Series acceleration formulas obtained from experimentally discovered hypergeometric recursions - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2023

Series acceleration formulas obtained from experimentally discovered hypergeometric recursions

Paul Levrie
  • Fonction : Auteur
  • PersonId : 1133866

Résumé

In 2010, Kh. Hessami Pilehrood and T. Hessami Pilehrood introduced generating function identities used to obtain series accelerations for values of Dirichlet's $\beta$ function, via the Markov--Wilf--Zeilberger method. Inspired by these past results, together with related results introduced by Chu et al., we introduce a variety of hypergeometric recurrences. We prove these recurrences using the WZ method, and we apply these recurrences to obtain series acceleration identities. We introduce a family of summations generalizing a Ramanujan-type series for $\frac{1}{\pi^2}$ due to Guillera, and a family of summations generalizing an accelerated series for Catalan's constant due to Lupa\c{s}, and many related results.
Fichier principal
Vignette du fichier
AccelerationV30.pdf (379.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03659300 , version 1 (04-05-2022)
hal-03659300 , version 2 (05-11-2022)
hal-03659300 , version 3 (20-12-2022)

Identifiants

Citer

Paul Levrie, John Campbell. Series acceleration formulas obtained from experimentally discovered hypergeometric recursions. Discrete Mathematics and Theoretical Computer Science, 2023, vol. 24, no 2, ⟨10.46298/dmtcs.9557⟩. ⟨hal-03659300v3⟩
201 Consultations
747 Téléchargements

Altmetric

Partager

More