Multiple imputation in the functional linear model with partially observed covariate and missing values in the response - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2022

Multiple imputation in the functional linear model with partially observed covariate and missing values in the response

Résumé

Missing data problems are common and di cult to handle in data analysis. Ad hoc methods such as simply removing cases with missing values can lead to invalid analysis results. In this paper, we consider a functional linear regression model with partially observed covariate and missing values in the response. We use a reconstruction operator that aims at recovering the missing parts of the explanatory curves, then we are interested in regression imputation method of missing data on the response variable, using functional principal component regression to estimate the functional coe cient of the model. We study the asymptotic behavior of the prediction error when missing values in a original dataset are imputed by multiple sets of plausible values.
Fichier principal
Vignette du fichier
article_journal_TEST2out1.pdf (586.54 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03610015 , version 1 (16-03-2022)
hal-03610015 , version 2 (05-08-2022)

Identifiants

  • HAL Id : hal-03610015 , version 1

Citer

Christophe Crambes, Chayma Daayeb, Ali Gannoun, Yousri Henchiri. Multiple imputation in the functional linear model with partially observed covariate and missing values in the response. 2022. ⟨hal-03610015v1⟩

Collections

MIPS
139 Consultations
121 Téléchargements

Partager

More