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We consider in this paper the Serre-Green-Naghdi equations with surface tension. Smooth solutions of this system conserve an H 1 -equivalent energy. We prove the existence of global weak dissipative solutions for any relatively small-energy initial data. We also prove that the Riemann invariants of the solutions satisfy a one-sided Oleinik inequality.

Introduction

The Euler equations are usually used to describe water waves in oceans and Channels. Due to the difficulties to resolve the Euler equations both numerically and analytically, several simpler approximations have been proposed in the literature for different regimes. In the shallow water regime, the main assumption is on the ratio of the mean water depth h to the wave wave-length ι, the shallowness parameter σ = h2 /ι 2 is considered to be small. Beside the shallowness condition, a restriction on the amplitude of the wave a can be considered assuming that the nonlinearity (or the amplitude) parameter ϵ = a/ h is small. Considering the shallow water regime with the small-amplitude condition [START_REF] Johnson | A modern introduction to the mathematical theory of water waves Cambridge university press[END_REF][START_REF] Lannes | The Water Waves Problem: Mathematical Analysis and Asymptotics[END_REF] (σ ≪ 1, ϵ ≪ 1). Many equations have been derived to model the propagation of the waves, such as the Camassa-Holm equation [START_REF] Camassa | An integrable shallow water equation with peaked solitons[END_REF], the Korteweg-deVries (KdV) equation [START_REF] Korteweg | On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves[END_REF] and some variants of the Boussinesq equations [START_REF] Bona | Boussinesq Equations and Other Systems for Small-Amplitude Long Waves in Nonlinear Dispersive Media. I: Derivation and Linear Theory[END_REF][START_REF] Boussinesq | Essai sur la théorie des eaux courantes[END_REF][START_REF] Whitham | Linear and nonlinear waves[END_REF]. Considering shallow water with possibly large-amplitude waves (σ ≪ 1, ϵ ≈ 1), by neglecting the terms of order O(σ) in the water waves equations, Saint-Venant obtained the Nonlinear Shallow Water (or Saint-Venant) equations [START_REF] Wehausen | Surface waves[END_REF]. Smooth solutions of the Saint-Venant equations have a precision of order O(tσ), where t denotes the time [START_REF] Lannes | The Water Waves Problem: Mathematical Analysis and Asymptotics[END_REF]. In order to obtain a better precision, one can keep the O(σ) terms in the equations and only neglect the O(σ 2 ) terms. This leads to the Serre-Green-Naghdi equations. Those equations were firstly derived by Serre [START_REF] Serre | Contribution à l'étude des écoulements permanents et variables dans les canaux[END_REF], rediscovered independently by Su and Gardner [START_REF] Su | Korteweg-de Vries equation and generalizations. III. Derivation of the Korteweg-de Vries equation and Burgers equation[END_REF] and another time by Green, Laws and Naghdi [START_REF] Green | On the theory of water waves[END_REF][START_REF] Green | A derivation of equations for wave propagation in water of variable depth[END_REF]. The Serre-Green-Naghdi equations are the most general and most precise, but also the most complicated of the models of shallow water equations presented above. One can always keep higher order terms in the equation (keeping terms of order O(σ 2 ) for example), this will lead to equations with a better precision, but with higher order derivatives. Those equations are not accurate due to the high order derivative terms which make their numerical resolution much slower.

The influence of the surface tension is generally neglected on water waves problems. However, in certain cases, the effect of the surface tension is appreciable. Indeed, Longuet-Higgins [START_REF] Longuet-Higgins | The generation of capillary waves by steep gravity waves[END_REF] showed that the surface tension is significant in certain localized regions, and cannot be neglected near the sharp crest of the breaking wave. Other experimental studies showed the importance of the surface tension on thin layers [START_REF] Falcon | Observation of depression solitary surface waves on a thin fluid layer[END_REF][START_REF] Myers | Thin films with high surface tension[END_REF][START_REF] Packham | Capillary-gravity waves against a vertical cliff[END_REF]. Those experimentations have been done for different fluids including water and mercury. Various mathematical studies of water waves equations with surface tension exist in the literature, we refer to [START_REF] Alazard | On the water-wave equations with surface tension[END_REF][START_REF] Ambrose | The zero surface tension limit two-dimensional water waves[END_REF][START_REF] Ambrose | The zero surface tension limit of three-dimensional water waves[END_REF][START_REF] Beyer | On the Cauchy problem for a capillary drop. Part I: irrotational motion[END_REF][START_REF] Clamond | A plethora of generalised solitary gravitycapillary water waves[END_REF][START_REF] Clamond | Algebraic method for constructing singular steady solitary waves: a case study[END_REF][START_REF] Haidar | On the Green-Naghdi equations with surface tension in the Camassa-Holm scale[END_REF][START_REF] Ming | Well-posedness of the water-wave problem with surface tension[END_REF][START_REF] Schweizer | On the three-dimensional Euler equations with a free boundary subject to surface tension[END_REF][START_REF] Shatah | Geometry and a priori estimates for free boundary problems of the Euler equation[END_REF][START_REF] Yosihara | Capillary-gravity waves for an incompressible ideal fluid[END_REF]. Considering a two-dimensional coordinate system Oxy (Figure 1) and an incompressible fluid layer. Considering the still fluid level at y = 0, the fluid layer is bounded between the flat bottom at y = -h and a free surface y = h(t, x) -h, where h is the total water depth. Assuming long waves in shallow water with possibly large-amplitude. The Serre-Green-Naghdi system (without neglecting the surface tension influence) reads

h t + [ h u ] x = 0, (1.1a) [ h u ] t + h u 2 + 1 2 g h 2 + R x = 0, (1.1b) R def = 1 3 h 3 -u tx -u u xx + u 2 x -γ h h xx -1 2 h 2 x , (1.1c) 
where u denotes the depth-averaged horizontal velocity, g is the gravitational acceleration and γ > 0 is a constant (the ratio of the surface tension coefficient to the density). The classical Serre-Green-Naghdi equations (without surface tension) are recovered taking γ = 0. The Serre-Green-Naghdi (SGN γ ) equations (1.1) have been derived in [START_REF] Dias | On the fully-nonlinear shallow-water generalized Serre equations[END_REF] as a generalisation of the classical SGN equations (γ = 0). As mentioned above, the Serre-Green-Naghdi equations are obtained in the shallow water regime by neglecting all the O(σ 2 ) terms. An extension of the Serre-Green-Naghdi system with surface tension (1.1) have been derived in [START_REF] Khorbatly | Derivation and well-posedness of the extended Green-Naghdi equations for flat bottoms with surface tension[END_REF] by neglecting only the O(σ 3 ) terms, local well-posedness and justification of the extended system have been studied in [START_REF] Khorbatly | Full justification for the extended Green-Naghdi system for an uneven bottom with surface tension[END_REF][START_REF] Khorbatly | On the extended Green-Naghdi system for an uneven bottom with surface tension[END_REF][START_REF] Khorbatly | Derivation and well-posedness of the extended Green-Naghdi equations for flat bottoms with surface tension[END_REF]. Due to the appearance of time derivatives in (1.1c), it is convenient to apply the inverse of the Sturm-Liouville operator

L h def = h -1 3 ∂ x h 3 ∂ x , (1.2) 
the system (1.1) becomes then

h t + [ h u ] x = 0, (1.3a) 
u t + u u x + g h x = -L -1 h ∂ x 2 3 h 3 u 2 x -γ h -1 3 g h 3 h xx + 1 2 γ h 2 x .
(1.3b)

When h > 0, the operator L -1 h is well defined and smoothes two derivatives (see Lemma 5.2 below). This is not enough to control the term containing h xx on the right-hand side of (1.3b). To overcome this problem, we use the definition of L h to rewrite the system (1.3) in the equivalent form

h t + [ h u ] x = 0,
(1.4a)

u t + u u x + 3 γh -2 h x = -L -1 h ∂ x 2 3 h 3 u 2 x -3 2 γ h 2
x + 1 2 g h 2 -3 γ ln(h) . (1.4b) Smooth solutions of the SGN γ equations (1.4) satisfy the energy equation (see Appendix B) E t + D x = 0, (1.5) where

E def = 1 2 h u 2 + 1 2 g (h -h) 2 + 1 6 h 3 u 2 x + 1 2 γ h 2 x , (1.6) 
D def = u E + u R + 1 2 g h 2 -1 2 g h2 + γ h h x u x . (1.7) 
Linearising the SGN γ equations (1.4) around the constant state (h, u) = ( h, 0) and looking for travelling waves having the form exp {(kx -ωt) i} we obtain the dispersion relation ω 2 = g hk 2 (1 + γk 2 /g) / 1 + h2 k 2 /3 . Defining the Bond number B = g h2 /γ, the SGN γ equations are linearly dispersive if and only if B ̸ = 3. In the dispersionless case (B = 3), the SGN γ equations admit weakly singular peakon travelling wave solutions [START_REF] Dutykh | Solitary wave solutions and their interactions for fully nonlinear water waves with surface tension in the generalized Serre equations[END_REF][START_REF] Mitsotakis | On weakly singular and fully nonlinear travelling shallow capillary-gravity waves in the critical regime[END_REF]. More travelling wave solutions are obtained in [START_REF] Li | Song Bifurcations of traveling wave solutions for fully nonlinear water waves with surface tension in the generalized Serre-Green-Naghdi equations[END_REF]. A mathematical study of the Serre-Green-Naghdi equations with or without surface tension have been widely studied in the literature. We refer to [START_REF] Alvarez-Samaniego | A Nash-Moser theorem for singular evolution equations[END_REF][START_REF] Haidar | Existence of a regular solution for 1D Green-Naghdi equations with surface tension at a large time instant[END_REF][START_REF] Israwi | Large time existence for 1D Green-Naghdi equations[END_REF][START_REF] Kazerani | Global existence for small data of the viscous Green-Naghdi type equations[END_REF][START_REF] Lannes | The Water Waves Problem: Mathematical Analysis and Asymptotics[END_REF][START_REF] Li | A shallow-water approximation to the full water wave problem[END_REF] for the case inf h 0 > 0 and to [START_REF] Lannes | The shoreline problem for the one-dimensional shallow water and Green-Naghdi equations[END_REF] for the shoreline problem (sign(h) = 1 x>x 0 ). In [START_REF] Alvarez-Samaniego | A Nash-Moser theorem for singular evolution equations[END_REF][START_REF] Israwi | Large time existence for 1D Green-Naghdi equations[END_REF][START_REF] Li | A shallow-water approximation to the full water wave problem[END_REF], a proof of the local well-posedness of the SGN equations without surface tension (γ = 0) is given. Kazerani has proved in [START_REF] Kazerani | Global existence for small data of the viscous Green-Naghdi type equations[END_REF] the existence of global smooth solutions of the SGN equations with viscosity for small initial data. A full justification of the model (1.4) is given in [START_REF] Haidar | Existence of a regular solution for 1D Green-Naghdi equations with surface tension at a large time instant[END_REF][START_REF] Lannes | The Water Waves Problem: Mathematical Analysis and Asymptotics[END_REF]. By "full justification" we mean local well-posedness of the system and, the solution is close to the solution of the water waves equations with the same initial data. In a recent work [START_REF] Guelmame | On the blow-up scenario for some modified Serre-Green-Naghdi equations[END_REF], we have obtained a precise blow-up criterion of (1.4) (Theorem 2.3 below) and we proved that such scenario occurs for a class of small-energy initial data (Theorem 2.6 below). Then, in general, smooth solutions cannot exist globally in time. This paper investigates the existence of global weak solutions of (1.4) with γ > 0. To the best of the author's knowledge, the existence of global weak solutions for all the different variants of the inviscid Serre-Green-Naghdi equations has not been established before.

Here, the existence of global weak solutions is established by approximating the system (1.4) with another system that admits global smooth solutions. We recover weak solutions of (1.4) by taking the limit. The proof involves several steps.

We consider initial data satisfying E 0 dx < √ gγ h2 , which is propagated due to the energy conservation (1.5). Using the fact that the energy is equivalent to

∥(h -h, u)∥ 2 H 1
and a Sobolev-like inequality (essentially H 1 → L ∞ , see Proposition 2.4 below) we obtain a uniform lower bound of h. This is important for ensuring the invertibility of the operator L h defined in (1.2). Smooth solutions of (1.4) blow-up in finite time due to the presence of quadratic terms in the associated Riccati-type equations. In order to approximate the SGN γ system, we use a cut-off to obtain a linear growth that leads to global smooth solutions (due to Gronwall's inequality). However, cutting-off directly as in [START_REF] Zhang | Weak solutions to a nonlinear variational wave equation[END_REF][START_REF] Zhang | Weak solutions to a nonlinear variational wave equation with general data[END_REF] violates the energy conservation (1.5). The choice the approximated system is crucial and must conserve the properties of the SGN γ system. In Section 4 below, we chose carefuly a suitale approximated system that is globaly well-posed and satisfies the energy equation (5.11). In order to pass to the limit, some uniform estimates are needed. In the previous studies of smooth solutions of the SGN equations, some estimates of the operator L -1 h have been obtained, those estimates usually depend on the L ∞ norm of h x which may blow-up for weak solutions. In Lemma 5.2 below, we present some new estimates of L -1 h depending only on the L ∞ norm of h and 1/h. As in [START_REF] Xin | On the weak solutions to a shallow water equation[END_REF][START_REF] Zhang | Weak solutions to a nonlinear variational wave equation[END_REF][START_REF] Zhang | Weak solutions to a nonlinear variational wave equation with general data[END_REF], an L p loc estimate of (h x , u x ) with p < 3 is also needed. In our case and due to the complexity of the SGN γ equations, we have to use a change of coordinates to obtain this estimate (see Lemma 5.6 below). We use then some classical compactness arguments with Young measures [START_REF] Joly | Focusing at a point and absorption of nonlinear oscillations[END_REF] and a generalised compensated compactness result [START_REF] Gérard | Microlocal defect measures[END_REF] to pass to the limit. We follow in this step the techniques developed in [START_REF] Xin | On the weak solutions to a shallow water equation[END_REF] for the Camassa-Holm equation and in [START_REF] Zhang | Weak solutions to a nonlinear variational wave equation[END_REF][START_REF] Zhang | Weak solutions to a nonlinear variational wave equation with general data[END_REF] for the variational wave equation. The structure of the SGN γ system being more complex, we have to handle the weak limit of some nonlinear terms that do not exist in [START_REF] Zhang | Weak solutions to a nonlinear variational wave equation[END_REF][START_REF] Zhang | Weak solutions to a nonlinear variational wave equation with general data[END_REF] (see Lemma 6.4 for example). Finally, the global weak solutions of (1.4) are obtained by taking the limit in the approximated system, and are shown to dissipate the energy and satisfy the one-sided Oleinik inequality (3.6).

The existence of global solutions to the Boussinesq equations [START_REF] Boussinesq | Essai sur la théorie des eaux courantes[END_REF][START_REF] Whitham | Linear and nonlinear waves[END_REF] 

h t + [h u] x = 0, u t + u u x + g h x = u txx (1.8)
have been studied in [START_REF] Amick | Regularity and uniqueness of solutions to the Boussinesq system of equations[END_REF][START_REF] Schonbek | Existence of solutions for the Boussinesq system of equations[END_REF]. Schonbek [START_REF] Schonbek | Existence of solutions for the Boussinesq system of equations[END_REF] regularised the conservation of the mass by adding a defusion term, i.e., h t + [hu] x = εh xx , with ε > 0. She proved the global wellposedness of the regularised system, and she obtained global weak solutions of (1.8) by taking ε → 0. In [START_REF] Amick | Regularity and uniqueness of solutions to the Boussinesq system of equations[END_REF], Amick proved that if the initial data, (h 0 , u 0 ), is smooth, then the solution, (h, u), obtained by Schonbek [START_REF] Schonbek | Existence of solutions for the Boussinesq system of equations[END_REF] is also smooth and is the unique smooth solution of the Boussinesq equations (1.8).

The SGN γ equations (1.1) can be compared with the dispersionless regularised Saint-Venant (rSV) system presented in [START_REF] Clamond | Non-dispersive conservative regularisation of nonlinear shallow water (and isentropic Euler) equations[END_REF]. The rSV system can be obtained replacing R in (1.1c) by εR rSV with

R rSV def = h 3 u 2 x -u xt -u u xx -g h 2 h h xx + 1 2 h 2
x and ε ⩾ 0, the classical Saint-Venant system is recovered taking ε = 0. Weakly singular shock profiles of the rSV equations are studied in [START_REF] Pu | Weakly singular shock profiles for a non-dispersive regularization of shallow-water equations[END_REF]. In [START_REF] Liu | Well-posedness and derivative blow-up for a dispersionless regularized shallow water system[END_REF], Liu et al. proved the local well-posedness of the rSV equations and identified a class of initial data such that the corresponding solutions blow-up in finite time. The rSV system have been generalised recently to obtain a regularisation of any unidimensional barotropic Euler (rE) system [START_REF] Guelmame | Hamiltonian regularisation of the unidimensional barotropic Euler equations[END_REF].

The system (1.1) can also be compared with the modified Serre-Green-Naghdi (mSGN) equations derived in [START_REF] Clamond | Conservative modified Serre-Green-Naghdi equations with improved dispersion characteristics[END_REF] to improve the dispersion relation of the classical SGN system.

The mSGN system presented in [START_REF] Clamond | Conservative modified Serre-Green-Naghdi equations with improved dispersion characteristics[END_REF] can be obtained replacing R in (1.1c) by

R mSGN def = 1 3 1 + 3 2 β h 3 -u tx -u u xx + u 2 x -1 2 β g h 2 h h xx + 1 2 h 2 x .
where β is a positive parameter. The rSV, rE and mSGN conserve H 1 -equivalent energies and have similar properties as the SGN γ system (1.1). One may can obtain the existence of global weak solutions of those equations following the proof given in this paper.

The study of the classical Serre-Green-Naghdi equations is more challenging. Indeed, when γ = 0, the energy (1.6) fails to control the H 1 norm of h -h, then, a lower bound of h cannot be obtained. This bound is crucial to obtaining the blow-up result [START_REF] Guelmame | On the blow-up scenario for some modified Serre-Green-Naghdi equations[END_REF] and the global existence in this paper for γ > 0. To the author's knowledge, the questions of the blow-up of smooth solutions and the existence of global solutions of the SGN equations without surface tension are still open. However, Bae and Granero-Belinchén [START_REF] Bae | Singularity formation for the Serre-Green-Naghdi equations and applications to abcd-Boussinesq systems[END_REF] proved recently that for a class of periodic initial data satisfying inf h 0 = 0, smooth solutions cannot exist globally in time. For this class of initial data, it is not known if smooth solutions exist locally in time, but if they do, a singularity must appear in finite time.

This paper is organised as follows. In Section 2 we present the local well-posedness of (1.4) and some blow-up results. Section 3 is devoted to define weak solutions of (1.4) and to present the main result which is the existence of global dissipative weak solutions. We discuss in Section 4 the properties needed of the approximated system and we propose a suitable choice. Section 5 is devoted to prove the existence of global smooth solutions of the approximated system and to obtain some uniform estimates. We obtain strong precompactness results in Section 6. The existence of the global weak solutions is proved in Section 7. In Appendix A we recall some classical lemmas that are used in this paper. Appendix B is devoted to obtain the energy equations of the approximated system and of (1.4).

Review of previous results

We consider the Serre-Green-Naghdi equations with surface tension in this form

h t + [ h u ] x = 0,
(2.1a)

u t + u u x + 3 γh -2 h x = -L -1 h ∂ x {C + F (h)} , (2.1b) u(0, x) = u 0 (x), h(0, x) = h 0 (x), (2.1c) 
with

C def = 2 3 h 3 u 2 x -3 2 γ h 2 x , (2.2) 
F (h) def = 1 2 g h 2 -1 2 g h2 -3 γ ln(h/ h). (2.3)
The system (2.1) is locally well-posed in the Sobolev space

H s (R) def = f, ∥f ∥ 2 H s (R) def = R 1 + |ξ| 2 s | f (ξ)| 2 dξ < ∞
where s ⩾ 2 is a real number.

Theorem 2.1. Let γ > 0, h > 0 and s ⩾ 2, then, for any

(h 0 -h, u 0 ) ∈ H s (R) satisfying inf x ∈ R h 0 (x) > 0 there exists T > 0 and (h -h, u) ∈ C([0, T ], H s (R)) ∩ C 1 ([0, T ], H s-1 (R)) a unique solution of (2.1) such that inf (t,x) ∈ [0,T ]×R h(t, x) > 0.
Moreover, the solution satisfies the conservation of the energy

d dt R 1 2 h u 2 + 1 2 g (h -h) 2 + 1 6 h 3 u 2 x + 1 2 γ h 2 x dx = 0. (2.4)
Remark 2.2. The solution given in Theorem 2.1 depends continuously on the initial data, i.e., If (h

1 0 -h, u 1 0 ), (h 2 0 -h, u 2 0 ) ∈ H s , such that h 1 0 , h 2 0 ⩾ h min > 0, then for all t ⩽ T there exists a constant C(∥(h 2 -h, u 2 )∥ L ∞ ([0,t],H s ) , ∥(h 1 -h, u 1 )∥ L ∞ ([0,t],H s ) ) > 0, such that h 1 -h 2 , u 1 -u 2 L ∞ ([0,t],H s-1 ) ⩽ C h 1 0 -h 2 0 , u 1 0 -u 2 0 H s .
The proof of Theorem 2.1 is classic and omitted in this paper, see [START_REF] Guelmame | Hamiltonian regularisation of the unidimensional barotropic Euler equations[END_REF][START_REF] Guelmame | Local well-posedness of a Hamiltonian regularisation of the Saint-Venant system with uneven bottom[END_REF][START_REF] Haidar | Existence of a regular solution for 1D Green-Naghdi equations with surface tension at a large time instant[END_REF][START_REF] Israwi | Large time existence for 1D Green-Naghdi equations[END_REF][START_REF] Lannes | The Water Waves Problem: Mathematical Analysis and Asymptotics[END_REF][START_REF] Liu | Well-posedness and derivative blow-up for a dispersionless regularized shallow water system[END_REF]] for more details. It is clear from Theorem 2.1 that if the solution at time T remains in H s and inf x h(T, x) > 0 then one can extend the interval of existence. This leads to the blow-up criterion

T max < ∞ =⇒ lim inf t→Tmax inf x ∈ R h(t, x) = 0 or lim sup t→Tmax ∥(h -h, u)∥ H s = ∞,
where T max is the maximum time existence of the solution. This criterion has been improved in [START_REF] Guelmame | On the blow-up scenario for some modified Serre-Green-Naghdi equations[END_REF] to Theorem 2.3. ( [START_REF] Guelmame | On the blow-up scenario for some modified Serre-Green-Naghdi equations[END_REF]) Let T max be the maximum time existence of the solution given by Theorem 2.1, then

T max < ∞ =⇒ lim inf t→Tmax inf x ∈ R h(t, x) = 0 or        lim inf t→Tmax inf x ∈ R u x (t, x) = -∞, and lim sup t→Tmax ∥h x (t, x)∥ L ∞ = ∞,
which is equivalent to the second criterion

T max < ∞ =⇒ lim sup t→Tmax ∥u x (t, x)∥ L ∞ = ∞ and        lim inf t→Tmax inf x ∈ R h(t, x) = 0, or lim sup t→Tmax ∥h x (t,x)∥ L ∞ = ∞.
Noting that the energy conserved in (2.4) is equivalent to the H 1 norm of (h -h, u). Due to the continuous embedding H 1 → L ∞ , we can obtain a uniform (on time) estimate of ∥(h -h, u)∥ L ∞ , and, if the initial energy is not very large compared to h, we can obtain a lower bound of h. For that purpose, we present the following proposition.

Proposition 2.4. For γ > 0, h > 0, let E be a positive number such that

0 < E < √ g γ h2 , (2.5) 
Defining

h min def = h -(gγ) -1 4 √ E, h max def = h + (gγ) -1 4 √ E, u max def = -u min def = 3 1 4 √ E/h min .
Then, for any (h -h, u) ∈ H 1 satisfying E dx ⩽ E, we have

0 < h min ⩽ h ⩽ h max < 2 h, u min ⩽ u ⩽ u max , (2.6) 
Remark 2.5. Taking an initial data satisfying R E 0 dx ⩽ E, then, due to the energy conservation (2.4) and Proposition 2.4 the depth h cannot vanish. The blow-up criteria given in Theorem 2.3 becomes then

T max < ∞ =⇒ inf [0,Tmax)×R u x (t, x) = -∞ and lim sup t→Tmax ∥h x (t, x)∥ L ∞ = ∞. Proof of Proposition 2.4. The Young inequality 1 2 a 2 + 1 2 b 2 ⩾ ±ab implies that E ⩾ R E dy ⩾ R 1 2 g (h -h) 2 + 1 2 γ h 2 x dx ⩾ √ g γ x -∞ (h -h) h x dy - ∞ x (h -h) h x dy ⩾ √ g γ |h -h| 2 ,
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which implies that h min ⩽ h ⩽ h max . Doing the same estimates with u one obtains

E ⩾ R E dy ⩾ R 1 2 h u 2 + 1 6 h 3 u 2 x dy ⩾ 1 √ 3 h 2 min x -∞ u u x dy - ∞ x u u x dy ⩾ 1 √ 3 h 2 min |u| 2
, the last inequality ends the proof of u min ⩽ u ⩽ u max . □ As in [START_REF] Guelmame | On the blow-up scenario for some modified Serre-Green-Naghdi equations[END_REF], we can build some initial data with small initial data such that the corresponding solutions blow-up in small time.

Theorem 2.6. ( [START_REF] Guelmame | On the blow-up scenario for some modified Serre-Green-Naghdi equations[END_REF]) For any T > 0 and E satisfying (2.5), there exist

• (h 0 -h, u 0 ) ∈ C ∞ c (R) satisfying R E 0 dx ⩽ E such that the corresponding solution of (2.1) blows-up at finite time T max ⩽ T and inf [0,Tmax)×R u x (t, x) = -∞, sup [0,Tmax)×R h x (t, x) = ∞, inf [0,Tmax)×R h x (t, x) > -∞. • ( h0 -h, ũ0 ) ∈ C ∞ c (R) satisfying R Ẽ0
dx ⩽ E such that the corresponding solution of (2.1) blows-up at finite time Tmax ⩽ T and

inf [0, Tmax)×R ũx (t, x) = -∞, inf [0, Tmax)×R hx (t, x) = -∞, sup [0, Tmax)×R hx (t, x) < ∞.

Main results

Since smooth solutions fail to exist globally in time, even for arbitrary small-energy initial data, we shall define weak solutions of the SGN γ system (2.1). For that purpose, we define the domain

D ⊂ H 1 D def = h -h, u ∈ H 1 , R E dx < √ gγ h2 . (3.1) Definition 3.1. We say that (h -h, u) ∈ L ∞ (R + , H 1 ) ∩ Lip(R + , L 2
) is a weak solution of (2.1) if it satisfies the initial condition (2.1c) with (2.1a) in L 2 and for all φ ∈ C ∞ c ((0, ∞)× R) we have

R + ×R u t + u u x + 3 γ (h) -2 h x L h φ -φ x {C + F (h)} dx dt = 0. (3.2)
Moreover, (h(t, •) -h, u(t, •)) belongs to D for all t ⩾ 0 and (h -h, u) ∈ C r (R + , H 1 ). More precisely, for all t 0 ⩾ 0 we have

lim t→t 0 t>t 0 ∥(h(t, •) -h(t 0 , •), u(t, •) -u(t 0 , •))∥ H 1 = 0. (3.3)
Now we can state the main result of this paper.

Theorem 3.2. Let h, g, γ > 0 and (h 0 -h, u 0 ) ∈ D, then there exist a global weak solution

(h -h, u) ∈ L ∞ ([0, ∞), H 1 (R)) ∩ C([0, ∞) × R) of (2.1) in the sense of Definition 3.1. Moreover, • For any bounded set Ω = [t 1 , t 2 ] × [a, b] ⊂ (0, ∞) × R and α ∈ [0, 1) there exists C α,Ω > 0 such that Ω |h t | 2+α + |h x | 2+α + |u t | 2+α + |u x | 2+α dx dt ⩽ C α,Ω . (3.4) 
• The solution dissipates the energy

R E dx ⩽ R E 0 dx. ( 3 

.5)

• There exists C > 0 such that the solution satisfies the Oleinik inequality

u x ± 3 γ h -3 2 h x ⩽ C 1 + 1 t , a.e. (t, x) ∈ (0, ∞) × R. (3.6)
Remark 3.3. The constants C α,Ω and C depend on h, γ, g and R E 0 dx but not on the initial data.

In order to obtain global solutions of (2.1), we use a suitable approximation of the system (2.1) that admits global smooth solutions. Using some compactness arguments and taking the limit we recover a global weak solution of (2.1). In the next section we present the choice of the suitable approximated system.

An approximated system

The blow-up of the solutions given in Theorem 2.6 is due to the Riccati-type equations. In order to prevent the singularities from appearing, we modify slightly the Riccati-type equations.

Riccati-type equations. Defining the Riemann invariants

1 R and S R def = u + 2 3 γ h -1 2 , S def = u -2 3 γ h -1 2 , (4.1) 
λ def = u - 3 γ h -1 2 , η def = u + 3 γ h -1 2 . (4.2)
The system (2.1) can be rewritten as

R t + λ R x = -L -1 h ∂ x {C + F (h)} , (4.3a) 
S t + η S x = -L -1 h ∂ x {C + F (h)} . (4.3b) Defining P def = h R x = h u x - 3 γ h -1 2 h x , Q def = h S x = h u x + 3 γ h -1 2 h x ,
we have

u x = P + Q 2 h , h x = h 1 2 Q -P 2 √ 3 γ . (4.4)
From the definition of L h in (1.2), we obtain that

∂ x L -1 h ∂ x Ψ = -3 h -3 Ψ + 3 ∂ x L -1 h h x -∞ h -3 Ψ (4.5)
for any smooth function Ψ satisfying Ψ(±∞) = 0. Then,

C + 1 3 h 3 ∂ x L -1 h ∂ x C = h 3 ∂ x L -1 h h x -∞ h -3 C . (4.6)
From (1.1c) and (2.1b) we obtain

R = -1 3 h 3 u t + u u x + 3 γh -2 h x x + C = C + 1 3 h 3 ∂ x L -1 h ∂ x {C + F (h)} (4.7) = h 3 ∂ x L -1 h h x -∞ h -3 C + 1 3 h 3 ∂ x L -1 h ∂ x F (h). (4.8)
Let the characteristics X x , Y x starting from x defined as the solutions of the ordinary differential equations

d dt X x (t) = η(t, X x (t)), X x (0) = x, (4.9) 
d dt Y x (t) = λ(t, Y x (t)), Y x (0) = x. (4.10) 
Differentiation (4.3) with respect to x, and using (4.8) we obtain the Ricatti-type equations

d λ dt P def = P t + λ P x = -1 8 h P 2 + 1 8 h Q 2 -3 h -2 R, (4.11a) 
d η dt Q def = Q t + η Q x = -1 8 h Q 2 + 1 8 h P 2 -3 h -2 R, (4.11b) 
where d λ dt , d η dt denote the derivatives along the characteristics with the speed λ, η respectively. We prove below that the term R is bounded. Also, we obtain a bound of the integral of P 2 (respectively Q 2 ) on the characteristics X x (respectively Y x ). Then, the singularities given in Theorem 2.6 appear due to the term P 2 in (4.11a) and/or the term Q 2 in (4.11b).

4.2.

The choice of the approximated system. In order to obtain a system that admits global smooth solutions, we linearise the negative quadratic terms on the right-hand side of (4.11) on the neighbourhood of -∞. For that purpose, let ε > 0 and we define as in [START_REF] Zhang | Weak solutions to a nonlinear variational wave equation[END_REF][START_REF] Zhang | Weak solutions to a nonlinear variational wave equation with general data[END_REF] 

χ ε (ζ) def = ζ + 1 ε 2 1 (-∞,-1 ε ] (ζ) = ζ + 1 ε 2 , ζ ⩽ -1/ε, 0, ζ > -1/ε. (4.12)
Noting that (4.11) is like a derivative of (2.1), then, adding terms to (4.11) will involve some primitive terms in (2.1) which are not uniquely defined and cannot vanish at ∞ and -∞. That is why the system (2.1) will not be approximated simply by adding χ ε to (4.11) as in [START_REF] Zhang | Weak solutions to a nonlinear variational wave equation[END_REF][START_REF] Zhang | Weak solutions to a nonlinear variational wave equation with general data[END_REF].

Our goal is to obtain a system on the form

h t + [ h u ] x = h + , u t + u u x + 3 γh -2 h x = -L -1 h ∂ x {C + F (h)} + u +
, where h + , u + are suitable terms to be chosen. As in Section 4.1, we obtain

P t + λ P x = -1 8 h P 2 + 1 8 h χ ε (P ) + 1 8 h Q 2 -3 h -2 R + P , Q t + η Q x = -1 8 h Q 2 + 1 8 h χ ε (Q) + 1 8 h P 2 -3 h -2 R + Q, where P def = h (u + ) x + u x h + - 3 γ h -1/2 (h + ) x + 1 2 3 γ h -3/2 h x h + -1 8 h χ ε (P ), Q def = h (u + ) x + u x h + + 3 γ h -1/2 (h + ) x -1 2 3 γ h -3/2 h x h + -1 8 h χ ε (Q).
Due to the definition (4.12), when ζ is near -∞, the term χ ε (ζ) -ζ 2 behaves as a linear map. This prevents singularities from appearing in finite time. From (1.6), we have

E = 1 2 h u 2 + 1 2 g (h -h) 2 + 1 12 h P 2 + 1 12 h Q 2 .
Then the energy equation (1.5) becomes

E t + D x = h u u + + 1 2 u 2 h + + g h -h h + + 1 6 h 2 u 2 x + γ 2 h h 2 x h + + 1 6 h P P + 1 6 h Q Q + 1 48 P χ ε (P ) + 1 48 Qχ ε (Q) ⩽ h u u + + 1 2 u 2 h + + g h -h h + + 1 6 h 2 u 2 x + γ 2 h h 2 x h + + 1 6 h P P + 1 6 h Q Q. (4.13)
The goal is to find h + and u + such that • The right-hand side of (4.13) is a derivative of some quantity (i.e., [• • • ] x ), which will insure that R E dx is a decreasing function of time. • When P, Q are large, we have P = O(P ) and Q = O(Q). This insures (with Gronwall inequality) that no singularity will appear in finite time. We can write the right-hand side of (4.13) as T 1 + T 2 such that

T 1 = g h -h h + + γ h x h + x + √ 3 γ 48 h 1/2 h x (χ ε (P ) -χ ε (Q)) = g h -h h + + h -h x γ h + x + √ 3 γ 48 h 1/2 (χ ε (P ) -χ ε (Q)) . Then, a sufficient condition to obtain T 1 = [• • • ] x is g h + = γ h + x + √ 3 γ 48 h 1/2 (χ ε (P ) -χ ε (Q)) x . (4.14) 
On another hand we have

T 2 = 1 3 h 3 u x u + x + 1 2 h 2 u 2 x h + + 1 2 u 2 h + + h u u + -1 48 h (χ ε (P ) + χ ε (Q)) u x = 1 2 u h + + h u + u + 1 3 h 3 u + x + 1 2 h 2 u x h + -1 48 h (χ ε (P ) + χ ε (Q)) u x Then, a sufficient condition to obtain T 2 = [• • • ] x is 1 2 u h + + h u + = 1 3 h 3 u + x + 1 2 h 2 u x h + -1 48 h (χ ε (P ) + χ ε (Q)) x . (4.15) 
In next section we prove the global existence of smooth solutions of the approximated system, and we obtain some uniform estimates that do not depend on ε.

Uniform estimates

In this section, we consider γ > 0, h > 0, and

h 0 -h, u 0 ∈ H 1 such that R E 0 dx < √ gγ h2 .
Let also j ε be a Friedrichs mollifier, we define h ε

0 def = ((h 0 -h) * j ε ) + h and u ε 0 def = (u 0 * j ε ) where (f * g)(x) def = R f (x -x ′ )g(x ′ )dx ′ . Using that ∥(h 0 -h ε 0 , u 0 -u ε 0 )∥ H 1 → 0 as ε → 0, we can prove lim ε→0 R E ε 0 dx = R E 0 dx < √ g γ h2 , (5.1) 
which implies that there exists

ε 0 > 0 such that R E ε 0 dx ⩽ E def = 1 2 R E 0 dx + 1 2 g γ h2 ∀ε ⩽ ε 0 . (5.2) 
Following the arguments of the previous section (see (4.14) and (4.15)), we consider the system

h ε t + [ h ε u ε ] x = A ε x , (5.3a) 
u ε t + u ε u ε x + 3 γ(h ε ) -2 h ε x = -L -1 h ε ∂ x {C ε + F (h ε )} + B ε , (5.3b) u ε (0, •) = u ε 0 def = j ε * u 0 , h ε (0, •) = h ε 0 def = j ε * h 0 -h + h, (5.3c) 
where

A ε def = g -γ ∂ 2 x -1 √ 3 γ 48 (h ε ) 1/2 (χ ε (P ε ) -χ ε (Q ε )) , = G * √ 3 γ 48 (h ε ) 1/2 (χ ε (P ε ) -χ ε (Q ε )) , (5.4) 
B ε def = L -1 h ε -1 2 u ε A ε x + ∂ x 1 2 (h ε ) 2 u ε x A ε x -1 48 h ε (χ ε (P ε ) + χ ε (Q ε )) , (5.5) 
with G is defined as

G def = 1 2 γ exp -g γ | • | .
(5.6) Differentiation (5.3) with respect to x we obtain

d λ dt P ε def = P ε t + λ ε P ε x = -1 8 h ε (P ε ) 2 + 1 8 h ε χ ε (P ε ) + 1 8 h ε (Q ε ) 2 -1 2 h ε A ε x P ε + M ε , (5.7a) d η dt Q ε def = Q ε t + η ε Q ε x = -1 8 h ε (Q ε ) 2 + 1 8 h ε χ ε (Q ε ) + 1 8 h ε (P ε ) 2 -1 2 h ε A ε x Q ε + N ε , (5.7b) with M ε def = -3 (h ε ) -2 R ε + V ε 1 -V ε 2 , N ε def = -3 (h ε ) -2 R ε + V ε 1 + V ε 2 , (5.8) 
V ε 1 def = 1 2 h ε ∂ x L -1 h ε -u ε A ε x + h ε x -∞ 3(h ε ) -1 u ε x A ε x -1 8 (h ε ) 2 (χ ε (P ε ) + χ ε (Q ε )) dy , (5.9) V ε 2 def = g 16 (h ε ) -1/2 G * (h ε ) -1/2 (χ ε (P ε ) -χ ε (Q ε )) = 3 g √ 3 γ (h ε ) -1/2 A ε . (5.10)
Smooth solutions of (5.3) satisfy the energy equation (see Appendix B)

E ε t + Dε x = 1 48 P ε χ ε (P ε ) + 1 48 Q ε χ ε (Q ε ) ⩽ 0, (5.11) 
where

Dε def = u ε E ε + u ε R ε + 1 2 g (h ε ) 2 -1 2 g h2 + γ h ε h ε x u ε x -1 3 (h ε ) 2 u ε V ε 1 - √ 3 γ 3 (h ε ) 1/2 V ε 2 h ε -h .
The first result on this section is the global well-posedness of (5.3).

Theorem 5.1. Let h > 0, (h 0 -h, u 0 ) ∈ D and ε ∈ (0, ε 0 ] then there exists a global smooth solution (h ε -h, u ε ) ∈ C(R + , H 3 (R)) ∩ C 1 (R + , H 2 (R)) of (5.
3) and for all t > 0 we have

R E ε dx - t 0 R 1 48 (P ε χ ε (P ε ) + Q ε χ ε (Q ε )) dx dt = R E ε 0 dx. (5.12)
Moreover, there exist A, B > 0 depending only on h, γ, g and E such that for any t > 0, x 2 ∈ R, and for

x 1 ∈ (-∞, x 2 ) the solution of X x 1 (t) = Y x 2 (t) (see Figure 2) we have t τ [P ε (s, X x 1 (s))] 2 ds + t τ [Q ε (s, Y x 2 (s))] 2 ds ⩽ A (t -τ ) + B ∀τ ∈ [0, t]. (5.13) x t t x 0 s Y x 2 (s) X x 1 (s) τ x 2 x 1 Figure 2. Characteristics.
In order to prove Theorem 5.1, we need to prove the invertibility of the operator L h and to obtain some estimates of its inverse.

Lemma 5.2. Let 0 < h ∈ H 1 (R) + h with h -1 ∈ L ∞ . Then the operator L h is an isomorphism from H 2 to L 2 . Moreover, if ψ ∈ C lim def = {f ∈ C(R), f (∞), f (-∞) ∈ R}, then L -1
h ψ is well defined and there exists constants

C = C h, ∥h -1 ∥ L ∞ , ∥h∥ L ∞ > 0 such that L -1 h ψ W 1,∞ ⩽ C ∥ψ∥ L ∞ , (5.14) 
∂ 2 x L -1 h ψ (x) ⩽ C (1 + |h x (x)|) ∥ψ∥ L ∞ ∀x ∈ R, (5.15) 
L -1 h ψ H 1 ⩽ C ∥ψ∥ L 1 , (5.16 
)

L -1 h ∂ x ψ L ∞ ⩽ C ∥ψ∥ L 1 , (5.17) 
∂ x L -1 h ∂ x ψ L ∞ ⩽ C [∥ψ∥ L 1 + ∥ψ∥ L ∞ ] , (5.18) 
L -1 h ∂ x ψ L 2 ⩽ C ∥ψ∥ L 1 (∥h x ∥ L 2 + 1) , (5.19) 
L -1 h ∂ x ψ H 1 + L -1 h ψ H 1 ⩽ C ∥ψ∥ L 2 , (5.20) 
L -1 h ψ W 1,∞ ⩽ L -1 h ψ H 2 ⩽ C 1 + ∥h x ∥ 2 L 2 ∥ψ∥ L 2 , (5.21) 
∂ 2 x L -1 h ψ (x) ⩽ C [(1 + ∥h x ∥ L 2 ) (1 + |h x |(x)) ∥ψ∥ L 2 + |ψ|(x)] . (5.22) Also, if h -h ∈ H 2 (R) we have L -1 h ∂ x φ H 3 ⩽ C 1 + ∥h x ∥ 2 L ∞ ∥φ∥ H 2 + h -h H 2 L -1 h ∂ x φ W 1,∞ , (5.23a) L -1 h ψ H 3 ⩽ C 1 + ∥h x ∥ 2 L ∞ ∥ψ∥ H 2 + h -h H 2 L -1 h ψ W 1,∞ . (5.23b) 
Moreover, there exists a constant C = C(γ, g) such that

g -γ ∂ 2 x -1 ψ H 3 ⩽ C ∥ψ∥ H 1 , ∂ x g -γ ∂ 2 x -1 ψ H 3 ⩽ C ∥ψ∥ H 2 . (5.24)
The proof of (5.14), (5.18) and (5.23) is inspired by [START_REF] Liu | Well-posedness and derivative blow-up for a dispersionless regularized shallow water system[END_REF].

Proof.

Step 0. Let (•, •) be the scalar product in L 2 . Defining the bilinear map a :

H 1 × H 1 → R a(u, v) def = (h u, v) + 1 3 h 3 u x , v x .
It is easy to check that a is continuous and coercive. Then, Lax-Milgram theorem insures the existence of a continuous bijective linear operator J :

H 1 → H -1 satisfying a(u, v) = ⟨J u, v⟩ H -1 ×H 1 ∀u, v ∈ H 1 .
If Ju ∈ L 2 , an integration by parts shows that (h 

3 u x ) x = hu -Ju ∈ L 2 and J = L h , this implies that u ∈ H 2 which finishes the proof that L h is an isomorphism from H 2 to L 2 . Defining now C 0 def = {f ∈ C, f (±∞) = 0}, using that L 2 ∩ C 0 is dense in C 0 one can define L -1 h on C 0 . If φ is in C lim ,
φ 0 (x) def = φ(x) -L h 1 h φ(-∞) + (φ(∞) -φ(-∞)) e x 1 + e x ∈ C 0 , the operator L -1
h can be defined as

L -1 h φ def = L -1 h φ 0 + 1 h φ(-∞) + (φ(∞) -φ(-∞)) e x 1 + e x . Step 1. Let ψ = L h u = h u -1 3 h 3 u x x , (5.25) 
using the change of variables

z = dx h 3 , (5.26) 
we obtain ψ = h u -1 3 h 3 u zz .

(5.27)

The maximum principle insures that ∥u∥ L ∞ ⩽ C∥ψ∥ L ∞ which implies with (5.27) that

∥u zz ∥ L ∞ ⩽ C∥ψ∥ L ∞ .
(5.28)

Using Landau-Kolmogorov inequality we obtain ∥u z ∥ L ∞ ⩽ C∥ψ∥ L ∞ . Using again the change of variables (5.26) we get ∥u x ∥ L ∞ ⩽ C∥ψ∥ L ∞ which completes the proof of (5.14).

The estimate (5.15) follows directly from the change of variables (5.26), (5.28) and (5.14). Multiplying (5.25) by u and using and integration by parts one obtains

∥u∥ 2 H 1 ⩽ C ∥ψ∥ L 1 ∥u∥ L ∞ . (5.29) 
The inequality (5.16) follows directly using the embedding H 1 → L ∞ . Using (5.14) and

L -1 h ∂ x ψ = -3 x -∞ h -3 ψ + 3 L -1 h h x -∞ h -3 ψ (5.30)
we obtain (5.17) and (5.18). Using the definition of L h we obtain

L -1 h ∂ x ψ = L -1 h ∂ x h 3 L h L -1 h h -3 ψ = L -1 h ∂ x h 4 L -1 h h -3 ψ -1 3 h 3 ∂ x h 3 ∂ x L -1 h h -3 ψ = L -1 h 4 h 3 h x L -1 h h -3 ψ + h 4 ∂ x L -1 h h -3 ψ -1 3 ∂ x h 3 ∂ x h 3 ∂ x L -1 h h -3 ψ = L -1 h 4 h 3 h x L -1 h h -3 ψ + h 3 ∂ x L -1 h h -3 ψ.
(5.31)

The inequality (5.19) follows from (5.16) and the Cauchy-Schwarz inequality.

Let

L h u = ψ + φ x , then ∥u∥ 2 H 1 = (u, u) + (u x , u x ) ⩽ C (h u, u) + 1 3 (h 3 u x , u x ) = C (L h u, u) = C [(ψ, u) -(φ, u x )] ⩽ C ∥u∥ H 1 (∥ψ∥ L 2 + ∥φ∥ L 2 ) , which implies that ∥u∥ H 1 ⩽ C (∥ψ∥ L 2 + ∥φ∥ L 2 ) . (5.32) 
Taking ψ = 0 (respectively φ = 0) we obtain (5.20). Replacing h -3 ψ by ψ in (5.31), we multiply by h -3 and we differentiate with respect to x to obtain

∂ 2 x L -1 h ψ = -3 h -2 h x L -1 h ∂ x h 3 ψ -L -1 h 4 h 3 h x L -1 h ψ (5.33) + h -3 ∂ x L -1 h ∂ x h 3 ψ -h -3 ∂ x L -1 h 4 h 3 h x L -1 h ψ . (5.34) 
Using (5.20) and the embedding H 1 → L ∞ we obtain

∂ 2 x L -1 h ψ L 2 ⩽ C ∥h x ∥ L 2 L -1 h ∂ x h 3 ψ H 1 + L -1 h 4 h 3 h x L -1 h ψ H 1 + C ∂ x L -1 h ∂ x h 3 ψ L 2 + C ∂ x L -1 h 4 h 3 h x L -1 h ψ L 2 ⩽ C ∥h x ∥ L 2 ∥ψ∥ L 2 + ∥h x ∥ L 2 L -1 h ψ H 1 + C ∥ψ∥ L 2 + C ∥h x ∥ L 2 L -1 h ψ H 1 ⩽ C 1 + ∥h x ∥ 2 L 2 ∥ψ∥ L 2 .
This with (5.20) imply (5.21).

Differentiating now (5.31) with respect to x, using the definition of L h and replacing h -3 ψ by ψ we obtain

∂ x L -1 h ∂ x h 3 ψ = ∂ x L -1 h 4 h 3 h x L -1 h ψ + 3 h L -1 h ψ -3 ψ. Then (5.33) becomes ∂ 2 x L -1 h ψ = -3 h -2 h x L -1 h ∂ x h 3 ψ -L -1 h 4 h 3 h x L -1 h ψ + 3 h -2 L -1 h ψ -3 h -3 ψ.
Then, using (5.20) we obtain (5.22).

Step 2. Using L h u = ψ + φ x and the Young inequality ab ⩽ 1 2α a 2 + α 2 b 2 with α > 0 we obtain

∥u x ∥ 2 H 1 = (u x , u x ) + (u xx , u xx ) ⩽ C (h u x , u x ) + 1 3 (h 3 u xx , u xx ) = C -(h u, u xx ) -(h x u, u x ) + 1 3 h 3 u x x -(h 3 ) x u x , u xx = C -(L h u, u xx ) -(h x u, u x ) -h 2 h x u x , u xx ⩽ C α ∥u xx ∥ 2 L 2 + 1 α ∥L h u∥ 2 L 2 + C α 1 + ∥h x ∥ 2 L ∞ ∥u∥ 2 H 1 .
Taking α > 0 small enough we obtain that

∥u x ∥ 2 H 1 ⩽ C ∥L h u∥ 2 L 2 + 1 + ∥h x ∥ 2 L ∞ ∥u∥ 2 H 1 , then ∥u x ∥ H 1 ⩽ C [∥L h u∥ L 2 + (1 + ∥h x ∥ L ∞ ) ∥u∥ H 1 ]
. Taking ψ = 0 (respectively φ = 0) and using (5.32), we obtain

L -1 h ∂ x φ H 2 ⩽ C (1 + ∥h x ∥ L ∞ ) ∥φ∥ H 1 , L -1 h ψ H 2 ⩽ C (1 + ∥h x ∥ L ∞ ) ∥ψ∥ L 2 . (5.35) Let Λ be defined as Λf = (1 + ξ 2 ) 1 2 f . Since L h u = ψ + φ x , we have L h Λ 2 u = [h, Λ 2 ] u + Λ 2 ψ + ∂ x -1 3 [h 3 , Λ 2 ] u x + Λ 2 φ . Defining ũ = Λ 2 u, ψ = [h, Λ 2 ]u + Λ 2 ψ and φ = -1 3 [h 3 , Λ 2 ]u
x + Λ 2 φ and using (5.32), (A.6) we obtain

∥Λ 2 u∥ H 1 ⩽ C [h, Λ 2 ] u L 2 + [h 3 , Λ 2 ] u x L 2 + ∥ψ∥ H 2 + ∥φ∥ H 2 ⩽ C ∥h x ∥ L ∞ ∥u∥ H 2 + ∥h -h∥ H 2 ∥u∥ W 1,∞ + ∥ψ∥ H 2 + ∥φ∥ H 2 .
Taking ψ = 0 (respectively φ = 0) and using (5.32) with (5.35), we obtain (5.23).

Step 3. It remains only to prove the inequalities (5.24). Since the operator (g

-γ ∂ 2 x ) -1
is nothing but a convolution with the function G, the result follows directly using the Young inequality.

□ Lemma 5.3. Let (h -h, u) ∈ H 1 (R) such that R E dx ⩽ E < √ gγ h2
, then, there exists a constant C = C(γ, h, E) > 0 independent on ε and h such that

L -1 h ∂ x C L ∞ (R) + ∥R∥ L ∞ (R) ⩽ C, (5.36) 
R (χ ε (P ) + χ ε (Q)) dx ⩽ C, (5.37) 
L -1 h ∂ x {h (χ ε (P ) + χ ε (Q))} L ∞ (R) ⩽ C, (5.38) 
L -1 h ∂ x h 2 u x A ε x , L -1 h {u A ε x } L ∞ (R) ⩽ C, (5.39 
)

∥A ε x ∥ L 2 + ∥(A ε , A ε x , B ε , V ε 1 , V ε 2 )∥ L ∞ (R) ⩽ C, (5.40) 
where A ε , B ε , V ε 1 and V ε 2 are defined as in (5.4), (5.5), (5.9) and (5.10) by replacing (h ε , u ε ) with (h, u).

Proof.

From R E dx ⩽ E we have ∥(C , P 2 , Q 2 )∥ L 1 ⩽ C, then the proof of (5.36) follows from (4.8), (5.14), (5.17) and (5.21). Since χ ε (λ) ⩽ λ 2 we obtain (5.37). Then, (5.37) with (5.17) imply (5.38). In remains to prove (5.40). For that purpose, we use Young inequality, (5.4) and (5.10) to obtain

∥A ∥ L ∞ + ∥A x ∥ L 2 + ∥A x ∥ L ∞ + ∥V 2 ∥ L ∞ ⩽ C.
(5.41)

The estimates (5.14), (5.17), (5.37), (5.9), (5.41), (5.5) and the Cauchy-Schwarz inequality imply (5.40). □

Proof of Theorem 5.1. Following [START_REF] Guelmame | Hamiltonian regularisation of the unidimensional barotropic Euler equations[END_REF][START_REF] Guelmame | Local well-posedness of a Hamiltonian regularisation of the Saint-Venant system with uneven bottom[END_REF][START_REF] Israwi | Large time existence for 1D Green-Naghdi equations[END_REF][START_REF] Lannes | The Water Waves Problem: Mathematical Analysis and Asymptotics[END_REF][START_REF] Liu | Well-posedness and derivative blow-up for a dispersionless regularized shallow water system[END_REF], we can prove easily the local existence of solutions of (5.3). Integrating the energy equation (5.11) on [0, t] × R, we obtain (5.12).

Step 1. Defining

U ε def = (h ε -h, u ε ) ⊤ A(U ε ) def = 3 γ (h ε ) -3 0 0 h ε , B(U ε ) def = u ε h ε 3 γ (h ε ) -3 u ε , F ε (U ε ) def = A ε x -L -1 h ε ∂ x {C ε + F (h ε )} + B ε , the system (5.3) becomes U ε t + B(U ε ) U ε x = F ε (U ε ). (5.42) Let (•, •) be the scalar product in L 2 and E(U ε ) def = (Λ 3 U ε , A ε Λ 3 U ε ). Since A ε B ε is a symmetric matrix, straightforward calculations with (5.42) imply that E(U ε ) t = -2 [Λ 3 , B ε ] U ε x , A ε Λ 3 U ε -2 B ε Λ 3 U ε x , A ε Λ 3 U ε + 2 Λ 3 F ε , A ε Λ 3 U ε + Λ 3 U ε , A ε t Λ 3 U ε = -2 [Λ 3 , B ε ] U ε x , A ε Λ 3 U ε + Λ 3 U ε , (A ε B ε ) x Λ 3 U ε + 2 Λ 3 F ε , A ε Λ 3 U ε + Λ 3 U ε , A ε t Λ 3 U ε . (5.43)
From the definition of χ ε we have

|χ ε (ξ)| ⩽ ξ 2 , |χ ′ ε (ξ)| ⩽ 2|ξ|, |χ ′′ ε (ξ)| ⩽ 2. Then, using the Gagliardo-Nirenberg interpolation inequality ∥f x ∥ 2 L 4 ⩽ C∥f ∥ L ∞ ∥f xx ∥ L 2 with (A.5), we obtain ∥χ ε (P ε )∥ H 2 ⩽ C ∥χ ε (P ε )∥ L 2 + ∥χ ′ ε (P ε ) P ε x ∥ L 2 + ∥χ ′ ε (P ε ) P ε xx ∥ L 2 + χ ′′ ε (P ε ) (P ε x ) 2 L 2 ⩽ C ∥P ε ∥ L ∞ ∥P ε ∥ H 2 ⩽ C ∥U ε x ∥ L ∞ ∥U ε ∥ H 3 .
(5.44)

The same inequality can be obtained for

Q ε ∥χ ε (Q ε )∥ H 2 ⩽ C ∥U ε x ∥ L ∞ ∥U ε ∥ H 3 .
(5.45)

Using (5.24) and (A.5), we obtain

∥(A ε , A ε x )∥ H 3 ⩽ C ∥P ε ∥ 2 L ∞ ∥h ε -h∥ H 2 + ∥(χ ε (P ε ), χ ε (Q ε ))∥ H 2 ⩽ C 1 + ∥U ε x ∥ 2 L ∞ ∥U ε ∥ H 3 . (5.46) 
Using (5.12), (5.17), (5.18), (5.20) and Lemma 5.3 we obtain that 

-L -1 h ε ∂ x {C ε + F (h ε )} + B ε W 1,∞ ⩽ C 1 + ∥U ε x ∥ 2 L ∞ . ( 5 
B ε -L -1 h ε ∂ x {C ε + F (h ε )} H 3 ⩽ P (∥U ε x ∥ L ∞ ) ∥U ε ∥ H 3 , (5.48) 
where P is a polynomial function. The last inequality with (5.46) imply that

∥F ε ∥ H 3 ⩽ P (∥U ε x ∥ L ∞ ) ∥U ε ∥ H 3 . (5.49) 
Defining B def = B( h, 0), and using (A.6) one obtains

[Λ 3 , B ε ] U ε x , A ε Λ 3 U ε ⩽ C ∥A ε ∥ L ∞ ∥U ε ∥ H 3 ∥B ε x ∥ L ∞ ∥U ε x ∥ H 2 + ∥B ε -B∥ H 3 ∥U ε x ∥ L ∞ ⩽ C ∥U ε x ∥ L ∞ ∥U ε ∥ 2 H 3 .
(5.50)

Using (5.3a) and (5.40) one obtains that

Λ 3 U ε , (A ε B ε ) x Λ 3 U ε + Λ 3 U ε , A ε t Λ 3 U ε ⩽ C (∥U ε x ∥ L ∞ + 1) ∥U ε ∥ 2 H 3 .
(5.51) Summing up (5.49), (5.50) and (5.51) we obtain

E(U ε ) t ⩽ P (∥U ε x ∥ L ∞ ) ∥U ε ∥ H 3 ⩽ P (∥U ε x ∥ L ∞ ) E(U ε ),
which implies with Gronwall inequality that

∥U ε ∥ H 3 ⩽ C E(U ε ) ⩽ C E(U ε 0 ) e t 0 P(∥U ε x ∥ L ∞ )ds ⩽ C ∥U ε 0 ∥ H 3 e t 0 P(∥U ε x ∥ L ∞ )ds . (5.52)
This implies that if T ε max is the maximal existence time, then

T ε max < ∞ =⇒ lim sup t→T ε max ∥U ε x (t, •)∥ L ∞ = ∞.
(5.53)

Step 2. Defining

H ε 1 def = 1 2 3 γ (h ε ) 1/2 (u ε ) 2 + g (h ε ) -1/2 h ε -h 2 -u ε R ε + 1 2 g ((h ε ) 2 -h2 ) + u ε 1 3 (h ε ) 2 V ε 1 + √ 3 γ 3 (h ε ) 1/2 (h -h) V ε 2 , H ε 2 def = 1 2 3 γ (h ε ) 1/2 (u ε ) 2 + g (h ε ) -1/2 h ε -h 2 + u ε R ε + 1 2 g ((h ε ) 2 -h2 ) -u ε 1 3 (h ε ) 2 V ε 1 - √ 3 γ 3 (h ε ) 1/2 (h -h) V ε 2 . We note that η ε E ε -Dε = √ 3 γ 6 (h ε ) 1/2 (P ε ) 2 + H ε 1 , Dε -λ ε E ε = √ 3 γ 6 (h ε ) 1/2 (Q ε ) 2 + H ε 2 .
From Lemma 5.3 we deduce that H ε 1 and H ε 2 are bounded, then, integrating (5.11) on the set (see Figure 2)

{(s, x), s ∈ [τ, t], X x 1 (s) ⩽ x ⩽ Y x 2 (s)} ,
and using the divergence theorem with (5.12) one obtains (5.13) 

for all t ∈ [0, T ε max ). Defining t 1 def = inf{t ⩾ 0, P ε (t, Y x 2 (t)) ⩾ 1} and t 2 ⩽ T ε max be the largest time such that P ε (t, Y x 2 (t)) ⩾ 1 on [t 1 , t 2 ]
. Dividing (5.7a) by P ε and integrating on the characteristics between t 1 and t ∈ [t 1 , t 2 ] we obtain with (5.13) and Lemma 5.3 that

P ε (t, Y x 2 (t)) ⩽ P ε (t 1 , Y x 2 (t 1 )) e C(1 + t)t ∀t ∈ [t 1 , t 2 ].
Using that P ε (t 1 , Y x 2 (t 1 )) = max {1, P ε 0 (x 2 )} and doing the same for Q ε we obtain 

P ε (t, Y x 2 (t)) ⩽ max {1, P ε 0 (x 2 )} e C(1 + t)t ∀(t, x 2 ) ∈ [0, T ε max ) × R, (5.54) Q ε (t, X x 1 (t)) ⩽ max {1, Q ε 0 (x 1 )} e C(1 + t)t ∀(t, x 1 ) ∈ [0, T ε max ) × R. ( 5 
= P ε t + λ ε P ε x ⩾ C 1 ε + 1 P ε -C ∀t ∈ t1 , t2 .
(5.56)

Using that P ε ( t1 , Y x 2 ( t1 )) = min {P ε 0 (x 2 ), -1/ε} we obtain for all (t, x 2 ) ∈ [0, T ε max ) × R P ε (t, Y x 2 (t)) ⩾ min -1/ε, min{P ε 0 (x 2 ), -1/ε} e C(1+1/ε)t + ε ε+1 1 -e C(1+1/ε)t .
(5.57) Doing the same for Q ε we obtain for all (t, x 1 )

∈ [0, T ε max ) × R Q ε (t, X x 1 (t)) ⩾ min -1/ε, min{Q ε 0 (x 1 ), -1/ε} e C(1+1/ε)t + ε ε+1 1 -e C(1+1/ε)t .
(5.58) Finally, using (5.53), (5.54), (5.55), (5.57) and (5.58) we deduce that T ε max = ∞. □

The remaining of this section is devoted to obtain some uniform (on ε) estimates on the solution of (5.3) given by Theorem 5.1. Those estimate are crucial to obtain the precompactness results in next section. Lemma 5.4. Let (h 0 -h, u 0 ) ∈ D and let (h εh, u ε ) be the solution given by Theorem 5.1, then there exists a constant C = C(γ, h, E) > 0 independent on ε ⩽ ε 0 and (h 0 -h, u 0 ) such that

L -1 h ε ∂ x C ε L ∞ (R + ×R) + ∥(B ε , V ε 1 , V ε 2 , R ε )∥ L ∞ (R + ×R) + ∥A ε ∥ L ∞ (R + ,H 1 (R)) ⩽ C, (5.59) R + R (χ ε (P ε ) + χ ε (Q ε )) dx dt ⩽ ε C, (5.60) 
R + L -1 h ε ∂ x {h ε (χ ε (P ε ) + χ ε (Q ε ))} L ∞ (R) dt ⩽ ε C, (5.61) 
R + L -1 h ε ∂ x (h ε ) 2 u ε x A ε x , L -1 h ε {u ε A ε x } L ∞ (R ε ) dt ⩽ ε C (5.62) R + ∥(A ε , A ε x , B ε , V ε 1 , V ε 2 )∥ L ∞ (R) dt ⩽ ε C. (5.63)
Proof. The inequality (5.59) follows from (5.12), (5.36) and (5.40). Note that

R + R (χ ε (P ε ) + χ ε (Q ε )) dx dt ⩽ -ε {P ε ⩽-1/ε} P ε χ ε (P ε ) dx dt -ε {Q ε ⩽-1/ε} Q ε χ ε (Q ε ) dx dt.
The last inequality with (5.12) imply (5.60). Finally, we use (5.60) and Lemma 5.2 as in the proofs of (5.38), (5.39) and (5.40). We integrate on R + with respect to t to obtain (5.61), (5.62) and (5.63). □

Lemma 5.5. [Oleinik inequality]

There exists C > 0 that depends only on γ, h, g and E such that for all (t, x) ∈ (0, ∞) × R and ε ⩽ ε 0 we have

P ε (t, x) ⩽ C 1 + t -1 , Q ε (t, x) ⩽ C 1 + t -1 .
(5.64)

Proof. Let D > 0 be a constant such that 2D -1 ⩽ 16h ε ⩽ D, and A, B > 0 be the constants given in Theorem 5.1. Using Lemma 5.4, we obtain a constant M > 0 depending only on γ, h and E such that

M ⩾ sup t,x 1 
h ε (A ε x ) 2 + M ε + D A. Defining F(s) def = D s + √ 2 M D, G(s) def = F(s) + B D.
(5.65)

The goal is to prove that for all t and x we have

P ε (t, X x (t)) ⩽ G(t) and Q ε (t, Y x (t)) ⩽ G(t).
Since the proof is the same, we only prove the inequality for P ε .

Using the inequality -A ε x P ε ⩽ 2(A ε ) 2

x + (P ε ) 2 /8 and using (5.7a), we obtain d λ dt

P ε def = P ε t + λ ε P ε x ⩽ -1 16 h ε (P ε ) 2 + 1 8 h ε χ ε (P ε ) + 1 8 h ε (Q ε ) 2 + 1 h ε (A ε x ) 2 + M ε ⩽ -1 D (P ε ) 2 + D (Q ε ) 2 + 1 8 h ε χ ε (P ε ) + M -A D.
(5.66)

Let x ∈ R be fixed, we suppose that there exist t 1 > 0 such that P ε (t 1 , X x (t 1 ) = F(t 1 ) and P ε (t, X x (t) ⩾ F(t) for all t ∈ [t 1 , t 2 ]. Since P ε ⩾ 0 then χ ε (P ε ) = 0. Integrating (5.66) on the characteristics between t 1 and t ∈ [t 1 , t 2 ] we obtain

P ε (t, X x (t) ⩽ P ε (t 1 , X x (t 1 ) - t t 1 F(s) 2 D ds + A D (t -t 1 ) + B D + (M -A D) (t -t 1 ) = F(t 1 ) + D t - D t 1 -M (t -t 1 ) -2 √ 2 M D ln(t/t 1 ) + B D ⩽ G(t).
(5.67)

Since the solution (h εh, u ε ) ∈ L ∞ (R + , H 3 ), then initially we have P ε (0 + , X x (0 + ) < F(0 + ) = ∞. The inequality (5.67) shows that if P ε crosses F at some t 1 > 0, P ε remains always smaller than G for t ⩾ t 1 . This completes the proof of P ε (t, X x (t)) ⩽ G(t) for all t > 0. The proof for Q ε can be done similarly.

□ Lemma 5.6. [L 2+α estimates] For any bounded set Ω = [t 1 , t 2 ] × [a, b] ⊂ (0, ∞) × R and α ∈ (0, 1) there exists C α,Ω > 0 such that for all ε ⩽ ε 0 we have Ω |h ε t | 2+α + |h ε x | 2+α + |u ε t | 2+α + |u ε x | 2+α dx dt ⩽ C α,Ω , (5.68) 
L -1 h ε h ε x -∞ (h ε ) -3 C ε dy + 1 3 F (h ε ) x L ∞ ([t 1 ,t 2 ],W 2,2+α ([a,b]))
⩽ C α,Ω .

(5.69)

Remark 5.7. The constant C α,Ω depends also on h, γ and E but not on ε and the initial data.

Proof.

Step 1. In order to prove (5.68) we use the change of variables

τ def = t, z def = 1 2 x -∞ - ∞ x h ε (t, y) -h dy + h x,
we obtain with (5.3a) that

∂ x = h ε ∂ z , ∂ t = ∂ τ + (A ε -h ε u ε ) ∂ z , ∂ t + u ε ∂ x = ∂ τ + A ε ∂ z .
The map Φ :

R + × R → R + × R, (t, x) → Φ(t, x) = (τ, z) is bijective. Then (5.7) becomes P ε τ + A ε -3 γ (h ε ) 1/2 P ε z = -1 8 h ε (P ε ) 2 + 1 8 h ε χ ε (P ε ) + 1 8 h ε (Q ε ) 2 -1 2 h ε A ε x P ε + M ε , (5.70a) Q ε τ + A ε + 3 γ (h ε ) 1/2 Q ε z = -1 8 h ε (Q ε ) 2 + 1 8 h ε χ ε (Q ε ) + 1 8 h ε (P ε ) 2 -1 2 h ε A ε x Q ε + N ε . (5.70b)
Without loss of generality, we suppose that α = 2k/(2k + 1) with k ∈ N. Multiplying (5.70a) by (P ε ) α , using 2 α+1 = 1 + 1-α α+1 , (P ε ) α χ ε (P ε ) ⩾ 0 and (5.59) one obtains

1 8 h ε 1 -α α + 1 (P ε ) α+1 (P ε -Q ε ) -(P ε ) α Q ε (P ε -Q ε ) ⩽ (P ε ) α+1 α+1 τ + A ε -√ 3 γ (h ε ) 1/2 α+1 (P ε ) α+1 z + C |P ε | α+1 + (P ε ) α .
Doing the same with (5.7b), we obtain

1 8 h ε 1 -α α + 1 (Q ε ) α+1 (Q ε -P ε ) -(Q ε ) α P ε (Q ε -P ε ) ⩽ (Q ε ) α+1 α+1 τ + A ε + √ 3 γ (h ε ) 1/2 α+1 (Q ε ) α+1 z + C |Q ε | α+1 + (Q ε ) α .
Adding both equations yields to

1 8 h ε 1 -α α + 1 ((P ε ) α+1 -(Q ε ) α+1 ) (P ε -Q ε ) + (P ε ) α (Q ε ) α ((P ε ) 1-α -(Q ε ) 1-α ) (P ε -Q ε ) ⩽ (P ε ) α+1 + (Q ε ) α+1 α+1 τ + √ 3 γ (h ε ) 1/2 ((Q ε ) α+1 -(P ε ) α+1 ) + A ε ((Q ε ) α+1 +(P ε ) α+1 ) α+1 z + C |Q ε | α+1 + (Q ε ) α + |P ε | α+1 + (P ε ) α . (5.71) Let φ ∈ C ∞ c ((t 1 /2, t 2 + 1) × (a -1, b + 1
)) be a non negative function such that φ(t, x) = 1 on Ω. Multiplying (5.71) by φ(Φ -1 (τ, z)) and using integration by parts with (5.12) we obtain

1 -α α + 1 R + ×R φ (P ε -Q ε ) 2 ((P ε ) α + (Q ε ) α ) dx dt ⩽ R + ×R 1 -α α + 1 ((P ε ) α+1 -(Q ε ) α+1 ) (P ε -Q ε ) φ(t, x) dx dt + R + ×R (P ε ) α (Q ε ) α ((P ε ) 1-α -(Q ε ) 1-α ) (P ε -Q ε ) φ(t, x) dx dt = R + ×R 1 -α α + 1 ((P ε ) α+1 -(Q ε ) α+1 ) (P ε -Q ε ) φ(Φ -1 (τ, z)) dz dτ h + R + ×R (P ε ) α (Q ε ) α ((P ε ) 1-α -(Q ε ) 1-α ) (P ε -Q ε ) φ(Φ -1 (τ, z)) dz dτ h ⩽ 8 R + ×R C |Q ε | α+1 + (Q ε ) α + |P ε | α+1 + (P ε ) α φ dz -(P ε ) α+1 + (Q ε ) α+1 α+1 φ τ dz dτ -8 R + ×R √ 3 γ (h ε ) 1/2 ((Q ε ) α+1 -(P ε ) α+1 ) + A ε ((Q ε ) α+1 +(P ε ) α+1 ) α+1 φ z dz dτ = 8 R + ×R C |Q ε | α+1 + (Q ε ) α + |P ε | α+1 + (P ε ) α φ h ε dx dt -8 R + ×R (P ε ) α+1 + (Q ε ) α+1 α+1 h ε φ t + u ε φ x -(h ε ) -1 A ε φ x dx dt -8 R + ×R √ 3 γ (h ε ) 1/2 ((Q ε ) α+1 -(P ε ) α+1 ) + A ε ((Q ε ) α+1 +(P ε ) α+1 ) α+1 φ x dx dt ⩽ C α,Ω .
The last inequality follows from (5.12) and from the fact that φ is compactly supported. Then we have

Ω (P ε -Q ε ) 2 ((P ε ) α + (Q ε ) α ) dx dt ⩽ C α,Ω .
(5.72)

Step 2. Multiplying (5.71) by (h ε ) -1/2 we obtain

1 8 (h ε ) 3/2 1 -α α + 1 ((P ε ) α+1 -(Q ε ) α+1 ) (P ε -Q ε ) + (P ε ) α (Q ε ) α ((P ε ) 1-α -(Q ε ) 1-α ) (P ε -Q ε ) ⩽ (P ε ) α+1 + (Q ε ) α+1 (α+1) (h ε ) 1/2 τ + √ 3 γ ((Q ε ) α+1 -(P ε ) α+1 ) α+1 z + A ε ((Q ε ) α+1 +(P ε ) α+1 ) (α+1) (h ε ) 1/2 z + (h ε ) -1/2 C |Q ε | α+1 + (Q ε ) α + |P ε | α+1 + (P ε ) α + 1 2 A ε x (P ε ) α+1 + (Q ε ) α+1 (α+1) (h ε ) 3/2 - 1 8 (h ε ) 3/2 4 α+1 (P ε ) α+1 Q ε + (Q ε ) α+1 P ε . Using (5.59) one obtain 1 8 (h ε ) 3/2 1 -α α + 1 ((P ε ) α+1 + (Q ε ) α+1 ) (P ε + Q ε ) + (P ε ) α (Q ε ) α ((P ε ) 1-α + (Q ε ) 1-α ) (P ε + Q ε ) ⩽ (P ε ) α+1 + (Q ε ) α+1 (α+1) (h ε ) 1/2 τ + √ 3 γ ((Q ε ) α+1 -(P ε ) α+1 ) α+1 z + A ε ((Q ε ) α+1 +(P ε ) α+1 ) (α+1) (h ε ) 1/2 z C |Q ε | α+1 + (Q ε ) α + |P ε | α+1 + (P ε ) α .
As in the first step we obtain

Ω (P ε + Q ε ) 2 ((P ε ) α + (Q ε ) α ) dx dt ⩽ C α,Ω .
(5.73)

Summing up (5.72) and (5.73) one obtains

Ω ((P ε ) α+2 +(Q ε ) α+2 ) dx dt ⩽ C α,Ω =⇒ Ω |u ε x | 2+α + |h ε x | 2+α dx dt ⩽ C α,Ω .
Step 3. The inequality (5.68) follows directly from (5.3) and Lemma 5.4. Finally, using (5.14), (5.15), (5.21), (5.22) and (5.68) we obtain (5.69). □

Precompactness

The goal of this section is to obtain a compactness of the solution. Due to the nonlinear terms of the equations, strong precompactness is needed to pass to the limit ε → 0. The strong precompactness of (h ε ) ε and (u ε ) ε is easy to obtain. However, the strong precompactness of (P ε ) ε and (Q ε ) ε is more challenging. Several lemmas in this section are inspired by [START_REF] Coclite | Global weak solutions to a generalized hyperelastic-rod wave equation[END_REF][START_REF] Xin | On the weak solutions to a shallow water equation[END_REF][START_REF] Zhang | On oscillations of an asymptotic equation of a nonlinear variational wave equation[END_REF][START_REF] Zhang | Rarefactive solutions to a nonlinear variational wave equation of liquid crystals[END_REF][START_REF] Zhang | Weak solutions to a nonlinear variational wave equation[END_REF][START_REF] Zhang | Weak solutions to a nonlinear variational wave equation with general data[END_REF]. Along this section, Lemma A.2 is used many times without mentioning it.

We start by strong precompactness of (h ε ) ε and (u ε ) ε .

Lemma 6.1. There exist (h

-h, u) ∈ L ∞ ([0, ∞), H 1 (R)
) and a subsequence of (h ε , u ε ) ε such that we have the following convergences

(h ε -h, u ε ) → (h -h, u) in L ∞ loc ([0, ∞) × R), (h ε -h, u ε ) ⇀ (h -h, u) in H 1 ([0, T ] × R), ∀T > 0.
Proof. From the energy equation ( 5.12) we have that (

h ε -h, u ε ) is uniformly bounded in L ∞ ([0, ∞), H 1 (R))
. Then, using (5.3), and (5.59) we obtain that

∥(h ε t , u ε t )∥ L 2 ([0,T ]×R) ⩽ C T . (6.1)
The weak convergence in H 1 ([0, T ] × R) follows directly. Using the inequality

∥θ(t, •) -θ(s, •)∥ 2 L 2 (R) = R t s θ t (τ, x) dτ 2 dx ⩽ |t -s| ∥θ t ∥ 2 L 2 ([0,T ]×R) ,
with (6.1) we obtain that

lim t→s ∥u ε (t, •) -u ε (s, •)∥ L 2 (R) + lim t→s ∥h ε (t, •) -h ε (s, •)∥ L 2 (R) = 0
uniformly on ε. Then, using Theorem 5 in [START_REF] Simon | Compact sets in the space L p (0, T ; B)[END_REF] we can deduce that up to a subsequence, (h ε , u ε ) converges uniformly to (h, u) on any compact set of [0, ∞) × R when ε → 0. □ Now, we establish the weak precompactness of (P ε ) ε and (Q ε ) ε .

Lemma 6.2. There exist a subsequence of {P

ε , Q ε } ε denoted also {P ε , Q ε } ε and families of probability Young measures ν 1 t,x , ν 2 t,x on R and µ t,x on R 2 , such that for all functions f, ϕ ∈ C ∞ c (R), g ∈ C(R 2 ) with g(ξ, ζ) = O(|ξ| 2 + |ζ| 2 ) at infinity, and for all φ ∈ C ∞ c ((0, ∞) × R) we have lim ε→0 R ϕ(x) f (P ε (t, x)) dx = R ϕ(x) R f (ξ) dν 1 t,x (ξ) dx, (6.2) lim ε→0 R ϕ(x) f (Q ε (t, x)) dx = R ϕ(x) R f (ζ) dν 2 t,x (ζ) dx, (6.3)
uniformly on any compact set [0, T ] ⊂ [0, ∞), and

lim ε→0 R + ×R φ(t, x) g(P ε , Q ε ) dx dt = R + ×R φ(t, x) R 2 g(ξ, ζ) dµ t,x (ξ, ζ) dx dt. (6.4) 
Moreover, the map

(t, x) → R ξ 2 dν 1 t,x (ξ) + R ζ 2 dν 2 t,x (ζ) (6.5) belongs to L ∞ (R + , L 1 (R)), and 
µ t,x (ξ, ζ) = ν 1 t,x (ξ) ⊗ ν 2 t,x (ζ). (6.6) 
We define

g(P, Q) def = R 2 g(ξ, ζ) dµ t,x (ξ, ζ) (6.7) 
which is from (6.4) the weak limit of g(P ε , Q ε ).

Proof.

Step 1. The pointwise convergence of (6.2) is a direct corollary of Lemma A.1 with O = R and p = 2 and the energy equation (5.12). The key point to prove the uniform convergence is to show that the map

t ∈ [0, T ] → R ϕ(x) f (P ε (t, x)) dx dt (6.8)
is equicontinuous. Multiplying (5.7a) with f ′ (P ε ) one obtains

f (P ε ) t + [λ ε f (P ε )] x = 1 4 h ε (P ε + 3 Q ε ) f (P ε ) + -1 8 h ε (P ε ) 2 + 1 8 h ε χ ε (P ε ) + 1 8 h ε (Q ε ) 2 -1 2 h ε A ε x P ε + M ε f ′ (P ε ). (6.9) 
Multiplying by ϕ(x) and integrating over [

t 1 , t 2 ] × R we have R ϕ(x) [f (P ε (t 2 , x)) -f (P ε (t 1 , x))] dx = t 2 t 1 R ϕ ′ (x) λ ε f (P ε ) + 1 4 h ε ϕ(x) (P ε + 3 Q ε ) f (P ε ) dx dt + t 2 t 1 R ϕ(x) -1 8 h ε (P ε ) 2 + 1 8 h ε χ ε (P ε ) + 1 8 h ε (Q ε ) 2 -1 2 h ε A ε x P ε + M ε f ′ (P ε ) dx dt.
Using that f ∈ C ∞ c , the the energy equation (5.12), Proposition 2.4, and Lemma 5.4 we find that the map (6.8) is equicontinuous. This finishes the proof of the uniform convergence of (6.2). The same proof can be used for (6.3). Using (A.2) we deduce that the map (6.5) belongs to L ∞ (R + , L 1 (R)).

Step 2. Now, we suppose that g satisfies g(ξ, ζ) = O(|ξ| 2 + |ζ| 2 ) at infinity, then, using again Lemma A.1 with O = (0, ∞)×R and p = 2 we obtain (6.4). If g(ξ, ζ) = O(|ξ| 2 +|ζ| 2 ), let ψ be a smooth cut-off function with ψ(ξ) = 1 for |ξ| ⩽ 1 and ψ(ξ) = 0 for |ξ| ⩾ 2, then (6.10) where

lim ε→0 R + ×R φ(t, x) g k (P ε , Q ε ) dx dt = R + ×R φ(t, x) R 2 g κ (ξ, ζ) dµ t,x (ξ, ζ) dx dt,
g κ (ξ, ζ) def = g(ξ, ζ)ψ ξ κ ψ ζ κ with κ > 0.
Using Holder inequality, Lemma 5.6 with Ω = supp(φ) we obtain

R + ×R φ(t, x) (g(P ε , Q ε ) -g κ (P ε , Q ε )) dx dt ⩽ supp(φ)∩{|P ε |⩾κ, or |Q ε |⩾κ} |φ(t, x)| |g(P ε , Q ε )| dx dt ⩽ C supp(φ) |g(P ε , Q ε )| p/2 dx dt 2/p supp(φ)∩{|P ε |⩾κ, or |Q ε |⩾κ} dx dt p-2 p ⩽ C {(t, x) ∈ supp(φ), |P ε | ⩾ κ} + {(t, x) ∈ supp(φ), |Q ε | ⩾ κ} p-2 p ⩽ C κ 2-p .
where 2 < p < 3. The last inequality with (6.10) imply that we can interchange the limits κ → ∞ and ε → 0. Using that |g κ | ⩽ |g| and the dominated convergence theorem we obtain (6.4).

Step 3. It only remains to prove (6.6), for that purpose, let f ∈ C ∞ c (R), we rewrite (6.9) on the form

f (P ε ) t + [λ f (P ε )] x = [(λ -λ ε ) f (P ε )] x + 1 4 h ε (P ε + 3 Q ε ) f (P ε ) + -1 8 h ε (P ε ) 2 + 1 8 h ε χ ε (P ε ) + 1 8 h ε (Q ε ) 2 -1 2 h ε A ε x P ε + M ε f ′ (P ε ). (6.11) Lemma 6.1 implies that (λ -λ ε )f (P ε ) → 0 in L 2 loc ((0, ∞) × R) when ε → 0. This implies that [(λ -λ ε )f (P ε )] x is relatively compact in H -1 loc ((0, ∞) × R). Since f ∈ C ∞ c ( 
R), using (5.59) and the energy equation (5.12) we obtain that the remaining terms of the right-hand side of (6.11) are uniformly bounded in L 1 loc ((0, ∞) × R). Then, due to Lemma A.3 they are relatively compact in H -1 loc ((0, ∞) × R). Doing the same we can prove that for all

f, g ∈ C ∞ c (R) the sequences {[f (P ε )] t + [λ f (P ε )] x } ε , {[g(Q ε )] t + [η g(Q ε )] x } ε are relatively compact in H -1 loc ((0, ∞) × R).
Then, using Lemma A.6 (a generalised compensated compactness result) we obtain

f (P ε ) g(Q ε ) ⇀ f (P ) g(Q)
when ε → 0, (

where f (P ), g(Q) is the weak limit of (f (P ε ), g(Q ε )) defined in (6.7). Then, for any

φ ∈ C ∞ c ((0, ∞) × R) , we have R + ×R R 2 φ(t, x) f (ξ) g(ζ) dµ t,x (ξ, ζ) dx dt = lim ε→0 R + ×R φ(t, x) f (P ε ) g(Q ε ) dx dt = R + ×R φ(t, x) f (P ) g(Q) dx dt = R + ×R R 2 φ(t, x) f (ξ) g(ζ) dν 1 t,x (ξ) ⊗ ν 2 t,x (ζ) dx dt,
which implies (6.6). The proof of Lemma 6.2 is completed. □ Using (4.4), Lemma 6.2, (5.3a), (5.63) and Lemma 6.1 we can obtain the identities

u x = P + Q 2 h , h x = h 1 2 Q -P 2 √ 3 γ (6.13) 
h t + (h u) x = 0. ( 6.14) 
Now, we present some technical lemmas that are needed to obtain the strong precompactness of (P ε ) ε and (Q ε ) ε .

Lemma 6.3. As t → 0 we have

∥(h -h 0 , u -u 0 )∥ H 1 (R) → 0, (6.15) 
R P 2 -P 2 dx + R Q 2 -Q 2 dx → 0. (6.16) Proof. Defining W ε (t, x) def = g 2 (h ε -h), h ε 2 u ε , 1 √ 12 h ε P ε , 1 √ 12 h ε Q ε , t ⩾ 0, W (t, x) def = g 2 (h -h), h 2 u, 1 √ 12 h P , 1 √ 12 h Q , t > 0, W (t, x) def = g 2 (h -h), h 2 u, 1 √ 12 h P 2 , 1 √ 12 h Q 2 , t > 0, W 0 (x) def = g 2 (h 0 -h), h 0 2 u 0 , 1 √ 12 h 0 P 0 , 1 √ 12 h 0 Q 0 .
From Lemma 6.1 and Lemma 6.2 we have for all t > 0

W ε (t, •) ⇀ W (t, •) when ε → 0 in L 2 (R), P ε (t, •) 2 , Q ε (t, •) 2 ⇀ P 2 (t, •), Q 2 (t, •) when ε → 0 in D ′ (R).
This, with Jensen's inequality, (5.12) and (5.1) imply that

∥W (t)∥ 2 L 2 (R) ⩽ W (t) 2 L 2 (R) ⩽ lim inf ε→0 ∥W ε (t)∥ 2 L 2 (R) = lim inf ε→0 R E ε (t, x) dx ⩽ lim ε→0 R E ε 0 dx = R E 0 dx = ∥W 0 ∥ 2 L 2 . (6.17) 
The energy inequality (5.12) with (5.1) imply that (u

ε , P ε , Q ε ) is bounded in the space L ∞ ([0, ∞), L 2 (R)
). We multiply (5.3a) by 1, (5.3b) by (h ε ) 1/2 and (5.7a), (5.7b) by (h ε ) -1/2 we obtain

h ε t + [ h ε u ε ] x = A ε x , √ h ε u ε t + [ h ε u ε ] x -A ε x 2 (h ε ) 1/2 u ε + (h ε ) 1/2 u ε u ε x + 3 γ(h ε ) -3/2 h ε x = -(h ε ) 1/2 L -1 h ε ∂ x C ε + (h ε ) 1/2 B ε , P ε √ h ε t + λ ε P ε √ h ε x = 1 8 (h ε ) 3/2 (P ε ) 2 + χ ε (P ε ) + (Q ε ) 2 + 10 P ε Q ε -8 A ε x P ε + M ε √ h ε , Q ε √ h ε t + η ε Q ε √ h ε x = 1 8 (h ε ) 3/2 (Q ε ) 2 + χ ε (Q ε ) + (P ε ) 2 + 10 P ε Q ε -8 A ε x Q ε + N ε √ h ε .
Then for all T > 0 and for all φ ∈ H 1 (R), the map

t → R φ(x) W ε dx (6.18)
is uniformly (on t ∈ [0, T ] and ε ⩽ ε 0 ) continuous. Then, Lemma A.5 implies that

W (t, •) ⇀ W 0 when t → 0 in L 2 (R), (6.19) 
which implies that

R E 0 dx = ∥W 0 ∥ 2 L 2 ⩽ lim inf t→0 ∥W ∥ 2 L 2 .
On another hand, (6.17) implies lim sup

t→0 ∥W ∥ 2 L 2 = lim sup t→0 R E dx ⩽ R E 0 dx = ∥W 0 ∥ 2 L 2 , then lim t→0 ∥W ∥ 2 L 2 = ∥W 0 ∥ 2 L 2 = R E 0 dx, (6.20) 
which implies with (6.19) that

W (t, •) → W 0 when t → 0 in L 2 (R). (6.21)
The inequality (6.17) with (6.20) imply

lim t→0 W 2 L 2 = lim t→0 ∥W ∥ 2 L 2 = ∥W 0 ∥ 2 L 2 . (6.22)
Then (6.16) follows directly from (6.22). Using (6.21) and (6.13) we obtain the strong convergence

h -h 0 , √ h u -h 0 u 0 , h x /h -h ′ 0 /h 0 , √ h u x -h 0 u ′ 0 L 2 → 0,
as t → 0. In order to obtain (6.15), we write

u -u 0 = 1 √ h √ h u -h 0 u 0 + h 0 u 0 1 √ h -1 √ h 0 , h x -h ′ 0 = h hx √ h - h ′ 0 √ h 0 + h ′ 0 √ h 0 (h -h 0 ) , u x -u ′ 0 = 1 √ h √ h u x -h 0 u ′ 0 + h 0 u ′ 0 1 √ h -1 √ h 0 .
On the right-hand side of the previous equations, the first term converges to 0 in L 2 as t → 0. Since h, 1/h ∈ L ∞ , u 0 , h ′ 0 , u ′ 0 ∈ L 2 and h ∈ C([0, ∞) × R), the dominated convergence theorem implies that the second term goes to 0 as t → 0. This ends the proof of (6.15). □ For any κ > 0, we define

S κ (ξ) def = 1 2 ξ 2 -1 2 (ξ + κ) 2 1 ξ⩽-κ -1 2 (ξ -κ) 2 1 ξ⩾κ =      -κ (ξ + 1 2 κ), ξ ⩽ -κ, 1 2 ξ 2 , |ξ| ⩽ κ, κ (ξ -1 2 κ), ξ ⩾ κ. (6.23) T κ (ξ) def = S ′ κ (ξ) = ξ -(ξ + κ) 1 ξ⩽-κ -(ξ -κ) 1 ξ⩾κ =      -κ, ξ ⩽ -κ, ξ, |ξ| ⩽ κ, κ, ξ ⩾ κ.
(6.24) Lemma 6.4. For any κ > 0, there exists a subsequence {M ε , N ε , P ε , Q ε } ε and M ∈ L ∞ loc ((0, ∞) × R) such that, when ε → 0 we have the limits in the sense of distributions on (0, ∞) × R M ε ⇀ M , and M ε T κ (P ε ) ⇀ T κ (P ) M , (6.25)

N ε ⇀ M , and N ε T κ (Q ε ) ⇀ T κ (Q) M . (6.26)
Proof.

Step 1. We define

P ε def = L -1 h ε h ε x -∞ (h ε ) -3 C ε dy + 1 3 F (h ε ) x . (6.27) 
From (5.59), we have that

P ε is bounded in L ∞ ([t 1 , t 2 ], W 1,∞ ([a, b]))
for any b > a, t 2 > t 1 > 0. Thus, there exists

P ∈ L ∞ ([t 1 , t 2 ], W 1,∞ ([a, b]
)) such that, up to a subsequence we have P ε ⇀ P, ∂ x P ε ⇀ ∂ x P, as ε → 0 (6.28) in L p loc ((0, ∞) × R) for any p < ∞.

Step 2. For a fixed φ ∈ C ∞ c ((0, ∞) × R), the inequality (5.15), Lemma 5.4 and (5.69) imply that (1 -∂ 2

x ) {φP ε } is uniformly bounded in L 2+α loc ((0, ∞) × R) for all α ∈ [0, 1). Then, up to a subsequence we have

1 -∂ 2 x {φ P ε } ⇀ 1 -∂ 2 x φ P in L 2+α loc ((0, ∞) × R). Step 3. Since |T κ (P ε )| ⩽ κ, the convergence T κ (P ε ) ⇀ T κ (P ) is in L p loc ((0, ∞) × R) for any p ∈ (1, ∞). Then, for any ψ ∈ C ∞ c ((0, ∞) × R) we have up to a subsequence lim ε→0 (0,∞)×R ψ 1 -∂ 2 x -1 {∂ x T κ (P ε )} dx dt = (0,∞)×R ψ 1 -∂ 2 x -1 ∂ x T κ (P ) dx dt.
This limit is stronger. Indeed, replacing f in (6.9) by T κ we obtain

[T κ (P ε )] t + [λ ε T κ (P ε )] x = 1 4 h ε (P ε + 3 Q ε ) T κ (P ε ) + -1 8 h ε (P ε ) 2 + 1 8 h ε χ ε (P ε ) + 1 8 h ε (Q ε ) 2 -1 2 h ε A ε x P ε + M ε T ′ κ (P ε ).
Then, the sequences (1

-∂ 2 x ) -1 {∂ x T κ (P ε )} ε is uniformly bounded in W 1,∞ ((0, ∞) × R).
Arzela-Ascoli theorem implies that, up to a subsequence, we have the convergence

1 -∂ 2 x -1 {∂ x T κ (P ε )} -→ 1 -∂ 2 x -1 ∂ x T κ (P ) (6.29)
is uniform on any compact set of (0, ∞) × R. Doing the same proof again we obtain the uniform convergence

1 -∂ 2 x -1 {T κ (P ε )} -→ 1 -∂ 2 x -1 T κ (P ) (6.30)
on any compact set of (0, ∞) × R.

Step

4. Let φ ∈ C ∞ c ((0, ∞) × R), then (0,∞)×R T κ (P ε ) φ P ε x dx dt = (0,∞)×R T κ (P ε ) 1 -∂ 2 x -1 1 -∂ 2 x [(φ P ε ) x -φ x P ε ] dx dt = - (0,∞)×R 1 -∂ 2 x -1 {∂ x T κ (P ε )} • 1 -∂ 2 x {φ P ε } dx dt GUELMAME - (0,∞)×R 1 -∂ 2 x -1 {T κ (P ε )} • 1 -∂ 2 x {φ x P ε } dx dt.
Taking the limit ε → 0 and using Step 2, Step 3 and Lemma A.2 we obtain lim ε→0 (0,∞)×R

T κ (P ε ) φ P ε x dx dt = - (0,∞)×R 1 -∂ 2 x -1 ∂ x T κ (P ) • 1 -∂ 2 x φ P dx dt - (0,∞)×R 1 -∂ 2 x -1 T κ (P ) • 1 -∂ 2 x φ x P dx dt = (0,∞)×R
T κ (P ) φ ∂ x P dx dt. (6.31)

Step 5. Since |T κ (P ε ) | ⩽ κ, then, from (5.63) we have V 1 T κ (P ε ) ⇀ 0 and V 2 T κ (P ε ) ⇀ 0. Then, using (6.31) we obtain (6.25) with

M def = -3 h ∂ x P.
Following the same proof we obtain (6.26). □ Lemma 6.5. For all T > 0, we have

lim κ→∞ T κ (P ) -T κ P L 1 ([0,T ]×R) = lim κ→∞ T κ (Q) -T κ Q L 1 ([0,T ]×R)
= 0, (6.32)

lim κ→∞ T κ (P ) -P L 1 ([0,T ]×R) = lim κ→∞ T κ (Q) -Q L 1 ([0,T ]×R) = 0. (6.33) 
Moreover, for all κ > 0 we have

1 2
T κ (P ) -T κ P 2 ⩽ S κ (P ) -S κ P , (6.34)

1 2 T κ (Q) -T κ Q 2 ⩽ S κ (Q) -S κ Q . (6.35)
Proof. Since the proof for P and Q is the same, we only do the proof for P . From (6.24) we have

|T κ (ξ) -ξ| ⩽ |ξ + κ| 1 ξ⩽-κ + |ξ -κ| 1 ξ⩾κ ⩽ 2 |ξ| 1 κ⩽|ξ| ⩽ 2 κ ξ 2 .
Then, we have T κ (P ) -T κ P ⩽ T κ (P ) -P + T κ P -P ⩽ 2 κ P 2 + P 2 . (6.36)

Jenson's inequality imply that P 2 ⩽ P 2 . Lemma 6.2 implies that P 2 ∈ L ∞ (R + , L 1 (R)). Then (6.32) and (6.33) follow directly.

Cauchy-Schwarz inequality implies that T κ (P ) 2 ⩽ T κ (P ) 2 , then, using the definition (6.24) we obtain

T κ (P ) -T κ P 2 ⩽ T κ (P ) 2 + T κ P 2 -2 T κ P T κ (P )
= T κ (P ) 2 + T κ P 2 -2 T κ P P + 2 T κ P (P + κ) 1 P ⩽-κ + 2 T κ (P ) (P -κ) 1 P ⩾κ = T κ (P ) 2 + 2 T κ P (P + κ) 1 P ⩽-κ -P + κ 1 P ⩽-κ -T κ P 2 + 2 T κ P (P -κ) 1 P ⩾κ -P -κ 1 P ⩾κ ⩽ T κ (P ) 2 -2 κ (P + κ) 1 P ⩽-κ -P + κ 1 P ⩽-κ -T κ P 2 + 2 κ (P -κ) 1 P ⩾κ -P -κ 1 P ⩾κ , (6.37)

where the last inequality follows from Jensen's inequality with the concavity of ξ → (ξ + κ) 1 ξ⩽-κ , the convexity of ξ → (ξ -κ)

1 ξ⩾κ and -κ ⩽ T κ (ξ) ⩽ κ. Since S κ (ξ) = 1 2 T κ (ξ) 2 + κ (ξ -κ) 1 ξ⩾κ -κ (ξ + κ) 1 ξ⩽-κ we have S κ (P ) = 1
2 T κ (P ) 2 + κ (P -κ) 1 P ⩾κ -κ (P + κ) 1 P ⩽-κ , S κ P = 1 2 T κ (P ) 2 + κ P -κ 1 P ⩾κ -κ P + κ 1 P ⩽-κ . The last two identities with (6.37) imply (6.34).

□ Now we state the main result of this section. Lemma 6.6. The measures ν 1 , ν 2 given in Lemma 6.2 are Dirac measures, and

ν 1 t,x (ξ) = δ P (t,x) (ξ), ν 2 t,x (ζ) = δ Q(t,x) (ζ). (6.38) 
Proof. Since the proof is the same, we present here only the proof of ν 1 t,x (ξ) = δ P (t,x) (ξ). Note that if P 2 = P 2 then R P -ξ 2 dν 1 t,x (ξ) = 0 which implies that supp(ν 1 t,x ) = P . Since ν 1 t,x is a probability measure, necessarily ν 1 t,x = δ P . It remains then only to prove that P 2 = P 2 . The goal is to obtain an evolutionary inequality of P 2 -P 2 , then, since it is equal to zero initially, we prove that it remains zero for all time. The proof is given in several steps.

Step 1. Replacing f in (6.9) by S κ one obtains

S κ (P ε ) t + [λ ε S κ (P ε )] x = 1 4 h ε (P ε + 3 Q ε ) S κ (P ε ) + -1 8 h ε (P ε ) 2 + 1 8 h ε χ ε (P ε ) + 1 8 h ε (Q ε ) 2 -1 2 h ε A ε x P ε + M ε T κ (P ε
). Taking ε → 0, using (5.63), Lemma 6.2 and Lemma 6.4 we obtain S κ (P ) t + λ S κ (P )

x = 1 8 h 2 P S κ (P ) -P 2 T κ (P ) + 6 Q S κ (P ) + Q 2 T κ (P ) + T κ (P ) M . (6.39)
Step 2. Replacing f in (6.9) by the identity function and taking ε → 0 we obtain

P t + λ P x = 1 8 h P 2 + 6 P Q + Q 2 + M . (6.40)
Let j ε be a Friedrichs mollifier, we note P ε def = P * j ε , then we have

P ε t + λ P ε x = θ ε + 1 8 h P 2 + 6 P Q + Q 2 * j ε + M * j ε , (6.41) 
where θ ε def = λ P ε x -λ P x * j ε . Multiplying by T κ P ε and using (6.13), we obtain

S κ P ε t + λ S κ P ε x = 1 4 h (3 Q + P ) S κ P ε -1 4 h 3 Q + P P ε T κ P ε + T κ P ε 1 8 h P 2 + 6 P Q + Q 2 * j ε + T κ P ε M * j ε + T κ P ε θ ε .
Taking ε → 0 and using Lemma A. 

-P 2 + 1 8 h 6 Q S κ (P ) -S κ P + Q 2 T κ (P ) -T κ P . (6.43) 
From (6.23) and ( 6.24) we have

ξ 2 T κ (ξ) -2 ξ S κ (ξ) = ξ 2 T κ (ξ) -2 ξ S κ (ξ) + ξ 3 -ξ 3 = ξ 2 [T κ (ξ) -ξ] + ξ (ξ + κ) 2 1 ξ⩽-κ + ξ (ξ -κ) 2 1 ξ⩾κ = κ 2 [T κ (ξ) -ξ] -ξ 2 -κ 2 [(ξ + κ) 1 ξ⩽-κ + (ξ -κ) 1 ξ⩾κ ] + ξ (ξ + κ) 2 1 ξ⩽-κ + ξ (ξ -κ) 2 1 ξ⩾κ = κ 2 [T κ (ξ) -ξ] + κ (ξ + κ) 2 1 ξ⩽-κ -κ (ξ -κ) 2 1 ξ⩾κ .
Then from (6.23) we have 2 P S κ (P ) -P 2 T κ (P ) + P 2 T κ P -2 P S κ P + T κ P P

2 -P 2 = T κ P + κ (P + κ) 2 1 P ⩽-κ + T κ P -κ (P -κ) 2 1 P ⩾κ -T κ P + κ (P + κ) 2 1 P ⩽-κ -T κ P -κ (P -κ) 2 1 P ⩾κ -κ 2 T κ (P ) -T κ P -2 T κ P S κ (P ) -S κ P (6.44)
From the definition (6.24) we have

T κ P + κ (P + κ) 2 1 P ⩽-κ = T κ P -κ (P -κ) 2 1 P ⩾κ = 0 (6.45) Since T κ P ⩾ -κ, then -T κ P + κ (P + κ) 2 1 P ⩽-κ ⩽ 0. (6.46)
Let t 0 > 0 and κ ⩾ C(1 + t -1 0 ), then from Lemma 5.5, we have for all t ⩾ t 0 that P ε ⩽ κ and P ⩽ κ. Then, using the convexity of T κ on (-∞, κ) and the Jensen's inequality we obtain -κ 2 T κ (P ) -T κ P ⩽ 0, ∀t ⩾ t 0 , κ ⩾ C(1 + t -1 0 ). (6.47)

We take again t 0 > 0 and κ ⩾ C(1 + t -1 0 ), then for all φ ∈ C ∞ c ((t 0 , ∞) × R) we have (P -κ) 2 1 P ⩾κ φ dx dt = lim ε→0 (P ε -κ) 2 1 P ε ⩾κ φ dx dt = 0. (6.48)

Then, using (6.43), (6.44), (6.45), (6.46), (6.47) and (6.48) we obtain that

S κ (P ) -S κ P t + λ S κ (P ) -S κ P x ⩽ M T κ (P ) -T κ P + 1 8 h 6 Q -2 T κ P S κ (P ) -S κ P + Q 2 T κ (P ) -T κ P , (6.49) 
for any t 0 > 0, κ ⩾ C(1 + t -1 0 ) and t > t 0 .

Step 4. Let f κ (t, x) def = S κ (P ) -S κ P and f ε κ def = f κ * j ε where j ε is a Friedrichs mollifier, then, from (6.49) and Lemma A.4 we obtain

(f ε κ ) t + (λ f ε κ ) x ⩽ 1 4 h 3 Q -T κ P f ε κ + M + Q 2 8 h T κ (P ) -T κ P + θ ε , where θ ε → 0 in L 1 loc ((0, ∞) × R). Let β > 0, multiplying by h 3/2 h 3/2 f ε κ + β - 1 
/2 /2 and using (6.14) one obtains

h 3/2 f ε κ + β t + λ h 3/2 f ε κ + β x ⩽ M + Q 2 8 h Tκ(P ) -Tκ(P ) 2 √ h 3/2 f ε κ + β h 3/2 + θε + (P -Tκ(P ))h 1/2 f ε κ 8 √ h 3/2 f ε κ + β + β λx √ h 3/2 f ε κ + β , where θε def = θ ε h 3/2 h 3/2 f ε κ + β -1/2 /2 → 0 in L 1 loc ((0, ∞) × R). Taking ε → 0 we obtain h 3/2 f κ + β t + λ h 3/2 f κ + β x ⩽ M + Q 2 8 h Tκ(P ) -Tκ(P ) 2 √ h 3/2 fκ + β h 3/2 + (P -Tκ(P ))h 1/2 fκ 8 √ h 3/2 fκ + β + β λx √ h 3/2 fκ + β . (6.50) 
From (6.34) we have

M + Q 2 8 h Tκ(P ) -Tκ(P ) 2 √ h 3/2 fκ + β h 3/2 ⩽ √ 2 2 M + Q 2 8 h h 3/4 . Using that |T κ (ξ)| ⩽ |ξ| and S κ (ξ) ⩽ ξ 2 /2 we obtain (P -Tκ(P ))h 1/2 fκ 8 √ h 3/2 fκ + β ⩽ |P| √ fκ 4 h 1/4 ⩽ 1 8 h 1/4 P 2 + f κ ⩽ 1 8 h 1/4 3 2 P 2 + 1 2 P 2 .
Since the L 1 convergence implies the pointwise convergence (up to a subsequence), then, using the dominated convergence theorem with (6.32) and (6.33), we obtain

lim κ→∞ M + Q 2 8 h Tκ(P ) -Tκ(P ) 2 √ h 3/2 fκ + β h 3/2 L 1 (Ω) + lim κ→∞ (P -Tκ(P ))h 1/2 fκ 8 √ h 3/2 fκ + β L 1 (Ω) = 0 for any compact set Ω ⊂ (0, ∞) × R. Since |S κ (ξ)| ⩽ ξ 2 /2, then |f κ | ⩽ P 2 /2 + P 2 /2.
Taking κ → ∞ in (6.50) and using the dominated convergence theorem again we obtain

h 3/2 f + β t + λ h 3/2 f + β x ⩽ β λx √ h 3/2 f + β , f def = 1 2 P 2 -P 2 .
Taking now β → 0 we obtain

h 3/2 f t + λ h 3/2 f x ⩽ 0 in (t 0 , ∞) × R. (6.51) 
Step 5. Following [START_REF] Zhang | Weak solutions to a nonlinear variational wave equation with general data[END_REF], let

g def = h 3/2 f ∈ L ∞ ((0, ∞), L 2 (R)). Let also φ ∈ C ∞ c (R) satisfying φ(x) = 1 for |x| ⩽ 1 and φ(x) = 0 for |x| ⩾ 2. Then, for all n ⩾ 1, we have gφ(x/n) ∈ L ∞ ((0, ∞), L 1 (R)). Then almost all t > 0 are Lebesgue points of t → R g(t, x)φ(x/n)dx, ∀n ⩾ 1. Let t > 0 be a Lebesgue point of t → R g(t, x)φ(x/n)dx and δ ∈ (0, t/2). Let also ψ ∈ C ∞ c ((0, ∞)) satisfying ψ(t) = 0 on (0, δ/2) ∪ ( t + δ, ∞), ψ(t) = 1 on (δ, t -δ), 0 ⩽ ψ ′ (t) ⩽ C/δ, on (δ/2, δ), -ψ ′ (t) ⩾ C/δ, on ( t -δ, t + δ).
Multiplying (6.51) by φ(x/n)ψ(t), integrating on (0, ∞)×R and using integration by parts one obtains

C δ t+δ t-δ R g(t, x) φ(x/n) dx dt ⩽ - t+δ t-δ R g(t, x) φ(x/n) ψ ′ (t) dx dt ⩽ C δ δ δ/2 R g(t, x) φ(x/n) dx dt + 1 n ||λ|| L ∞ t+δ δ/2 R g(t, x) |φ ′ (x/n)| dx dt.
From (6.16), we have

lim t→0 R g(t, x) φ(x/n) dx = 0 =⇒ lim δ→0 1 δ δ δ/2 R g(t, x) φ(x/n) dx dt = 0.
Since t > 0 is a Lebesgue point of t → R g(t, x)φ(x/n)dx, then taking first δ → 0 and then n → ∞ we obtain g( t, x) = 0 a.e. ( t, x) ∈ (0, ∞) × R.

Hence P 2 = P 2 almost everywhere, which implies that ν 1 t,x (ξ) = δ P (t,x) (ξ). The proof of ν 2 t,x (ζ) = δ Q(t,x) (ζ) can be done similarly. □

The global weak solutions

We use in this section the precompactness results given in the previous section to prove that the limit (h, u) given in Lemma 6.1 is a weak solution of (2.1). All the limits in this section are up to a subsequence.

Let (h εh, u ε ) be the solution given in Theorem 5.1. Then, from Lemma 6.2, Lemma 6.6, Lemma 5.6, (4.4) and (6.13) we have that (P ε , Q ε , u ε x , h ε x ) ⇀ P , Q, u x , h x in L p loc ((0, ∞) × R), (7.1)

(P ε ) 2 , (Q ε ) 2 , (u ε x ) 2 , (h ε x ) 2 L 1 (Ω) → P 2 , Q 2 , u 2 x , h 2 x L 1 (Ω)
, for any p ∈ [2, 3) and compact set Ω ⊂ (0, ∞) × R. This implies that

(P ε , Q ε , u ε x , h ε x ) → P , Q, u x , h x in L 2 loc ((0, ∞) × R). (7.2) 
Using Lemma 5.6 and Lemma 6.1 we obtain that for all p ∈ [2, 3), we have (u ε t , h ε t ) ⇀ (u t , h t ) in L p loc ((0, ∞) × R).

(7.3) Now, using (5.63) and taking the weak limit ε → 0 in (5.3a) we obtain (2.1a). Applying L h ε on (5.3b) and multiplying by φ ∈ C ∞ c ((0, ∞) × R) we obtain

R + ×R u ε t + u ε u ε x + 3 γ (h ε ) -2 h ε x h ε φ -(h ε ) 2 h ε x φ x -1 3 (h ε ) 3 φ xx + 1 2 φ u ε A ε x dx dt = R + ×R φ x C ε + F (h ε ) -1 2 (h ε ) 2 u ε x A ε x + 1 48 h ε (χ ε (P ε ) + χ ε (Q ε )) dx dt.
From (7.2) and Lemma 6.1 we obtain the following convergence as ε → 0

h ε φ -(h ε ) 2 h ε x φ x -1 3 (h ε ) 3 φ xx → L h φ in L 2
loc ((0, ∞) × R). Using again (7.2), Lemma 6.1 and also (7.3) obtain the convergence

u ε t + u ε u ε x + 3 γ (h ε ) -2 h ε x ⇀ u t + u u x + 3 γ h -2 h
x in L 2 loc ((0, ∞) × R). We suppose that supp(φ) ⊂ [t 1 , t 2 ] × [a, b], then using the energy equation (5.12) and Lemma 5.4 we obtain

R + ×R φ x (h ε ) 2 u ε x A ε x dx dt ⩽ C φ x (h ε ) 2 u ε x L ∞ ([t 1 ,t 2 ],L 2 ([a,b])) ∥A ε x ∥ L 1 ([t 1 ,t 2 ],L ∞ ([a,b])) ⩽ ε C.
Following the same argument we obtain

R + ×R φ u ε A ε x dx dt ⩽ ε C.
Then, taking ε → 0, using Lemma A.2, (5.60) and (7.2) we obtain (3.2). Doing the proof of (6.15) for any t 0 , we obtain that (h -h, u) ∈ C r (R + , H 1 (R). Lemma 5.5 implies (3.6). The inequality (3.4) follows from Lemma 5.6, (7.1) and (7.3). Finally, the energy inequality (3.5) follows from (6.17).

1 2 g h ε -h 2 t = -g (h ε -h) (h ε u ε ) x + g (h ε -h) A ε x , 1 2 γ (h ε x ) 2 t = -γ h ε x (h ε u ε ) xx + g h ε x A ε - √ 3 γ 48 (h ε ) 1/2 h ε x (χ ε (P ε ) -χ ε (Q ε ))
. Summing up we obtain

1 2 g h ε -h 2 t + 1 2 γ (h ε x ) 2 t = g (h ε -h) A ε x -g (h ε -h) (h ε u ε ) x -γ h ε x (h ε u ε ) xx -1 96 (Q ε -P ε ) (χ ε (P ε ) -χ ε (Q ε )) . (B.1)
Defining X ε def = C ε + F (h ε ), from (5.3) we have

1 6 (h ε ) 3 (u ε x ) 2 t = 1 2 (h ε ) 2 (u ε x ) 2 A ε x -1 2 (h ε ) 2 (u ε x ) 2 (h ε u ε ) x -1 3 (h ε ) 3 u ε x (u ε u ε x ) x -γ (h ε ) 3 u ε x (h ε ) -2 h ε x x -1 3 u ε x (h ε ) 3 ∂ x L -1 h ε ∂ x X ε + 1 3 u ε x (h ε ) 3 ∂ x B ε . (B.2)
Using again (5.3) and the definition of L h ε we obtain

1 2 h ε (u ε ) 2 t = 1 2 (u ε ) 2 A ε x -1 2 (u ε ) 2 (h ε u ε ) x -h ε (u ε ) 2 u ε x -3 γ (h ε ) -1 u ε h ε x -h ε u ε L -1 h ε X ε x + h ε u ε B ε = -1 2 (u ε ) 2 (h ε u ε ) x -h ε (u ε ) 2 u ε x -3 γ (h ε ) -1 u ε h ε x -u ε X ε x -1 3 u ε ∂ x (h ε ) 3 ∂ x L -1 h ε ∂ x X ε + 1 3 u ε ∂ x (h ε ) 3 ∂ x B ε + 1 2 u ε (h ε ) 2 u ε x A ε x x -1 48 u ε [h ε (χ ε (P ε ) + χ ε (Q ε ))] x = -1 2 (u ε ) 3 h ε x -3 γ (h ε ) -1 u ε h ε x -[u ε X ε ] x -1 3 u ε (h ε ) 3 ∂ x L -1 h ε ∂ x X ε x + 1 3 u ε (h ε ) 3 ∂ x B ε x + 1 2 u ε (h ε ) 2 u ε x A ε x x -1 48 [u ε h ε (χ ε (P ε ) + χ ε (Q ε ))] x + u ε x X ε + 1 3 u ε x (h ε ) 3 ∂ x L -1 h ε ∂ x X ε -1 3 u ε x (h ε ) 3 ∂ x B ε -1 2 (h ε ) 2 (u ε x ) 2 A ε x + 1 96 (P ε + Q ε ) (χ ε (P ε ) + χ ε (Q ε )) . (B.3)
Summing up (B.2) and (B.3) one obtains

1 2 h ε (u ε ) 2 t + 1 6 (h ε ) 3 (u ε x ) 2 t = -3 γ (h ε ) -1 u ε h ε x + u ε x X ε -1 2 (h ε ) 2 (u ε x ) 2 (h ε u ε ) x -1 3 (h ε ) 3 u ε x (u ε u ε x ) x -1 2 (u ε ) 3 h ε x -[u ε X ε ] x -1 3 u ε (h ε ) 3 ∂ x L -1 h ε ∂ x X ε x + 1 3 u ε (h ε ) 3 ∂ x B ε x + 1 2 u ε (h ε ) 2 u ε x A ε x x -1 48 [u ε h ε (χ ε (P ε ) + χ ε (Q ε ))] x -γ (h ε ) 3 u ε x (h ε ) -2 h ε x x + 1 96 (P ε + Q ε ) (χ ε (P ε ) + χ ε (Q ε )) . (B.4)
Using (4.5) and (5.5) we obtain

1 3 (h ε ) 3 ∂ x B ε = 1 3 (h ε ) 3 ∂ x L -1 h ε -1 2 u ε A ε x -1 2 (h ε ) 2 u ε x A ε x + 1 48 h ε (χ ε (P ε ) + χ ε (Q ε )) + (h ε ) 3 ∂ x L -1 h ε h ε x -∞ 1 2 (h ε ) -1 u ε x A ε x - 1 48 (h ε ) 2 (χ ε (P ε ) + χ ε (Q ε )) dy = 1 3 (h ε ) 2 V ε 1 -1 2 (h ε ) 2 u ε x A ε x + 1 48 h ε (χ ε (P ε ) + χ ε (Q ε ))
. Using now (4.7) and (B.4) we obtain

1 2 h ε (u ε ) 2 t + 1 6 (h ε ) 3 (u ε x ) 2 t = -3 γ (h ε ) -1 u ε h ε x + u ε x X ε -1 2 (h ε ) 2 (u ε x ) 2 (h ε u ε ) x -1 3 (h ε ) 3 u ε x (u ε u ε x ) x -1 2 (u ε ) 3 h ε x -[u ε R ε ] x -u ε 1 2 g (h ε ) 2 -h2 -3 γ ln h ε / h x + 1 3 u ε (h ε ) 2 V ε 1 x -γ (h ε ) 3 u ε x (h ε ) -2 h ε x x + 1 96 (P ε + Q ε ) (χ ε (P ε ) + χ ε (Q ε )) . (B.5) Forward calculations lead to g (h ε -h) (h ε u ε ) x + γ h ε x (h ε u ε ) xx + 3 γ (h ε ) -1 u ε h ε x -u ε x X ε + 1 2 (h ε ) 2 (u ε x ) 2 (h ε u ε ) x + 1 3 (h ε ) 3 u ε x (u ε u ε x ) x + γ (h ε ) 3 u ε x (h ε ) -2 h ε x x = 1 2 g u ε h ε -h 2 x + 1 6 (h ε ) 3 u ε (u ε x ) 2 x + 3 γ u ε ln h ε / h x + 1 2 γ u ε (h ε x ) 2 x + γ [h ε h ε x u ε x ] x . (B.6)
Summing up (B.1), (B.5) and (B.6) we obtain

1 2 h ε (u ε ) 2 + 1 2 g h ε -h 2 + 1 6 (h ε ) 3 (u ε x ) 2 + 1 2 γ (h ε x ) 2 t + 1 2 (u ε ) 3 h ε -g (h ε -h) A ε + u ε R ε + 1 2 g u ε (h ε ) 2 -h2 -1 3 u ε (h ε ) 2 V ε 1 + 1 2 g u ε h ε -h 2 + 1 6 (h ε ) 3 u ε (u ε x ) 2 + 1 2 γ u ε (h ε x ) 2 + γ h ε h ε x u ε x x = 1 48 P ε χ ε (P ε ) + 1 48 Q ε χ ε (Q ε )
. This is (5.11).
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 1 Figure 1. Fluid domain.

  we use the change of functions (seeLemma 4.4 in [44])
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 47 Using now (5.23), (A.5), (A.7), (5.44), (5.45),(5.46) and (5.47) we obtain

  4, one obtainsS κ P t + λ S κ P x =

	1 8 h	2 P S κ P + 6 Q S κ P + T κ P P 2 -2 P	2 + Q 2	+ T κ P M . (6.42)
	Step 3. From (6.39) and (6.42) we obtain		
	S 1 8 h 2 P S		

κ (P ) -S κ P t + λ S κ (P ) -S κ P x = M T κ (P ) -T κ P κ (P ) -P 2 T κ (P ) + P 2 T κ P -2 P S κ P + T κ P P 2

Those quantities are constants along the characteristics if the right-hand side of (2.1) is zero.

Appendix A. Some classical lemmas Here, we recall simple versions of some classical lemmas that are needed in this paper. We start this section by the following lemma on the Young measures.

Lemma A.1. ( [START_REF] Joly | Focusing at a point and absorption of nonlinear oscillations[END_REF]) Let O be a subset of R n with a zero-measure boundary. For any bounded family {v ε } ε ⊂ L p (O, R N ) with p > 1 there exists a subsequence denoted also {v ε } ε and a family of probability measures on R N , {µ y , y ∈ O} such that for all f ∈ C 0 (R N ) with f (ξ) = O(|ξ| p ) at infinity and for all ϕ ∈ C ∞ c (O) we have

Also, some other results on strong and weak precompactness are needed, then we recall.

). Let also j ε be a Friedrichs mollifier, then

, where L 2 w is the L 2 space equipped with its weak topology. Lemma A.6. (Compensated compactness [START_REF] Gérard | Microlocal defect measures[END_REF])

and

are relatively compact in H -1 loc (Ω), then f n g n ⇀ f g in the sense of distributions.

Let Λ be defined such that Λf = (1+ξ 2 ) 1 2 f and let [A, B] def = AB-BA be the commutator of the operators A and B. We recall now some estimates of the H s norm of the product, the commutator and the composition of functions.

Lemma A.7. ( [START_REF] Kato | Commutator estimates and the Euler and Navier-Stokes equations[END_REF]) If r ⩾ 0, then ∃C > 0 such that

with F (0) = 0, then for any m ∈ N there exists a continuous function F , such that for all f ∈ H m we have

Appendix B. The energy equation

The goal of this section is to prove that smooth solutions of (2.1) (respectively (5.3)) satisfy the energy equation (1.5) (respectively (5.11)). Taking ε = 0, we notice that (1.5) is a particular case of (5.11). We consider ε ⩾ 0 and (h ε , u ε ) smooth solutions of (5.3). Then we have