed with our first main result.

Theorem 1. The 3F5(1)-transform
rx,x+ 1,1 20+ 3y —1
3F5 =55
r+yr+y+1 2(2y — 1)

(y = Dy(y +1) . o+ 1,1
22— D@ +y)z+y+1) “ oat+y+loz+y+2

+

holds true for x and y such that both sides of the above equality converge.



Proof. We set © = —n. So, it remains to prove that

> (1 —n)p(—n)x 2(2y — 1)
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constantly equals 1. Now, we restrict n to being a member of the set Ny. In this case, Pochhammer
symbols of the form (—n); vanish for k > n, with k£ € Ny. So, for n € Ny, we may replace the upper
limit of the above series with n. Now, we may apply the WZ method, giving us the following WZ
proof certificate.

= (k—n+y)* (1+k-n+y) * (8%k " 2*n "~ 2%y-16%k "~ 2*n*y~2+6xk "~ 2%y~ 3-16%k*n" 3*xy+48*k*n" 2%y~ 2-
42%k*knky " 3+Qkkoky " 4+8%n " Axy-32%n " 3ky " 2+424n " 2ky " 3-18knky " 4-4xk " 2%n " 2+16%k " 2¥nky-
12k~ 2%y " 2+8kkokn " 3-48kkkn " 2%y +7 2kkknky " 2-27kkky " 3-4%n " 4+32%n " 3ky-72%n " 2ky "2+
54x*n*xy~3-9%y 4-4xk"2xn+6xk " 2*xy+12*xk*n"2-38xk*xnxy+27xk*y 2-8*n"3+38*n" 2xy-54*n*xy "2+
21y~ 3+4xk*n-9xk*y—4*n~2+18*n*y-15%y~2+3xy) xk/ (3+2*xn-3*y) / (n+1-y) / (n-y) / (k-n) / (-n+
k-1) / (4*k~2xy-8xk*n*y+8xk*y~2+4*n "~ 2xy-8*n*y " 2+3*y~3-2%k " 2+4*k*kn-2*n"2+2*y " 2-2xk+
2*n-y)

So, using the WZ method, we have shown that the above infinite series identity holds for n € Ny. We
may thus apply Carlson’s theorem [3, p. 39] as in [11], to show that the same series identity holds
for real n. O

Theorem 2. The 3F5(1)-transform

x(x+1) r+1x+21
oy +lat+y+2

rx+11
3fy L =1+
r+yx+y+1 (z+y)(z+y+1)

holds true for x and y such that both sides of the above equality converge.

Proof. Again, we set x = —n. So, it remains to prove that
i 1—n Vi(—n) y(2k —2n+y+1) B
— ( (—n+y+1)p(k—n+y)k—n+y+1)

Again, we consider the case for n € Ny, so that we may again replace the upper parameter of the
above sum with n. Again, we may apply the WZ method; the corresponding WZ proof certificate is
given below:

k(k—n+y)(k—n+y+1)(—2kn+ky—k+2n*>—2ny+2n—y+1)
(k—n—1k-n)n—y)(n—y+1)2k—2n+y+1) '

We may thus apply Carlson’s theorem, as before. n

2.1 A series acceleration method

Let us define

T rxrx+11 = n n
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We rewrite the recurrences given as Theorems 1 and 2, respectively, so that
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Note that we know the value of s(z,y) in some cases:

s(z,y) = s(z+1Ly). (11)

2
s(1,2) =7— §7T2,s(1,2) =3-

! —7%,s(1,3) =10 - 3m,s(3,2) =2 - —. (12)

Indeed, we have, for instance, that:

2= BT D =Z(n+1 nt3 <n+2>2>’

leading to the given closed form for s(1,2). We can deal with the second one in a similar manner.
For the third and fourth ones, we can use a closed form for the partial sum of the series, as in:

[e9) n\ 2 k—1 2n\ 2 2k\ 2
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We then take the limit and use Wallis’s product formula for 7.
We can use the s-recurrences above to accelerate the convergence of the corresponding series.
Iterating the first recurrence leads to the following accelerated series:

v e 43y+n) =1 (y—Dagaly + Da
s(e) =2 22(y+n) — D(@+y+n) 22 (y— Dulz +9)2

_Z_ > 3n+1
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n=2
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”:_22(5) (n)z 32n+1 o — 1)
= n)(2n+3)(2n+1)(2n —1)
1 3] 1 8n 9 3 2
) () et
s = \2 n/) (2n—1)(2n —3)
The fast convergent series evaluation in (13) meaningfully relates to the formulas
2 =2"(n+1)(3n+1)
T=>. (14)
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and .
5t m _ 24 (6n? 4 2n — ;) (15)
2 = n2(2n+ 1)(2:)
recently introduced in [6] and proved in [6] using WZ-based telescoping arguments together with WZ
pairs obtained from Catalan number sum identities given in [9], noting that (13), (14), and (15) all
have the same convergence rate of %.

If we use (11) in (10) we get a recurrence relating s(z,y) to s(z+ 1,y + 1), and other accelerated
sums, including (8). This series is especially remarkable for many reasons, perhaps most notably due
to its very fast convergence rate of é. In the same manner that we have obtained (8), the following
formulas may be proved.

o0

(@) = 16 2 (14n? + 11n + 1)(n + 1)

9 i n(dn+3)(dn+1)2(2n — 1) (*7) (In)*

_ 10 Qi (ldn +11)(2n 4+ 1)(3n + 1)(2:3
3 = (4n+3)(4n +1)2(2n — 1) (37

% _ _% ni;() (%)12” <2:)3(6n + 1)((;1Ln_—1§2)(2n +1)

This leads to an infinite number of possibilities.

™

3 Experimentally discovered 3F,(—1)-recurrences

In view of the closed forms shown in (12), it is not clear as to how to obtain accelerated series for
Catalan’s constant G = Yy~ ((_i This motivates the exploration of alternating variants and

2n+1)2
generalizations of the above Lemmas. Defining ¢(z,y) so that
(@@
13 r,Yy)= —1 n7 16
D R R 1o

we find that ¢(4,2) = 2(6G — 5). Note that

T zx+11
t(.fE,y): 3 2|:

c+y ety aty+1

This motivates the use of analogues of our above acceleration methods, in order to obtain accelerated
series for G. In view of the resemblance of the formula (13) compared to the WZ-derived results in
(14) and (15) from [6], this leads us to consider how recurrences for (16) may be applied to obtain
analogues of the accelerated G-series

o0

N (1)"2 (4002 o+ dn — 1)
RO L B "

proved in [6], which is equivalent to (5).

The recurrence highlighted below is remarkable in the sense that it is far from clear as to how
our proof of Theorem 1 could be mimicked or reformulated so as to prove the identity highlighted as
Lemma 1. We had discovered this recurrence experimentally.
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Lemma 1. The recurrence

(22 + 6y + 5y* + 22 + 4y) vy +1)(y +2)
He,y) = dx+y?(zr+y+1) B dx+y)?(z+y+ 1)2t(x’y+2) (18)

holds true for suitably bounded x and y.

Proof. Rewrite x as —n. Writing F'(n, k) in place of the product of

(—D)*(—=n)p(—n)rs1
(—n+yr(=n+Y) ik

and

k—n+y+1)2(k—n+y+2)
n (—6ny + 2(n — 1)n + 5y% + 4y)

the desired recurrence is equivalent to the identity

ZF(n,k)zl.

k=0

1 2)y2
(n _ y)2(_n +y+ 1) <(k_n+y)((y+ )(y+2)y + 4)

9

For the time being, we restrict our attention to the case whereby n € Ny. By the vanishing of (—n)y
for k > n € Ny, with k € Ny, it remains to prove that

zn:F(n, k) =1, (19)

again for the n € Ny case. We have successfully applied the WZ method to prove the above finite
sum identity, and the corresponding WZ proof certificate is reproduced below.

- (1+k-n+y) * (2+k-n+y) *xyxk+* (8*xk~3*n"3-28%k " 3*n " 2*y+32xk " 3*n*y~2-10%k "~ 3%y~ 3-
24xk"2*xn"4+112xk"2*xn" 3*y-192xk~2*n" 2%y~ 2+136*Kk " 2*n*y~3-30*k " 2*y " 4+24*k*n"5-
140*k*n"~4*xy+320*k*n"~3*y~2-348*k*n"~ 2%y~ 3+170xk*n*xy~4-25xk*y~5-8*n"6+56*n"5*xy-
160*n~4*y~2+232%n" 3%y~ 3-170*n" 2%y~ 4+50*n*y~5-8*k "~ 3*n"2+20*k "~ 3*n*xy—-6xk "~ 3*y~ 2+
32xk"2*xn"3-112xk " 2*%n" 2%y+104xk ™ 2*xn*xy " 2-18%k 2%y~ 3-40*xk*n~4+184xk*n"3*y-
276xk*xn" 2%y~ 2+142xkkn*xy~3-5xk*xy 4+16+n"5-92*n"4*y+184*n" 3y 2-142*%n" 2%y~ 3+
10*n*xy~4+25xy " 5+4*k " 3*xy-8*k™2*n"2+12xk " 2%y~ 2+16%k*n"3-24*k*n" 2*xy-12xk*nxy "2+
26xkxy~3-8*xn"4+16%n" 3xy+12*n" 2%y~ 2-52*n*xy " 3+35*xy " 4-4xkknxy+2xkxy T 2+4*xn " 2*xy -
4xnxy”2+2%y " 3-4xk*xy+8*xnxy-8%y~2) / (n-y) / (2*n"~2-6*n*y+5*xy~2+2*n-2%y) / (-n+k-1) / (k-
n)/(-1+n-y) / (4%¥k~4-16%k"3*n+16%k~3*xy+24*k "~ 2+n"2-48*k " 2xn*y+24*xk "~ 2%y~ 2-16*k*n"3+
48*k*n " 2xy-48*k*n*y~2+16xk*y~3+4*n"4-16%n"3xy+24*n" 2%y~ 2-16*n*xy~3+5xy 4+16*k"3-
48xk~2xn+48%k " 2xy+48*k*n"2-96xk*xnxy+48xk*xy 2-16*n"3+48*n" 2*xy-48*n*xy~2+19%y "3+
20%k~2-40*k*n+40*xk*y+20*n"~2-40*n*y+22%y "~ 2+8*k-8*n+8*y)

So, we have shown that (19) holds for n € Ny. Again by the Pochhammer vanishing property referred
to above, we have that

i F(n,k) =1 (20)

for n € Ny. Again, we may apply Carlson’s theorem, in much the same way as in [11], to conclude
that (20) also holds for real n. O



Theorem 3. The expression t(x,y) equals the accelerated infinite series given as follows. Letting
this series be over indices j € Ny, its summand may be written as the quotient of

(=1)7477 (), (%)J (#) g (22 + 22° + 4(2j + y) + 62(2) + y) + 5(2) + v)?)

by
4@+ 9, (T +y+2i+1)

Proof. Through repeated applications of the recurrence given as Lemma 1, we may rewrite t(x,y) as

1 (24 21 2427 . . .
mot (<1 (T GEEesE ) o (20 4 202 + 4(2) + y) + 62(2 +y) + 5(2) + L
— 42+ x4+ y)?2(1+2j+x+vy)
m—1 .. . .
(20 4+ y)2(1 + 2i +y) (2 + 2i +y)
- , : t(z,y 4+ 2m).
(=1) (11 4(2i +x+y)?(2i+x +y+1)? (2. )
Taking m — oo, it is easily seen that the latter term vanishes. O]

Example 1. Setting x = l and y = 1 in Theorem 3, we obtain the accelerated series identity

The above series is of convergence rate 1

1)72% (4052 — 125 — 1) (2;')
32 -2+

3.1 A family of accelerated series for G

Setting = —3 and y = 2 in Theorem 3 gives us the series (17).

By setting x = % and y = 2 in Theorem 3, we may obtain an alternate proof of the formula (5)
from [18]. Explicitly, we obtain that

o0

40 o (—1)72% (4052 + 285 + 3)
3 = 24+ 1245 +3) () ()

and adding 16 times the series in (5) gives us a series with partial sums that are evaluable in closed
form. However, it is not clear as to how to obtain the G-series given below using Markov-WZ methood
together with series involving Dirichlet’s £ function, as in [18].

2 (21)

Example 2. Set x = § and y = 2 in Theorem 3. This gives us

o0

16G 664 5 )7289 (4052 + 52 + 15)
166 664 .
135 <= j2(4j +1) (45 +3)°(45 + 5) (%) (3))

Example 3. Set x = g and y = 2 in Theorem 3. This gives us that

23048 16G i (—1)72% (4052 + 765 + 35)
70R7E AR . . 2"
70875 45 =3 2(45 + 1) (47 +3)2(45 +5)2(45 + 1 (¥) ()

Continuing in this manner gives us an infinite family of extensions of (21). It appears that our
techniques for generating such families of accelerated series have not been considered previously, as
in past literature related to [18], including [1, 2, 16, 19, 21, 30].

9



3.2 Further 3F,(—1)-recurrences

Theorem 4. The recurrences

x, 7,1 x? r+1,z+1,1
3l s == 5 3L i—1
r+uy,r+y (x +vy) r+14+yx+1+y
F[ r,x,1 }_2x2+6xy+5y2+y
802 r+y,x+y’ N Az +y)?
y(y +1)° z, 2,1
- 3Fh ;—1
dx+y?(r+y+1)2 r+y+2,x+y+2

hold true, if all of the above series converge.

Proof. Write x = —n. We may mimic our previous WZ proofs, via Carlson’s theorem, to prove
the first out of the two 3Fy(—1)-recurrences shown above. a Corresponding WZ certificate is shown

below:
ky(k —n+1y)? (=2kn + ky — 2k + 2n? — 2ny + 4n — 2y + 2)

(k—n—1)2(n —y+1)2(2k2 — 4kn + 2ky + 2n2 — 2ny + y2)
We may apply the same approach to prove the latter 3F5(—1)-formula under consideration; a WZ
proof certificate is given below.

- (8%k~3*n"3-28%k"3*n " 2xy+32xk " 3*n*y " 2-10%k " 3xy~3-24xk"2*n"4+112+k " 2*n" 3xy-
192%k™2xn"~ 2%y~ 2+136%k " 2*xn*xy~3-30%k 2%y~ 4+24xk*n"~5-140%k*n"4*xy+320*k*n"~ 3%y~ 2-
348xk*n " 2%y~ 3+170xk*n*y~4-25xk*y~5-8+n"6+56*n"5xy-160*n"4*y~2+232*n" 3*y "3~

170*n" 2%y~ 4+50*n*y~5+4*k"3*n"2-8*%k "~ 3*n*xy+10xk " 3*xy~2-16*k™2*n"3+56*%k~2*n " 2xy-

88xk " 2xnxy~2+50xk 2%y~ 3+20*k*n"4-96*k*n" 3xy+204*k*n"2xy~2-206*k*n*xy”~3+80*k*y~4-
8*n"5+48*n"4*y-136*n"3*y " 2+206*n" 2%y~ 3-160*n*xy~4+50%y " 5+6*k " 3*xy-24*k " 2*n*y+

18*k " 2%y~ 2+36*k*n" 2xy-b4d*xk*n*y~2+20%k*y~3-24*n"3*xy+54*n" 2%y~ 2-40*n*y~3+10*y 4+
2%k~ 3-8%k"2*n-2xk " 2%y+12¥k*n"2+6xk*kn*xy-14xk*xy~2-8%n"3-6*n" 2*y+28*n*xy " 2-14*y~3-
4xk"2+12xk*n-T7*k*y-12xn"2+14*xn*y-2xy " 2+2xk-4xn+4*y) xk*xy* (1+k-n+y) "2/ (2*n"2-6*n*y+
B5xy~2+4xn-5xy+2) / (4*k~4-16%k"3*xn+16%k "~ 3*y+24*xk~2*n"2-48*k " 2*n*y+24xk " 2%y~ 2-
16*k*n"~3+48*k*n"2*y-48*xk*xn*y 2+16xk*xy~3+4*n"4-16*n"3*y+24*n" 2%y 2-16*n*xy~3+5%y 4+
8*k"3-24xk™2xn+24*xk " 2xy+24xk*n"2-48xkxnxy+24xk*y~2-8*n"3+24*n" 2xy-24*xn*xy~2+11xy "3+
4xk~2-8*k*n+8xk*y+4*n~2-8*n*xy+7*xy~2+y) / (n-y) "2/ (-n+k-1) "2

]

With the notation

zxl
— . F 1
S(‘T7y) 3 2[:E+yx+y7 :|a

we may express the recurrences in Theorem 4 as follows:
2

S($7y> =1- (QZ’ + y)28(x + 17:{/)7
22% 4 6zy + 5y° +y y(y+1)°3
_ _ 9.
s(,9) i(z +y)? aryaryrn @yt

If we use the second recurrence to calculate s(3,2) = 3 (1 — %), 5(1,2) =4 (3 —41n(2)), s(3,1) = G,
we find the corresponding series in Lupag [25, p. 6]. If we combine the recurrences to write s(z,y) in
function of s(z + 1,y + 2) and of s(z + 2,y + 2), we get for z = 1 and y = 1 the series for Catalan’s

constant found in [18, pp. 233-234].

10



4 Experimentally discovered ;F,(—1)-recurrences

Theorem 5. The recurrences

-1 oo, e+ S -1
($+y—)'5F4{ 2 _1;—1}:m—|——y
2 $+yax+y7$+ya$+y7 2
a’ +1+y—l x+Lx+Lx+Lx+1+%%1
A (e _ -
(z +y)? 2 ) et ltyo+liy oty e+ 1+ 05

-1 oo, e+ S x—1
(!E+yT) '5F4{ ? y—l;_1:| =5 +y
rT+Y,r+yY,r+yY,x+ F

3 +2
Y Y v, x,r, e+ 551

S (o) -
@+yp< 2 54L+y+Lw+y+Lx+y+Lx+% }

hold true, if all of the above series converge.

Proof. Again, we set x = —n, and we may apply the WZ method in much the same way as before.
A WZ proof certificate for the first out of the two recursions shown above is provided as follows.

- (k-n+y) "3% (12+k"3*n"3*y-18*k~3*n" 2%y~ 2+10%k " 3*n*y~3-2xk " 3%y ~4-36*k " 2*n"4x*y+
T2xk"2xn" 3%y~ 2-49%k"2*n" 2%y " 3+13*k " 2*n*xy~4-k" 2%y 5+36*xk*n"5xy-90*k*n"4*y "2+
T8*k*n" 3%y~ 3-27*xk*n" 2%y 4+3*k*n*xy~5-12*n"6*xy+36*n"5xy~2-39*n"4*y~3+18*n" 3*xy~4-
3*n" 2%y 5-4*Kk"3*n"3+42*Kk " 3*n" 2%y -42%Kk " 3xnky " 2+12%k " 3*y " 3+12%k"2*n"4-168*Kk"2*n" 3*xy+
234xk”~2*n" 2%y~ 2-104*xk"2*n*y " 3+13*k " 2%y 4-12xk*n"5+210*%k*n"4*y-384*k*n"~3*y "2+
240xk*n" 2%y~ 3-54xk*xn*y~4+3*k*y 5+4*n"6-84*n"5*xy+192*n"4*xy~2-160*n"3*y "3+

541" 2%y~ 4-6*n*y ~5-12%k"3*n"2+48*k " 3*knxy-24*k " 3%y~ 2+48%k"2*n"3-285*%k"2*n" 2xy+
249k~ 2*xnxy " 2-54xk " 2%y~ 3-60*k*n"4+474*k*n" 3xy-603*¥k*n"2xy " 2+243xk*kn*xy " 3-27xk*y "4+
24*n"5-237*n"4xy+402xn" 3%y~ 2-243*n" 2%y~ 3+54*n*xy 4-3xy~5-12%k"3*n+18*k"3*xy+
72xk~2*xn"2-210%k " 2*xn*xy+87+k " 2%y~ 2-120%k*n~3+522*k*n "~ 2xy-414*k*nxy~2+81xk*y "3+
60*n"4-348*n"3*y+414*n" 2%y~ 2-162*n*xy " 3+18*%y~4-4*k"3+48*%k”2*n-57xk " 2%y-120*k*n" 2+
282xk*n*xy-105xk*y~2+80*n"3-282*n"2*xy+210*n*y~2-40%y~3+12%k " 2-60*k*n+60*k*y+60*n~2-
120*n*y+42%y~2-12*xk+24*n-21*y+4) *k/ (n+1-y) "3/ (2*n+3-y) / (-n+k-1) "3/ (4*xk~4-16%k"3*n+
8*xKk " 3xy+24%xk”~2xn"2-24xk " 2*n*xy+9*k " 2%y~ 2-16*xk*n " 3+24xkxn" 2xy-18*k*n*xy " 2+5xk*xy "3+
4xn"4-84n"3xy+9*n" 2%y " 2-5kn*y " 3+y " 4-3xKk " 2xy+6kk*n*ky-3*kky~2-3%n" 2ky+3*knxy~2-y~3)

A WZ proof certificate for the latter recursion is given below.

—kx (3%k"3%n"3%y-9%k~3*n" 2%y " 2+7*k " 3*n*y " 3-2xk"3xy 4-9xk " 2*n"4*xy+36%k”2+n" 3%y~ 2-
A6xK~2*Nn" 2%y " 3+22xk " 2*kn*y " A-4kKk " 2%y " 5+Okk*kn " Sxy-45xk*n " 4*y”2+78*k*n"3ky "3~
S54xk*n”~ 2%y 4+12¥k*n*xy 5-3*n"6*xy+18*n" 5%y~ 2-39*n"4x*xy~3+36*n"3*y 4-12*n" 2%y " 5-
k™3*n"3+12xk " 3*n"2%xy-21 %k " 3*n*xy~2+8*%k " 3%y~ 3+3*k"2*n"4-48*k"2*n" 3xy+

126*k™2*n" 2%y~ 2-102xk " 2*xn*y~3+24xk "~ 2*xy~4-3xk*n"5+60*k*n"4*xy-210*k*n"~ 3y~ 2+
258xk*xn” 2%y~ 3-114xkxn*xy ~4+12xk*xy~5+n"6-24*n"5*xy+105*n"4*xy~2-172*n" 3%y~ 3+

114*n~ 2%y~ 4-24%n*y~5-3*%k"3*n" 2+15%k ™ 3*xn*xy—-12xk " 3*y " 2+12%k"2*n"~3-90*k~2*n " 2*y+
144xk™2+n*xy~2-56*k " 2%y~ 3-15%k*n"4+150*k*n"3*y-360*k*n"2xy~2+282*k*n*y~3-60*k*y 4+
6*n”"5-75*n"4*xy+240*n" 3*y " 2-282*n" 2%y~ 3+120*n*y"4-12%y " 5-3*Kk " 3*¥n+6xk " 3*xy+
18*k™2¥n"2-72*Kk " 2*n*y+54*xk ™ 2+y~2-30*k*n"3+180*xk*n"2*xy-270*xk*n*y~2+102xk*y~ 3+
15*%n"4-120*%n"3*y+270*n" 2%y~ 2-204*n*xy~3+42xy~4-k"3+12%k " 2*n-21*k " 2xy-30*k*n"2+
105*k*n*y-75%k*y~2+20*n"3-105*n"2xy+150*n*y~2-55%y~3+3*k~2-15*xk*n+24*k*y+15%n~2-

11



48*n*xy+33%y~2-3%k+6*n-9xy+1) *x (k-n+y) "3/ (2%k"4-8%k"3*n+7*xk~3*y+12+k~2*n"~2-

21k " 2xnxy+9%K " 2%y " 2-8*k*n " 3+21xk*kn" 2%y-18*xkkn*xy " 2+7xk*ky " 3+2¥n"4-7*n" 3*y+

O*n " 2%y " 2-T*n*xy " 3+2%y~4-k"3+3xk " 2*n-3*k " 2*y-3*xk*n"~2+6xk*nxy-3xk*y~2+n"3-3*n" 2*y+
3xn*xy~2-y~3)/(2+n-2*y) / (-n+k-1) "3/ (n+1-y) "3

With the notation:

-1 J;xxx+y+11
s(z,y) = ($+y—)'5F{ —1{,

2 x—l—yx+ym—l—yx+y1
we find that:
y—1 3
s(z,y) =z + — s(x+1,y),
(z,9) 5 ($+y)3( Y)
z—1 >

———=s(z,y+1).

s(@y) = ——+y CETE

Note that for z = 1,y = 1, s(z,y) is Bauer’s series (see f.i. [23]):
- 1\ /20’
N dn+1
S (z) () wen

If we try to accelerate this series with one of the recurrences, we get Bauer’s series again in both
cases. Hence no acceleration. But if we use them one after the other, we get Ramanujan’s series for

1.
16 00 1 12n m 3
— = — 42 5).
22 () () s

s(z,y) = %Z(—m; _ %G.

For z = %,y = 1, we have that

— (2n +1)2

Using both recurrences one after the other leads to (9). For z = 1,y = 1, we obtain in this case:

[ee]

1 21n + 13 2
16 <= (2n +1)3(>")° 12

(equivalent with [17, (7)]).
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5 Experimentally discovered ¢F5(1)-recurrences

Theorem 6. The recurrences

-1 a:,x,:v,x,x—kw,l —1
(x+y—)F[ : _1;1}=x+y—
2 Ty, z+y,r+y,rv+y v+ 2
2t y—1 r+lrz+loz+lo+lo+1+401
+— v+ 1+ 6l il
(x +vy) 2 r+1+yz+l+yr+1+yz+1+y0+1+ %5
y—1 x,m,x,x,x—k%l,l 5y? + 6(z — 1)y + 2(x — 1)?
T+ — '6F5 13 =
2 T4y, r+y,r+y,r+y,r+ 42y — 1)
y° :c,:z:,:c,a:,:c—iryziz,l

5)
— T+ =) -6k i1
2<2y—1)(x+y)4< 2) ¢ 5[x+y+1,x+y+1,x+y+1,x+y+1,x+% ]

hold true, if all of the above series converge.

Proof. Again, we write x = —n, and we may again mimic our WZ-based approaches utilized as
above. For the first ¢F5(1)-recurrence on display in the above theorem, a corresponding WZ proof
certificate is shown below.

= (—n+y+k) "4* (16%k~4*n"4*xy-32*k"4*n"~ 3%y~ 2+28%k " 4*n"~ 2%y~ 3-12%k " 4*knky~4+2%k "4y~ 5-
64xk~3*n"5*xy+160*k~3*n"4*y 2-156*%Kk"3*n"3*y " 3+74*Kk"3*n"2*y 4-16%k " 3*n*xy " 5+k"3*y~ 6+
96*k™2*n"6*xy-288*%k~2*xn"bxy " 2+328xk " 2*n"4*y " 3-176*%k"2*n" 3%y ~4+44xk"2*n" 2%y~ 5-
4xk"2*xnxy " 6-64xk*n” 7xy+224xk*xn"6xy~2-300%k*n"5xy ~3+190*k*n"4*xy~4-56xk*n" 3xy 5+
Bxk*n" 2%y~ 6+16%n"8*y—64*n"7*y " 2+100%n" 6y~ 3-76%n" 5%y~ 4+28%n"4*y " 5-4*n" 3%y~ 6-

4k 4sn " 4+72%k " 4%n " 3%y-108xk ~4*n 2%y " 2+64%k " 4*n*y~3-14xk "4y~ 4+16%k"3*n"5-
360%k"~3%n"4*y+688%k " 3kn "3y~ 2-500%k " 3%n " 2%y~ 3+156xk " 3*n*y"4-16%k "3y 5-24xk"2+n" 6+
648*k™2*n"5xy-1524xk " 2*n"4*y " 2+1360*%k”2*n" 3%y~ 3-540%k " 2*n" 2%y~ 4+88*k "~ 2*n*xy " 5-

4xk " 2%y~ 6+16*%k*n"7-504*xk*n"6*xy+1416xk*n"bxy~2-1540*k*n"~4*y~3+768*k*n"3*xy~4-
168*k*n~ 2%y~ 5+12*k*nxy~6-4*n"8+144*n"7*xy-472*n"6xy~2+616*n"5xy~3-384*n"4*xy 4+
112407 3%y~ 5-12%n" 2%y~ 6-16%k "~ 4%n " 3+120%k ~4*n "~ 2%y-120%k "~ 4*knky " 2+36xk 4%y~ 3+
80%k"3%n"4-796%k"~3%n"3xy+1098%k " 3*n " 2%y~ 2-528xk "~ 3knky " 3+81%k " 3%y 4-144xk "~ 2*n "5+
1788xk™2%n"~4*y-3192%k " 2+n" 3%y~ 2+2096k ~2%n " 2%y~ 3-548%Kk "~ 2xny ~4+44*kk " 2%y "5+
112xk*n"6-1668*k*n"5*xy+3690*k*n~4*y~2-3136*%k*n"~ 3%y~ 3+1158*k*n"2*y~4-168*k*n*y 5+
6xk*xy " 6-32*n"7+556*n"6xy-1476*n" 5%y 2+1568*n"4*xy~3-772*n" 3%y 4+168*n" 2%y 5-

12%n%y " 6-24%k ~4*n "~ 2+88%k ~A*nky-44*k " 4xy " 2+160%k " 3%n"3-868%k " 3*n " 2%y+772%k " 3knky " 2-
184k~ 3%y~ 3-360*k™2*n"4+2592xk"2*n"~ 3*xy-3312xk " 2*n" 2%y~ 2+1424xk" 2*xn*y "~ 3-

184xk™2xy "~ 4+336%k*n"5-3020%k+n"4*y+5080%k*n " 3%y~ 2-3168xk+n"~ 2y~ 3+772kk*n*y " 4-
56xkxy~5-112%n"6+1208%n"~5xy-2540%n" 4%y~ 2+2112%n"~ 3%y~ 3-7724n" 2%y " 4+112%kn*y " 5-4xy"6-
16xk~4*xn+24*xk~4xy+160*xk~3*n"2-468*k " 3*nxy+202xk "~ 3*y~2-480*k~2*n"3+2088*k”~2*n" 2*y-
1704%k"2%n*y ~2+360xk "~ 2%y~ 3+560%k*n "~ 4-3240xk*n "~ 3%y+3900%k*n " 2%y ~2-1588xk*n*y "3+
192%k*y~4-224%n"5+1620%n"4*y-2600%n" 3%y~ 2+1588%n" 2%y~ 3-384*nky ~4+28%y " 5-4*k "4+
80%k "~ 3*n-100%k " 3%y-360*k "~ 2%n "~ 2+888%k " 2%n*y-348xk "~ 2y ~2+560%k*n "~ 3-2064xk*n "~ 2ky+
1584xk*xn*y~2-316%k*y~3-280*n"4+1376*n"3*xy—1584*n" 2%y~ 2+632*n*y~3-76*y~4+16xk"~3-
144xk™2xn+156%k ™ 2*y+336*k*n~2-724xk*xn*xy+266*xk*y~2-224*n" 3+724*n" 2xy-532*n*xy "2+
104*y~3-24%k"2+112xk*n-108*k*y-112*n"~2+216*n*y-76*y " 2+16*k-32*n+28*y-4) *k/ (n+1-

y) "4/ (2%n+3-y) / (-n+k-1) “4/ (8xk~4*y-32%k " 3*kn*y+16%k~3*y~2+48*k " 2%n "~ 2*y-
48*K™2xnxy”2+14¥Kk " 2%y~ 3-32*Kk*n" 3k y+48*Kk*n"2xy " 2-28*k*n*y " 3+6*xKk*xy 4+8*n"4*y-
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1640~ 3%y " 2+14%n" 2ky " 3-6xnxy " 4+y " 5-2%k "4+8%k " 3kn-4*k " 3ky—12%k "~ 2%n " 2+1 2%k~ 2%n*y-
6xk ™ 2%y~ 2+8xk*xn"3-12*Kk*n" 2xy+12*k¥nxy " 2-4xk*xy~3-2*n"4+4*n" 3xy-6*n" 2%y " 2+4*n*xy”3-
y~4)

A corresponding proof certificate for the latter recursion is given below.

- (16%k~5*n"~5xy-72xk~5*n"4*y~2+128*k"5*n" 3%y~ 3-112%k~5*n" 2%y 4+52%k " 5*n*y~5-
10*k"5xy~6-80*k~4*n"6xy+432*k~4*n"5*xy~2-944xk"~4*n"4*y~3+1056*k"4*n"3*xy~4-
648xk~4*n" 2%y 5+216*k~4*n*y~6-30*k~4*xy~7+160*k"3*n"7*y-1008*k "~ 3*n"6*y "2+
2624xk"~3*n" 5%y~ 3-3600*k~3*n"4*xy~4+2780xk " 3*n"3*y " 5-1210%k"3*n" 2%y~ 6+280*k "~ 3*n*xy~7-
25xk"3xy~8-160*k~2*n"8*y+1152*k~2*n"7xy~2-3488*k " 2*n" 6%y~ 3+5696*k~2*n" 5%y~ 4-
5360%k~2*n"4*xy~5+2880%k " 2*n " 3%y~ 6-820%k”2*n" 2%y~ 7+100%k " 2*n*xy~8+80*k*n" 9xy-
648xk*n" 8%y~ 2+2240*k*n"7xy~3-4256*k*n"~ 6%y~ 4+4764xk*n"5*xy~5-3110*xk*n"4*y "6+
1080*k*n"~ 3%y~ 7-150%k*n"~ 2%y~ 8-16*n"10*y+144*n"~ 9%y~ 2-560*n"8*y~3+1216*n"7*y 4~
1588*n"6xy~5+1244*n"5xy~6-540%n"4*y "~ 7+100*n"~ 3%y~ 8-8*k "5xn~5+124*k " 5xn"4*y-
384xk™5xn"3xy " 2+488*k"5*n"2xy~3-280%k "5*n*y~4+64*xk"5xy " 5+40%k " 4*n"6-744*k " 4*n"5xy+
2848*k~4*n"4xy~2-4688%k"4*n" 3%y~ 3+3816xk"4*n" 2%y 4-1536%k " 4*xn*y~5+252%xk"4xy~6-
80xk™3*n"7+1736%k " 3*n"6*%y-7936%k ~3*n"5*xy~2+16120%k~3*n"4*y~3-17040%k ~3*n"~3*y 4+
9620%k™3*n"2xy " 5-2740%k " 3*n*xy~6+310%k "~ 3%y~ 7+80*k " 2*xn"8-1984xk ~2*n" 7*y+
10560%k~2*n" 6%y~ 2-25600%k~2*n"5xy~3+33440%k ~2*n"~4*y~4-24400%k"2*n"3*y "5+
9560%k™2*n"2xy~6-1760%k " 2*n*xy~7+100%k " 2%y~ 8-40%k*n~9+1116%k*n"~"8*y-6784*k*n"7*y "2+
19152xk*n~6*y~3-29904*k*n" 5%y ~4+26980*k*n"4*y~5-13640xk*n" 3%y~ 6+3420*k*n"2xy "7~
300*k*n*xy~8+8*n~10-248*n"9*y+1696*n"8*y~2-5472*n"7*y~3+9968*n"6*y~4-10792*n"5xy "5+
6820*n"4*y~6-2280*%n" 3y~ 7+300*n" 2%y~ 8-44*k"5*n"4+352xk " 5*xn" 3*xy-744*k"5xn" 2%y~ 2+
608*xk~5*n*y~3-172*%k" 5%y 4+264*k~4*n"5-2628*k"4*n"4*xy+7264*k " 4*n"3*xy"2-

8568k ~4*n" 2%y~ 3+4536*k~4*n*y~4-900*k"4*y~5-616%k "~ 3*n"~6+7344*k "~ 3*n"5*xy-
25160%k~3*n"4*y~2+38880*%k~3*n"3*y~3-29880*k ~3*n"~2*y~4+11000*k " 3*n*xy~5-
1540%k™3*y~6+704*k~2*n"7-9784*xk™2*n"6*y+40080*%k~2*n" 5%y ~2-76840%k ~2*n"~4*y~3+
77600xk™2*n" 3%y ~4-41320*k"2*n"~ 2%y~ 5+10520%k "~ 2*n*y~6-940%k " 2%y~ 7-396*k*n"8+
6288xk*xn"7*y-30016*xk*n" 6%y~ 2+68880*k*n"5*y~3-86520*k*n"4*y~4+60640*xk*n"3*y~5-
22320*k*n" 2%y~ 6+3600xk*n*y~7-150*k*y~8+88*n~9-1572*n"8xy+8576*n" 7*y~2-

22960*n" 6%y~ 3+34608*n"5%y~4-30320*n"4*y~5+14880*n" 3%y~ 6-3600*n" 2%y~ 7+300*n*y "~ 8-
96k ~5xn"3+472%k " 5*n " 2%y-624*k " 5xn*y " 2+248%k"5xy~3+720%k “4*n"4-4672xk"4*n" 3*y+
9024xk~4*n"2xy~2-6848*k~4xnxy~3+1776%k~4*xy~4-2016*k"3*n"5+16280*k"3*n"4*y-
41440%k~3*n"3*y " 2+46160%k"3*n"2xy~3-23040%k "~ 3*n*xy~4+4160*xk"~3*y~5+2688*k”2*n"6-
26000k~ 2*n"5*y+82320*k~2*n"4*xy~2-121120%k"~2*n" 3%y~ 3+89120*k "~ 2*n"~ 2%y~ 4-

30880k ~2*n*y~5+3840%k " 2%y ~6-1728%k*n"~7+19488*k*n"6*xy-73920*k*n"~5*xy "2+
135520*k*n"4+*y~3-132160*k*n" 3%y ~4+67680*xk*n" 2%y~ 5-16160*xk*n*y~6+1260*k*y~7+
432%n"8-5568*n"7*y+24640*n" 6%y~ 2-54208*n"5xy~3+66080*n"4*xy~4-45120*n"3*xy 5+
16160*n"~ 2%y~ 6-2520*n*y~7+100%y~8-104*k"5%n"2+304*k " 5*n*xy-192*k "~ 5%y ~2+1040*k~4*n"~3-
4488%*k~4*xn"2*xy+5488xk~4*xn*xy~2-2024*k"4*y~3-3640%k"3*n"4+20800*k"3*n"3*y—
37600%k~3*n"~ 2%y~ 2+27040%k " 3*n*xy~3-6600*k~3*y~4+5824*k ~2*n"~5-41480*k "~ 2*n"4*y+
99360xk~2*n"~3*y~2-106000%k ~2*n"~ 2%y~ 3+50720%k "~ 2*n*xy~4-8600*k~2*y~5-4368*k*n" 6+
37296*k*n"5%y-111440*k*n"4*y~2+157920xk*n" 3%y~ 3-112560*k*n"~2*y~4+37540%k*n*y~5-
4370%k*xy~6+1248*n"7-12432*n"6*y+44576*n"5xy~2-78960*n"4*xy"~3+75040*n" 3%y~ 4-
37540*n" 2%y~ 5+8740*n*y~6-660*y~7-56*k " 5xn+76*k " 5*xy+840%k~4*n"~2-2232*xk " 4*n*y+
1312%k~4*xy~2-3920%k " 3*n~3+15480*k ~3*n"2*y-17888*k "~ 3*n*y~2+6264*k"3*y "3+
7840%k”~2*n"4-41120%k"2*n"3*y+70752*%k " 2*n" 2%y~ 2-48928xk " 2*n*y~3+11456%k~ 2%y "4~
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7056*k*n"5+46200*k*n"4*y-105728*k*n"3*y~2+109200*k*n"~2*y~3-50736*xk*n*y 4+
8284x*k*y~5+2352*n"6-18480*n"5*xy+52864*n"4*y~2-72800*n"3*y~3+50736*n"2xy "4~
16568*n*y~5+1884*y~6-12xk~5+360*k ~4*n-452*xk~4*xy-2520%k "~ 3*n"2+6256*k "~ 3*n*y-

3496*k " 3%y~ 2+6720%k"2%n"3-24904xk " 2*n "~ 2*xy+27600*k " 2*n*xy~2-9320%k " 2%y~ 3-7560*k*n"4+
37296%k*n"3*xy—-61824*k*n" 2%y~ 2+41552*k*n*xy~3-9464*xk*y~4+3024*n"5-18648*n"4*y+
41216*n"~ 3%y~ 2-41552*%n"2xy "~ 3+18928*n*y~4-3032*%y "~ 5+64*k~4-896*k~3*n+1064*k"3*y+
3584x*k”~2*n"2-8464xk ™ 2*n*xy+4560*k " 2%y~ 2-5376*xk*n"~3+19008*k*n"2*xy-20416*xk*n*y~ 2+
6720%k*y~3+2688*n"4-12672*n"3*y+20416*n" 2%y~ 2-13440*n*y~3+3008*y~4-136*k "3+
1088%k™2xn-1240%k " 2xy-2448*k*n"2+5568*k*n*xy-2920%k*y~2+1632*n"3-5568*n"2*y+
5840*n*y~2-1888*y~3+144*k"2-648*k*n+716*xk*y+648*n~2-1432+n*xy+736*y " 2-76*k+152*n—
164*y+16) xk* (-n+y+k) "4/ (24n"2-6*nxy+5*y~2+8*n-12xy+8) / (8*k " 5xy-40*k ~4*n*y+
36xk"4xy~2+80%k"3*n" 2%y-144xk " 3*n*xy " 2+64*k " 3*xy " 3-80*k " 2*n" 3ky+216*k"2*%n" 2xy " 2-
192xk~2xnxy~3+56*k "~ 2%y~ 4+40*xk*n"~4*xy-144xk*n"~ 3%y~ 2+192*k*n"2*xy~3-112xk*nxy 4+
26xk*y~5-8*n"b*xy+36*n" 4%y~ 2-64*n" 3%y 3+56%n" 2%y ~4-26*n*xy 5+5*y~6-4%k " 5+20%k"4*n-
22xk"4xy-40%k " 3*n"2+88%k " 3*n*ky-48%k”3xy " 2+40%k " 2*n"3-132%k " 2*n " 2%y+144*k " 2*n*y " 2-
52xk " 2%y~ 3-20%k*n"4+88*k*n" 3ky-144x*k*n" 2%y~ 2+104*xk*n*y~3-28*%k*y~4+4*n"5-22*%n"4xy+
48xn" 3%y~ 2-52xn" 2%y " 3+28*n*xy ~4-6*y " 5+2xk"4-8xk " 3*n+8*k " 3*xy+12xk"2*xn"2-24*Kk " 2*xn*y+
12xk™ 2%y~ 2-8*k*n" 3+24*xk*n" 2*xy-24xk*kn*xy~2+8xk*y~3+2*n"4-8*n" 3*xy+12¥n" 2%y~ 2-8*n*y "3+
2xy~4) /(-n+k-1) "4/ (n+1-y) "4

]

5.1 Generalizations of Guillera’s series

With the notation

-1 rrxrxax+¥til
s(x,y) = (I‘i‘y—) '5F4[ ? 1L,
2 r+yrtyrty vty r+

Theorem 6 gives us that

y—1 xt
s(zy) =+ 75—+ ($+y)48(56+1,y),
5y% 4+ 6(x — 1)y + 2(z — 1)2 y°
) - - ) + 1).
s(.v) @) 2oy N r gy YTy

Note that for x = %, Yy = %, s(z,y) can be calculated from its partial sums:

)_1“’ L™ (20\" 4n+3 32
S 4\2 n) (n+1* w2
If we try to accelerate this series with the first of the recurrences, we get the same series. With the

second one, we get Guillera’s formula shown in (3) [14].
If we use both the recurrences for x = 1,y = 1, we get the following result:

s(

o=
N

Y

1 — _1205n% — 160n + 32
n=1 n
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a series which can be found in Lupag’s paper [25]. Now, let us further simplify our expression for the
latter recursion given in Theorem 6, letting h, r1, and 75 be as below:

(v +5) (@) * (= +47),
(245 (@ +ye)
6(x — )y + 2(z — 1) + 5y?

hz,y, k) =

ri(z,y) = 42y — 1) )
ro(z,y) = — v .
2(2y — 1)(z +y)*
So, we obtain that N N
thy,k)—rl(xy +r2xy2hxy+1k, (22)
k=0 k=0

leading us to the following result.

Theorem 7. The infinite series
>_hlw.y.k
k=0

may be accelerated as

) <Hr2(a¢,y+i)> e,y + ) + (H rz(x,ym) S by + m. k)

for natural numbers m, with

(H 7’2(1’,y+i))2h(x,y+m,k)—>0 (23)

k=0
as m — oo, under the assumption that the above series converge, for given values of x and y.

Proof. The above acceleration formula follows from repeated applications of (22), and the limiting
property in (23) follows in a direct way from our definitions for 75 and h, under the given assumption.
O

The above Theorem may be regarded as generalization of (3), in view of our proof of (3), along
with the following results.

Example 4. Setting x = % and y = %, our series acceleration formula given in Theorem 7 yields the

following: '
128 & (1) (1)123 <2j>520j2+32j+ 13
2 = 2 J G+
Example 5. Setting x = g and y = %, we obtain:
2048 (N (2572052 + 565 + 41
sz = 205 i) G+DG+2)F
=0
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Example 6. Setting x = % and y = 1, this gives us that

i 7289 (=105% + 65 — 1)
5
Jj=1 ] (gj>

Example 7. If we use both recurrences from Theorem 6 one after the other, with = = % and y = %,
we obtain Guillera’s series from [15]:

128~ (VY (25
= =N (-1y (-) (jj) (82052 + 1805 + 13).
=0

T 2
j:

28¢(3

6 Non-computer proofs

As an example, we prove the following theorem, which can be found in [23]. The proof given here is
much shorter than the one in [23].

Theorem 8. The recurrence

{ xz ozl ] 2x + 3y — 2 e r+1xz+11
sk | =

) + : ;
le+yz+y 22y — 1) 2y — Dz +y)? “la+tl+ya+l+y
hold true, if the above series converge.

Or, with the notation

x,z,1 -
s(x,y) = 3F T :
(#y) =3 2[m+y,x+y } £ :1:+y
2x + 3y — 2 Y3
s(z,y) = + s(x,y+1
V= Sy -1 Ty nErep VY
Proof. The proof is based on the following identity, which is easy to prove:
(x4 n)? S 2n+2x—y 2n+1)+22—y (x4 n)? N 3
(r+y+n)?  2(2y—1) 22y—1) (z+y+n)? 2@2y-1)(x+y+n)
We will use the notation f(z,y,n) = 2;(;;’”174 We rewrite the series for s(x,y) using this identity:
— (@)ha — (2); (¢ +n)*
s(z,y) =1+ = =1+ z
ZO(HynH Z:Hy) (z+y+n)’
(¢ +n)* y’
—14 £ y,m) = f(eyn+ 1) "
Z .I—i-y ( (z+y+n)? 2@y—1)(z+y+n)’
e ¢}
y®
=1+ f(z,y,0 Z
y n— n+1
2x + 3y — 2 > x)n)?
_ Y + y’ ~ Z ((#)n) .
22y—1)  22y—-D(@@+y)? = (z+y+ 1)
Note that (x) simplifies as a consequence of telescoping, assuming that lim,, ., (((JC(—T—)yn)f)Z flz,y,n) =
0. O
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Remark 1. While writing this paper, we noted that for s(x,y) above:

G

SERS

(Forsyth’s series, see [23]). Using Theorem 8 to accelerate this series, we get Gosper’s well known

series from 1974 [13]:
12§: L\™ (20 3n2(2n— =2
= \2 n o

Note that this series is equivalent with Ramanujan’s well known series:
=\ 2n)? 4
- on+1) = —
n=0
since the difference of both series can be written as

k—1 8n 3 3 (2k\3
32k
lim (1) <2n> (24n* —12n* —6n — 1) = — lim 32°()° =0.

k—+o00 2 n

n=0

6.1 Proof of Theorem 1

We use the notation from subsection 2.1. The proof is similar to the previous one, but now based on
the identity:

(x+n)(z+n+1) 24+ 2r—-y+1 242422 -y+1 (x+n)(z+n+1)
(x+y+n)(z+y+n+1)  2Q2y—1) 2(2y — 1) (x+y+n)(z+y+n+1l)
(y —Dyy+1) 1

22y —1) (z4+y+n)(z+y+n+1)
6.2 Proof of Theorem 2

This is can be done using a reindexing argument.

6.3 Proof of Theorem 4

For the second part we use:

Ny (@0

and the identity:

(@tn)3?  y(+y?
(x4+y+n+1)2 4dx+y+n+1)?

(x +n)? = h(z,y,n) + h(z,y,n+ 1)

. 2n242(2 2x22ry—y2—
with h(x,y,n) — 272 x+y)"z$ Yy Y
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6.4 Proof of Theorem 5

Note that in this case:

o) =3 I

S @+ )i+ )

For the proof of the first part only reindexing is needed. For the second part, we rewrite as before,
and use the identity:

(z+nP@++n) ntz—y n+ld+z—y (z+n)d , @+ 4n—1)
2 2 o 3
(x+y+n) (x+y+n) (x4+y+n)

6.5 Proof of Theorem 6

For the second part we use:

ey =Y )
= @+ y)alz+ 5 )
and the identity:
(z +n)*(z + 5+ +n) (z +n)* y° .(x—l—ygz—i-n—l)

(x+y+n)?

_2n242(2z—y)n+2x% —2xy+y?

with g(z,y,n) 1(2y-1)
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