Robustness Testing of a Machine Learning-based Road Object Detection System: An Industrial Case - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Robustness Testing of a Machine Learning-based Road Object Detection System: An Industrial Case

Anne-Laure Wozniak
  • Fonction : Auteur
  • PersonId : 1132774
Sergio Segura
  • Fonction : Auteur
  • PersonId : 1132775
Sarah Leroy
  • Fonction : Auteur
  • PersonId : 1132776

Résumé

With the increasing development of critical systems based on artificial intelligence (AI), methods have been proposed and evaluated in academia to assess the reliability of these systems. In the context of computer vision, some approaches use the generation of images altered by common perturbations and realistic transformations to assess the robustness of systems. To better understand the strengths and limitations of these approaches, we report the results obtained on an industrial case of a road object detection system. By comparing these results with those of reference models, we identify areas for improvement regarding the robustness of the system and the metrics used for this evaluation.
Fichier principal
Vignette du fichier
Robustness Testing of a Machine Learning-based Road Object Detection System! An Industrial Case.pdf (1.42 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03647680 , version 1 (20-04-2022)

Identifiants

Citer

Anne-Laure Wozniak, Sergio Segura, Raúl Mazo, Sarah Leroy. Robustness Testing of a Machine Learning-based Road Object Detection System: An Industrial Case. 1st International Workshop on Software Engineering for Responsible Artificial Intelligence (SE4RAI), May 2022, Pittsburgh (virtual), United States. ⟨10.1145/3526073.3527592⟩. ⟨hal-03647680⟩
175 Consultations
131 Téléchargements

Altmetric

Partager

More