
HAL Id: hal-03610015
https://hal.science/hal-03610015v1

Preprint submitted on 16 Mar 2022 (v1), last revised 5 Aug 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Multiple imputation in the functional linear model with
partially observed covariate and missing values in the

response
Christophe Crambes, Chayma Daayeb, Ali Gannoun, Yousri Henchiri

To cite this version:
Christophe Crambes, Chayma Daayeb, Ali Gannoun, Yousri Henchiri. Multiple imputation in the
functional linear model with partially observed covariate and missing values in the response. 2022.
�hal-03610015v1�

https://hal.science/hal-03610015v1
https://hal.archives-ouvertes.fr


Springer Nature 2021 LATEX template

Multiple imputation in the functional linear
model with partially observed covariate and

missing values in the response

Christophe Crambes
1†
, Chayma Daayeb

1,2†
, Ali Gannoun

1†

and Yousri Henchiri
2,3*†
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Abstract

Missing data problems are common and di�cult to handle in data
analysis. Ad hoc methods such as simply removing cases with missing
values can lead to invalid analysis results. In this paper, we consider
a functional linear regression model with partially observed covariate
and missing values in the response. We use a reconstruction operator
that aims at recovering the missing parts of the explanatory curves,
then we are interested in regression imputation method of missing data
on the response variable, using functional principal component regres-
sion to estimate the functional coe�cient of the model. We study the
asymptotic behavior of the prediction error when missing values in
a original dataset are imputed by multiple sets of plausible values.
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1 Introduction

Functional data analysis (FDA) can be seen as a important subfield of statistics
that has reached a certain maturity. FDA methods have been applied quite
broadly in medicine, science, business, engineering, . . . , while new theoretical
and methodological developments regularly appear. For a more comprehensive
treatment of FDA theory and methods, readers are referred to the classic
monographs [1–3], recent monographs [4–6] and review papers [7, 8].

The functional linear model with scalar response in which a functional ran-
dom variable is used to predict a real random variable has been the object
of considerable attention in the literature. Several procedures have been pro-
posed to the prediction and estimation problems under this model including,
for example, functional principal component regression [9].This procedure has
been considered by many authors [10–13] and [8]. Considering the functional
linear regression methodology described in [2, Chapter 10], we observe the
sample Dn , {(X1, Y1), . . . , (Xn, Yn)}, where the Xi’s are independent and
identically distributed with the same law as a random function X taking val-
ues in the space L2(I) of square integrable functions defined on an interval
I ⇢ R, and the real responses Yi’s are generated by the regression model

Yi = ↵+

Z

I

✓(t)Xi(t)dt+ "i, (1)

for all i = 1, . . . , n. Here, ↵ is a constant corresponding to the intercept of the
model, and ✓ is a square integrable function belonging to L2(I), representing
the slope function. It is supposed that the errors "i’s are independent and
identically distributed with finite variance and zero mean and independent
from the explanatory variables Xi’s.

The functional principal component regression methodology is based on
spectral expansions of both the covariance operator of X and its estima-
tor. We define the empirical cross covariance operator b�n given by b�nu =
1
n

P
n

i=1hXi, uiYi for all u 2 L2(I), the empirical covariance operator b�n given

by b�nu = 1
n

P
n

i=1hXi, uiXi for all u 2 L2(I). Denoting (b�j)j=1,...,kn
the

eigenfunctions associated to b�n corresponding to the kn highest eigenvalues
b�1 > . . . > b�kn

> 0 (where kn is an integer depending on n), we define the

orthogonal projection operator b⇧kn
onto the subspace Span(b�1, . . . ,

b�kn
) by

b⇧kn
u =

P
kn

j=1h
b�j , ui

b�j for all u 2 L2(I). Considering
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⌘(X) , ↵+

Z

I

✓(t)X(t)dt, (2)

we first estimate ⌘ based on a training sample Dn. Let `n be a functional
data fit that measures how well ⌘ fits the data. Then, the functional principal
component regression estimator b⌘n of ⌘ is given by

b⌘n , argmin⌘0
(`n (⌘0 | Dn)) , (3)

where the minimization is taken over

⇢
⌘0 | ⌘0(X) = ↵0 +

Z

I

✓0(t)X(t)dt : ↵0 2 R, ✓0 2 Span
⇣
b�1, . . . ,

b�kn

⌘�
.

The most common choice of the functional data fit is the mean square error

`n(⌘0 | Dn) ,
1

n

nX

i=1

(Yi � ⌘0(Xi))
2
. (4)

In general, `n is chosen such that it is convex in ⌘0 and E(`n(⌘0)) in uniquely
minimized by ⌘. Equivalently, the minimization can be taken over (↵0, ✓0) to

obtain estimates for both the intercept and slope, denoted by b↵ and b✓, as
follows

b↵ = Y =
1

n

nX

i=1

Yi and b✓ =
knX

j=1

bsj b�j , with bsj =
1

nb�j

nX

i=1

hXi,
b�jiYi. (5)

In this work, we focus on the prediction problem. Let b⌘n be a prediction rule
given by

b⌘n(Xnew) , b↵+

Z

I

b✓(t)Xnew(t)dt, (6)

whereXnew is a copy ofX independent ofX1, . . . , Xn. The prediction accuracy
can be naturally measured by the excess risk

E(b⌘n)(Xnew) , E? (b⌘n(Xnew)� ⌘(Xnew))
2

= E?

⇣
b↵+ hb✓, Xnewi � ↵� h✓, Xnewi

⌘2
(7)

where E? stands for the expectation with respect to Xnew.
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2 Missing data mechanism

Earlier works on functional data focused in large part on regular functional
data where data are fully observed. This may not always be the case, and miss-
ing data appear in many situations, for example when the measuring device
breaks down. Many methods for the imputation of missing values have been
developed. They can be divided into two branches, single imputation and mul-
tiple imputation. Single imputation consists in creating a single imputed value
to replace a missing value. This procedure does not reflect the uncertainty
about the prediction of the missing values during the imputation process.
Multiple imputation is a statistical technique designed to take advantage of
imputing a missing data several times. Each missing value is replaced by two
or more imputed values in order to represent the uncertainty of the value to be
imputed. For a comprehensive review of missing data mechanism and impu-
tation methods, we refer the readers to a non-exhaustive list of monographs
giving an overview of this topic: [14–17].

In recent years, applications producing partially observed functional data
have emerged. Sometimes each individual trajectory is collected only over
individual-specific subinterval(s), densely or sparsely, within the whole domain
of interest. Several recent works have begun addressing the estimation of
covariance functions for short functional segments observed at sparse and irreg-
ular grid points, called functional snippets [18–20] or for fragmented functional
data observed on small subintervals [21]. For densely observed partial data,
existing studies have focused on estimating the unobserved part of curves
[22, 23], prediction [24], classification [25, 26], functional regression [27], and
inferences [28, 29].

To go further, we describe two types of missing data mechanisms that will
be the subject of our paper. The first one is related to the real response and the
second one is related to the functional covariate. Concerning the missing data
mechanism on the real response, we consider a dichotomous random variable

�
[Y ] leading to the sample (�[Y ]

i
)i=1,...,n such that �

[Y ]
i

= 1 if the value Yi

is available and �
[Y ]
i

= 0 if the value Yi is missing, for all i = 1, . . . , n. We
consider that the data in the response is missing at random (MAR): the fact
that the value Y is missing does not depend on the response of the model, but
can possibly depend on the covariate, that is,

P(�[Y ] = 1 | X,Y ) = P(�[Y ] = 1 | X). (8)

MAR assumption implies that the distribution of Y is the same for units such

that �
[Y ]
i

= 1 (observed units) as for those such that �
[Y ]
i

= 0 (non-observed
units), conditionally on X. As a consequence, the variable �

[Y ] (the fact that
an observation is missing or not) is independent of the error of the model ".
In the following, the number of missing values among Y1, . . . , Yn is denoted
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m
[Y ]
n

=
nX

i=1

1n
�
[Y ]
i

=0
o.

Concerning the missing data mechanism on the functional covariate, we
adopt the paradigm of partially observed functions as in [22] or [30]. More
precisely, for each curve Xi, i = 1, . . . , n, we consider the observed part Oi ✓ I

of Xi and the missing part Mi = I r Oi. The observed part Oi refers to an
interval (or several intervals) where the curve Xi is observed at some measure
points of Oi. Based on the punctual observations, the whole curve can be
reconstructed on Oi with usual methods (e.g. smoothing splines, regression
splines, local polynomial smoothing, . . . ). On the contrary, no information is
available on the missing part Mi. For the rest of paper, we write ”O” and
”M” to denote a given production of Oi and Mi. In addition, we denote the
observed and missing parts of Xi by X

O

i
and X

M

i
.

3 Multiple imputation: A deterministic and
random imputation

3.1 A deterministic imputation

In this work, we have to deal with the situation in which some of the real
responses of a data set generated from the functional linear model with scalar
response are missing at random. This situation has been only considered in
[31, 32]. Other recent works explore this context but in a nonparametric setting
[33, 34] or in a functional partial linear regression setting [35, 36] or while the
response is not missing at random [37]. More recently, [38] are interested in
a more general case of missing data in functional linear regression: when the
covariate is partially observed and when the response is a↵ected by missing
data. Following this latter paper [38, Subsection 2.1 and Subsection 2.2], b⌘n
can be calculated using the curve reconstruction method of [22, Section 2]. We
give here some essential elements for our work: we consider a reconstruction
problem relating the missing part of the curves to the observed part, writing

X
M

i
(s) = L(XO

i
(t)) + Zi(s),

for all t 2 O and s 2 M , where L : L2(O) ! L2(M) is a linear reconstruction
operator and Zi 2 L2(M) is the reconstruction error. Then, the optimal linear
reconstruction operator, minimizing the following expected risk

E
⇣�

X
M

i
(u)� L(XO

i
)(u)

�2⌘
, for all u 2 M,

is given by L(XO

i
)(u). This operator is estimated in [22, Section 2] by bLkn

(XO

i
),

where the truncation parameter kn is a positive integer that can be fixed auto-
matically with a grid search. But note that the data structure implies that we
are faced with two simultaneous estimation problems. One is e�cient estima-
tion of L(XO

i
)(u) for u 2 M , the other one is a best possible estimation of the
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function X
O

i
(t) for t 2 O from the observations ((Wi1, ti1), . . . , (Wip, tip)) with

Wij = X
O

i
(tij) for i = 1, . . . , n and j = 1, . . . , p where tij 2 O. In order to esti-

mate the curve X
O

i
and the covariance function �s(t) = Cov(XM

i
(s), XO

i
(t))

a nonparametric curve estimation by local polynomials smoothers is used [38,
see Subsection 2.1 and Subsection 2.2]. In the following, we consider the whole

sample eDn ,
n
(X?

1 , �
[Y ]
1 , Y1), . . . , (X?

n
, �

[Y ]
n , Yn)

o
, with possibly reconstructed

explanatory curves

X
?

i
(t) =

(
X

O

i
(t) if t 2 O,

bLkn
(XO

i
)(t) if t 2 M.

Using the exponent notation ”obs” to make reference to the units for which the
response is observed, we define the covariance operator with the reconstructed
curves as follows

b�obs

n,rec
=

1

n�m
[Y ]
n

nX

i=1

hX
?

i
, .i�

[Y ]
i

X
?

i
.

Let b⇧obs

kn,rec
be the projection operator onto the subspace

Span(b�obs
1,rec, . . . ,

b�obs

kn,rec
) where b�obs

1,rec, . . . ,
b�obs

kn,rec
are the kn first eigen-

functions of the covariance operator b�obs
n,rec

. With analogous notations,
b�obs
1,rec, . . . ,

b�obs

kn,rec
represent the kn first eigenvalues of b�obs

n,rec
.

The functional principal component regression estimator e⌘n of ⌘ is given by

e⌘n , argmine⌘0

⇣
è
n

⇣
⌘0 | eDn

⌘⌘
, (9)

where the minimization is taken over

⇢
⌘0 | ⌘0(X) = ↵0 +

Z

I

✓0(t)X(t)dt : ↵0 2 R, ✓0 2 Span
⇣
b�obs

1,rec, . . . ,
b�obs

kn,rec

⌘�
,

and

è
n(⌘0 | eDn) ,

1

n�m
[Y ]
n

nX

i=1

�
[Y ]
i

(Yi � ⌘0(X
?

i
))2 . (10)

Equivalently, the minimization can be taken over (↵0, ✓0) to obtain esti-

mates for both the intercept and slope, for imputation, denoted by e↵ and e✓
such that

e↵ = Y obs =
1

n�m
[Y ]
n

nX

i=1

�
[Y ]
i

Yi, (11)

and
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e✓ =
knX

j=1

esj b�obs

j,rec
, with esj =

1

(n�m
[Y ]
n )b�obs

j,rec

nX

i=1

hX
?

i
, b�obs

j,rec
i�

[Y ]
i

Yi. (12)

For i = 1, . . . , n, such that �
[Y ]
i

= 1, let bYi be the predicted value of Yi

given by

bYi , e↵+

Z

I

e✓(t)X?

i
(t)dt. (13)

Considering a missing value on the response, say Y`, such that �[Y ]
`

= 0, we
define the imputed value Y`,imp by

Y`,imp = e⌘n(X?

`
) , e↵+

knX

j=1

esjhX?

`
, b�obs

j,rec
i.

Finally, for i = 1, . . . , n, we define

Y
?

i
= �

[Y ]
i

Yi +
⇣
1� �

[Y ]
i

⌘
Yi,imp. (14)

3.2 A random imputation

We present in this section the random imputation which can be seen as a
deterministic imputation plus a random noise (see [39]). Given an integer q,
for a missing value Y`, we define

eY (s)
`

, Y`,imp + "
?(s)
`

,

for s = 1, . . . , q, where "
?(s)
`

is drawn in the set

(
ei | ei = eei � e, i = 1, . . . , n, �[Y ]

i
= 1

)
,

with

eei = e��1
⇣
Y

?

i
� bYi

⌘
,

e� =
1

n�m
[Y ]
n

nX

i=1

�
[Y ]
i

⇣
Y

?

i
� bYi

⌘2
,

and

e =
1

n�m
[Y ]
n

nX

i=1

�
[Y ]
i
eei.

This method is nonparametric as no distribution is assumed for the distri-
bution of the standardized residuals observed ei’s. The imputation accuracy is
measured by the excess risk
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E(e⌘n)(X`) = E?

⇣
eY (s)
`

� ↵� h✓, X
?

`
i

⌘2
(15)

where E? stands for the expectation with respect to X`.
Finally, for i = 1, . . . , n, we define

Y
?(s)
i

= �
[Y ]
i

Yi +
⇣
1� �

[Y ]
i

⌘
eY (s)
i

. (16)

3.3 Prediction

For s = 1, . . . , q, given either the observed values or the random imputations
eY ?(s)
1 , . . . , eY ?(s)

n , we estimate the parameters ↵ and ✓ in model (1) with

b↵(s) =
1

n

nX

i=1

Y
?(s)
i

(17)

and

b✓(s) = 1

n

nX

i=1

knX

j=1

hX
?

i
, b�?

j,rec
iY

?(s)
i

b�?

j,rec

b�?

j,rec
=

knX

j=1

bs(s)
j
b�?

j,rec
, (18)

with

bs(s)
j

=
1

nb�?

j,rec

nX

i=1

hX
?

i
, b�?

j,rec
iY

?(s)
i

,

and where the covariance operator is b�?
n,rec

= 1
n

P
n

i=1hX
?

i
, .iX

?

i
, and

b�?
1,rec, . . . ,

b�?

kn,rec
and b�?

1,rec, . . . ,
b�?

kn,rec
represent respectively the kn first

eigenfunctions and eigenvalues of the operator b�?
n,rec

.

For a new curve Xnew, we predict the response value as follows

bYnew =
1

q

qX

s=1

bY ?(s)
new

, (19)

where

bY ?(s)
new

= b↵(s) + hb✓(s), X?

new
i.

4 Theoretical results

4.1 Assumptions

In this subsection, we give the assumptions needed for our theoretical
results. These assumptions are used in [22, 38] in order to control the curve
reconstruction for the covariate.

(A.1) The variable X has a finite four moment order, that is E
⇣
kXk

4
⌘
< 1.
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(A.2) Let np ! 1 when n ! 1 and p = p(n). We assume p = n
⌘1 with

0 < ⌘1 < 1 in the following.
(A.3) For any subinterval O ✓ I, we assume that the eigenvalues �1 > �2 >

. . . > 0 have multiplicity one. Moreover, we assume that there exist aO > 1
and 0 < cO < 1 such that (i) �

O

k
� �

O

k+1 � cOk
�aO�1, (ii) �

O

k
= O(k�aO ),

(iii) 1/�O

k
= O(kaO ) as k ! 1.

(A.4) For any subinterval O ✓ I, we assume that there exists 0 < DO < 1

such that the eigenfunctions satisfy supt2I supk�1

���e�O

k
(t)
���

(A.5) The bandwidth hX satisfies hX ! 0 and (phX) ! 1 as p ! 1. For
instance, we assume that hX = 1

n⌘2
with 0 < ⌘2 < ⌘1. The bandwidth h�

satisfies h� ! 0 and (n(p2 � p)h�) ! 1 as n(p2 � p) ! 1. For example, we
can take h� = 1

n⌘3
with 0 < ⌘3 < 2⌘1 + 1.

(A.6) Let 1 and 2 be nonnegative, second order univariate and bivari-
ate kernel functions with support [�1, 1]. For example, we can use uni-
variate and bivariate Epanechnikov kernel functions with compact support
[�1, 1], namely 1(x) = 3

4 (1 � x
2)1[�1,1](x) and 2(x, y) = 9

16 (1 � x
2)(1 �

y
2)1[�1,1](x)1[�1,1](y).

(A.7) The random variablesX and Y are almost surely bounded, respectively
in L2(I) and R.

Assumption (A.1) holds for many processes X (Gaussian processes,
bounded processes). Assumption (A.2) is mild and can be satisfied even if the
number of observation points p does not go fast to infinity. Assumptions (A.3)
and (A.4), related to eigenvalues and eigenfunctions of the covariance operator
ofX, are given in [22] in order to control the curve reconstruction for the covari-
ate. In particular, a polynomial decrease of the eigenvalues is required, allowing
a large class of eigenvalues for the covariance operator of X. Assumptions
(A.5) and (A.6) are classic in the context of local polynomials smoothers.
For Assumption (A.7), we can find in practice a large enough interval such
that it is satisfied.

4.2 Asymptotic result

Theorem 1 Under assumptions (A.1)-(A.7), if we additionally take kn ⇠

p1/(aO+2) and p ⇠ n⌘1 with ⌘1  1/2, as well as m
[Y ]
n = O

⇣
n1�⌘1(aO+3)/4(aO+2)

⌘
,

we get

E
⇣
bYnew � ↵� h✓, X?

newi

⌘2
= Op

 
n�⌘1(aO�1)/(2(aO+2))

q
+

n⌘1/(aO+2)

q(n�m
[Y ]
n )

!
.

This result, giving the convergence rate of the prediction error after q

random imputations, is asymptotically comparable to the convergence rate
obtained in [38] in the case of a single deterministic imputation. We let the
value of q appear in the convergence rate to highlight the fact that the constant
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besides the convergence rate should be better in the case of several random
imputations instead of a single deterministic one.

5 Proof of Theorem 1

Considering the decomposition of b✓(s), we write

b✓(s) = 1

n

nX

i=1
�
[Y ]
i

=1

knX

j=1

hX
?

i
, b�?

j,rec
iYi

b�?

j,rec

b�?

j,rec

+
1

n

nX

i=1
�
[Y ]
i

=0

knX

j=1

hX
?

i
, b�?

j,rec
i

⇣
Yi,imp + "

?(s)
i

⌘

b�?

j,rec

b�?

j,rec

=
1

n

nX

i=1

knX

j=1

hX
?

i
, b�?

j,rec
iY

?

i

b�?

j,rec

b�?

j,rec

+
1

n

nX

i=1
�
[Y ]
i

=0

knX

j=1

hX
?

i
, b�?

j,rec
i

⇣
Yi,imp + "

?(s)
i

⌘

b�?

j,rec

b�?

j,rec
,

hence

bY ?(s)
new

� ↵� h✓, X
?

new
i = b↵(s) +

1

n

nX

i=1

knX

j=1

hX
?

i
, b�?

j,rec
iY

?

i

b�?

j,rec

hb�?

j,rec
, X

?

new
i � ↵� h✓, X

?

new
i

+
1

n

nX

i=1
�
[Y ]
i

=0

knX

j=1

hX
?

i
, b�?

j,rec
i

⇣
Yi,imp + "

?(s)
i

⌘

b�?

j,rec

hb�?

j,rec
, X

?

new
i.

We obtain from [38] the convergence rate for the first term of the
decomposition

E
 
b↵(s) +

1

n

nX

i=1

knX

j=1

hX
?

i
,c�?

j,reciY
?

i

b�?

j,rec

hb�?

j,rec
, X

?

new
i � ↵� h✓, X

?

new
i

!2

= Op

✓
n
�⌘1(aO�1)/(2(aO+2)) +

n
⌘1/(aO+2)

n�m
[Y ]
n

◆
.

For the second term, we first use the boundedness of X and Y , which allows

to bound "
?(s)
i

, hence
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E

0

BB@
1

n

nX

i=1
�
[Y ]
i

=0

knX

j=1

hX
?

i
, b�?

j,rec
i

⇣
Yi,imp + "

?(s)
i

⌘

b�?

j,rec

hb�?

j,rec
, X

?

new
i

1

CCA

2

= Op

 
(m[Y ]

n )2k2
n

n2

!
.

As a consequence, with the assumptions

kn ⇠ n
⌘1/(aO+2) and m

[Y ]
n

= O

⇣
n
1�⌘1(aO+3)/4(aO+2)

⌘
,

we get

E

0

BB@
1

n

nX

i=1
�
[Y ]
i

=0

knX

j=1

hX
?

i
, b�?

j,rec
i

⇣
Yi,imp + "

?(s)
i

⌘

b�?

j,rec

hb�?

j,rec
, X

?

new
i

1

CCA

2

= Op

⇣
n
�⌘1(aO�1)/(2(aO+2))

⌘
,

and the second term in the decomposition of bY ?(s)
new �↵�h✓, X

?
new

i is negligeable
with respect to the first one. As a result, we obtain

E
⇣
bY ?(s)
new

� ↵� h✓, X
?

new
i

⌘2
= Op

✓
n
�⌘1(aO�1)/(2(aO+2)) +

n
⌘1/(aO+2)

n�m
[Y ]
n

◆
.

Finally, the mean over q iterations of the random imputation gives

E
⇣
bYnew � ↵� h✓, X

?

new
i

⌘2
=

1

q2

qX

s=1

E
⇣
bY ?(s)
new

� ↵� h✓, X
?

new
i

⌘2

= Op

 
n
�⌘1(aO�1)/(2(aO+2))

q
+

n
⌘1/(aO+2)

q(n�m
[Y ]
n )

!
.
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