Global weak solutions of the Serre–Green–Naghdi equations with surface tension
Résumé
We consider in this paper the Serre--Green--Naghdi equations with surface tension. Smooth solutions of this system conserve an $H^1$-equivalent energy.We prove the existence of global weak dissipative solutions for any relatively small-energy initial data.We also prove that the Riemann invariants of the solutions satisfy a one-sided Oleinik inequality.
Origine | Fichiers produits par l'(les) auteur(s) |
---|