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GLOBAL WEAK SOLUTIONS OF THE SERRE–GREEN–NAGHDI
EQUATIONS WITH SURFACE TENSION

BILLEL GUELMAME

Abstract. We consider in this paper the Serre–Green–Naghdi equations with surface
tension. Smooth solutions of this system conserve an H1-equivalent energy. We prove the
existence of global weak dissipative solutions for any relatively small-energy initial data.
We also prove that the Riemann invariants of the solutions satisfy a one-sided Oleinik
inequality.
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1. Introduction

The Euler equations are usually used to describe water waves in oceans and Channels.
Due to the difficulties to resolve the Euler equations both numerically and analytically,
several simpler approximations have been proposed in the literature for different regimes.
In the shallow water regime, the main assumption is on the ratio of the mean water depth
h̄ to the wave wave-length ι, the shallowness parameter σ = h̄2/ι2 is considered to be
small. Beside the shallowness condition, a restriction on the amplitude of the wave a can
be considered assuming that the nonlinearity (or the amplitude) parameter ϵ = a/h̄ is
small. Considering the shallow water regime with the small-amplitude condition [31, 39]
(σ ≪ 1, ϵ ≪ 1). Many equations have been derived to model the propagation of the
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waves, such as the Camassa–Holm equation [10], the Korteweg–deVries (KdV) equation
[38] and some variants of the Boussinesq equations [8, 9, 58]. Considering shallow water
with possibly large-amplitude waves (σ ≪ 1, ϵ ≈ 1), by neglecting the terms of order
O(σ) in the water waves equations, Saint-Venant obtained the Nonlinear Shallow Water
(or Saint-Venant) equations [57]. Smooth solutions of the Saint-Venant equations have a
precision of order O(tσ), where t denotes the time [39]. In order to obtain a better precision,
one can keep the O(σ) terms in the equations and only neglect the O(σ2) terms. This leads
to the Serre–Green–Naghdi equations. Those equations were firstly derived by Serre [53],
rediscovered independently by Su and Gardner [56] and another time by Green, Laws and
Naghdi [23, 24]. The Serre–Green–Naghdi equations are the most general and most precise,
but also the most complicated of the models of shallow water equations presented above.
One can always keep higher order terms in the equation (keeping terms of order O(σ2)
for example), this will lead to equations with a better precision, but with higher order
derivatives. Those equations are not accurate due to the high order derivative terms which
make their numerical resolution much slower.

The influence of the surface tension is generally neglected on water waves problems.
However, in certain cases, the effect of the surface tension is appreciable. Indeed, Longuet-
Higgins [45] showed that the surface tension is significant in certain localized regions,
and cannot be neglected near the sharp crest of the breaking wave. Other experimental
studies showed the importance of the surface tension on thin layers [21, 48, 49]. Those
experimentations have been done for different fluids including water and mercury. Various
mathematical studies of water waves equations with surface tension exist in the literature,
we refer to [2, 3, 4, 7, 12, 13, 29, 46, 52, 54, 60].

x

y

y = h(t, x)− h̄

y = −h̄

h̄
h(t, x)

u(t, x)

g

Figure 1. Fluid domain.

Considering a two-dimensional coordinate system Oxy (Figure 1) and an incompressible
fluid layer. Considering the still fluid level at y = 0, the fluid layer is bounded between
the flat bottom at y = −h̄ and a free surface y = h(t, x) − h̄, where h is the total water
depth. Assuming long waves in shallow water with possibly large-amplitude. The Serre–
Green–Naghdi system (without neglecting the surface tension influence) reads

ht + [hu ]x = 0, (1.1a)

[hu ]t +
[
hu2 + 1

2
g h2 + R

]
x

= 0, (1.1b)
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R
def
= 1

3
h3
(
−utx − uuxx + u2x

)
− γ

(
hhxx − 1

2
h2x
)
, (1.1c)

where u denotes the depth-averaged horizontal velocity, g is the gravitational acceleration
and γ > 0 is a constant (the ratio of the surface tension coefficient to the density). The clas-
sical Serre–Green–Naghdi equations (without surface tension) are recovered taking γ = 0.
The Serre–Green–Naghdi (SGNγ) equations (1.1) have been derived in [17] as a generalisa-
tion of the classical SGN equations (γ = 0). As mentioned above, the Serre–Green–Naghdi
equations are obtained in the shallow water regime by neglecting all the O(σ2) terms. An
extension of the Serre–Green–Naghdi system with surface tension (1.1) have been derived
in [37] by neglecting only the O(σ3) terms, local well-posedness and justification of the
extended system have been studied in [35, 36, 37].

Due to the appearance of time derivatives in (1.1c), it is convenient to apply the inverse
of the Sturm–Liouville operator

Lh
def
= h − 1

3
∂x h

3 ∂x, (1.2)

the system (1.1) becomes then

ht + [hu ]x = 0, (1.3a)

ut + uux + g hx = −L−1
h ∂x

{
2
3
h3 u2x −

[
γ h − 1

3
g h3

]
hxx + 1

2
γ h2x

}
. (1.3b)

When h > 0, the operator L−1
h is well defined and smoothes two derivatives (see Lemma

5.2 below). This is not enough to control the term containing hxx on the right-hand side of
(1.3b). To overcome this problem, we use the definition of Lh to rewrite the system (1.3)
in the equivalent form

ht + [hu ]x = 0, (1.4a)

ut + uux + 3 γh−2hx = −L−1
h ∂x

{
2
3
h3 u2x − 3

2
γ h2x + 1

2
g h2 − 3 γ ln(h)

}
. (1.4b)

Smooth solutions of the SGNγ equations (1.4) satisfy the energy equation (see Appendix
B)

Et + Dx = 0, (1.5)

where

E
def
= 1

2
hu2 + 1

2
g (h− h̄)2 + 1

6
h3 u2x + 1

2
γ h2x, (1.6)

D
def
= uE + u

(
R + 1

2
g h2 − 1

2
g h̄2

)
+ γ h hx ux. (1.7)

Linearising the SGNγ equations (1.4) around the constant state (h, u) = (h̄, 0) and looking
for travelling waves having the form exp {(kx− ωt) i} we obtain the dispersion relation
ω2 = gh̄k2 (1 + γk2/g) /

(
1 + h̄2k2/3

)
. Defining the Bond number B = gh̄2/γ, the SGNγ

equations are linearly dispersive if and only if B ̸= 3. In the dispersionless case (B = 3),
the SGNγ equations admit weakly singular peakon travelling wave solutions [19, 47]. More
travelling wave solutions are obtained in [41]. A mathematical study of the Serre–Green–
Naghdi equations with or without surface tension have been widely studied in the literature.
We refer to [1, 28, 30, 34, 39, 42] for the case inf h0 > 0 and to [40] for the shoreline problem
(sign(h) = 1x>x0). In [1, 30, 42], a proof of the local well-posedness of the SGN equations
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without surface tension (γ = 0) is given. Kazerani has proved in [34] the existence of
global smooth solutions of the SGN equations with viscosity for small initial data. A full
justification of the model (1.4) is given in [28, 39]. By “full justification” we mean local
well-posedness of the system and, the solution is close to the solution of the water waves
equations with the same initial data. In a recent work [25], we have obtained a precise
blow-up criterion of (1.4) (Theorem 2.3 below) and we proved that such scenario occurs
for a class of small-energy initial data (Theorem 2.6 below). Then, in general, smooth
solutions cannot exist globally in time.

This paper investigates the existence of global weak solutions of (1.4) with γ > 0. To the
best of the author’s knowledge, the existence of global weak solutions for all the different
variants of the inviscid Serre–Green–Naghdi equations has not been established before.
Here, the existence of global weak solutions is established by approximating the system
(1.4) with another system that admits global smooth solutions. We recover weak solutions
of (1.4) by taking the limit. The proof involves several steps.

We consider initial data satisfying
∫

E0 dx <
√
gγh̄2, which is propagated due to the

energy conservation (1.5). Using the fact that the energy is equivalent to ∥(h − h̄, u)∥2H1

and a Sobolev-like inequality (essentially H1 ↪→ L∞, see Proposition 2.4 below) we obtain
a uniform lower bound of h. This is important for ensuring the invertibility of the operator
Lh defined in (1.2). Smooth solutions of (1.4) blow-up in finite time due to the presence
of quadratic terms in the associated Riccati-type equations. In order to approximate
the SGNγ system, we use a cut-off to obtain a linear growth that leads to global smooth
solutions (due to Gronwall’s inequality). However, cutting-off directly as in [63, 64] violates
the energy conservation (1.5). The choice the approximated system is crucial and must
conserve the properties of the SGNγ system. In Section 4 below, we chose carefuly a suitale
approximated system that is globaly well-posed and satisfies the energy equation (5.11).
In order to pass to the limit, some uniform estimates are needed. In the previous studies
of smooth solutions of the SGN equations, some estimates of the operator L−1

h have been
obtained, those estimates usually depend on the L∞ norm of hx which may blow-up for
weak solutions. In Lemma 5.2 below, we present some new estimates of L−1

h depending only
on the L∞ norm of h and 1/h. As in [59, 63, 64], an Lp

loc estimate of (hx, ux) with p < 3 is
also needed. In our case and due to the complexity of the SGNγ equations, we have to use
a change of coordinates to obtain this estimate (see Lemma 5.6 below). We use then some
classical compactness arguments with Young measures [32] and a generalised compensated
compactness result [22] to pass to the limit. We follow in this step the techniques developed
in [59] for the Camassa-Holm equation and in [63, 64] for the variational wave equation.
The structure of the SGNγ system being more complex, we have to handle the weak limit
of some nonlinear terms that do not exist in [63, 64] (see Lemma 6.4 for example). Finally,
the global weak solutions of (1.4) are obtained by taking the limit in the approximated
system, and are shown to dissipate the energy and satisfy the one-sided Oleinik inequality
(3.6).

The existence of global solutions to the Boussinesq equations [9, 58]

ht + [hu]x = 0, ut + uux + g hx = utxx (1.8)
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have been studied in [5, 51]. Schonbek [51] regularised the conservation of the mass by
adding a defusion term, i.e., ht + [hu]x = εhxx, with ε > 0. She proved the global well-
posedness of the regularised system, and she obtained global weak solutions of (1.8) by
taking ε → 0. In [5], Amick proved that if the initial data, (h0, u0), is smooth, then the
solution, (h, u), obtained by Schonbek [51] is also smooth and is the unique smooth solution
of the Boussinesq equations (1.8).

The SGNγ equations (1.1) can be compared with the dispersionless regularised Saint-
Venant (rSV) system presented in [11]. The rSV system can be obtained replacing R in
(1.1c) by εRrSV with

RrSV
def
= h3

(
u 2
x − uxt − uuxx

)
− g h2

(
hhxx + 1

2
h 2
x

)
and ε ⩾ 0, the classical Saint-Venant system is recovered taking ε = 0. Weakly singular
shock profiles of the rSV equations are studied in [50]. In [44], Liu et al. proved the
local well-posedness of the rSV equations and identified a class of initial data such that
the corresponding solutions blow-up in finite time. The rSV system have been generalised
recently to obtain a regularisation of any unidimensional barotropic Euler (rE) system [26].
The system (1.1) can also be compared with the modified Serre–Green–Naghdi (mSGN)
equations derived in [14] to improve the dispersion relation of the classical SGN system.
The mSGN system presented in [14] can be obtained replacing R in (1.1c) by

RmSGN
def
= 1

3

(
1 + 3

2
β
)
h3
(
−utx − uuxx + u2x

)
− 1

2
β g h2

(
hhxx + 1

2
h2x
)
.

where β is a positive parameter. The rSV, rE and mSGN conserve H1-equivalent energies
and have similar properties as the SGNγ system (1.1). One may can obtain the existence
of global weak solutions of those equations following the proof given in this paper.

The study of the classical Serre–Green–Naghdi equations is more challenging. Indeed,
when γ = 0, the energy (1.6) fails to control the H1 norm of h− h̄, then, a lower bound of
h cannot be obtained. This bound is crucial to obtaining the blow-up result [25] and the
global existence in this paper for γ > 0. To the author’s knowledge, the questions of the
blow-up of smooth solutions and the existence of global solutions of the SGN equations
without surface tension are still open. However, Bae and Granero-Belinchén [6] proved
recently that for a class of periodic initial data satisfying inf h0 = 0, smooth solutions
cannot exist globally in time. For this class of initial data, it is not known if smooth
solutions exist locally in time, but if they do, a singularity must appear in finite time.

This paper is organised as follows. In Section 2 we present the local well-posedness of
(1.4) and some blow-up results. Section 3 is devoted to define weak solutions of (1.4) and
to present the main result which is the existence of global dissipative weak solutions. We
discuss in Section 4 the properties needed of the approximated system and we propose
a suitable choice. Section 5 is devoted to prove the existence of global smooth solutions
of the approximated system and to obtain some uniform estimates. We obtain strong
precompactness results in Section 6. The existence of the global weak solutions is proved
in Section 7. In Appendix A we recall some classical lemmas that are used in this paper.
Appendix B is devoted to obtain the energy equations of the approximated system and of
(1.4).



6 GUELMAME

2. Review of previous results

We consider the Serre–Green–Naghdi equations with surface tension in this form

ht + [hu ]x = 0, (2.1a)

ut + uux + 3 γh−2hx = −L−1
h ∂x {C + F (h)} , (2.1b)

u(0, x) = u0(x), h(0, x) = h0(x), (2.1c)

with

C
def
= 2

3
h3 u2x − 3

2
γ h2x, (2.2)

F (h)
def
= 1

2
g h2 − 1

2
g h̄2 − 3 γ ln(h/h̄). (2.3)

The system (2.1) is locally well-posed in the Sobolev space

Hs(R)
def
=

{
f, ∥f∥2Hs(R)

def
=

∫
R

(
1 + |ξ|2

)s |f̂(ξ)|2 dξ < ∞
}

where s ⩾ 2 is a real number.

Theorem 2.1. Let γ > 0, h̄ > 0 and s ⩾ 2, then, for any (h0 − h̄, u0) ∈ Hs(R) satisfying
infx∈R h0(x) > 0 there exists T > 0 and (h− h̄, u) ∈ C([0, T ], Hs(R))∩C1([0, T ], Hs−1(R))
a unique solution of (2.1) such that

inf
(t,x)∈ [0,T ]×R

h(t, x) > 0.

Moreover, the solution satisfies the conservation of the energy

d

dt

∫
R

(
1
2
hu2 + 1

2
g (h− h̄)2 + 1

6
h3 u2x + 1

2
γ h2x

)
dx = 0. (2.4)

Remark 2.2. The solution given in Theorem 2.1 depends continuously on the initial data,
i.e., If (h10 − h̄, u10), (h

2
0 − h̄, u20) ∈ Hs, such that h10, h

2
0 ⩾ hmin > 0, then for all t ⩽ T there

exists a constant C(∥(h2 − h̄, u2)∥L∞([0,t],Hs), ∥(h1 − h̄, u1)∥L∞([0,t],Hs)) > 0, such that∥∥(h1 − h2, u1 − u2
)∥∥

L∞([0,t],Hs−1)
⩽ C

∥∥(h10 − h20, u
1
0 − u20

)∥∥
Hs .

The proof of Theorem 2.1 is classic and omitted in this paper, see [26, 27, 28, 30, 39, 44]
for more details. It is clear from Theorem 2.1 that if the solution at time T remains in
Hs and infx h(T, x) > 0 then one can extend the interval of existence. This leads to the
blow-up criterion

Tmax < ∞ =⇒ lim inf
t→Tmax

inf
x∈R

h(t, x) = 0 or lim sup
t→Tmax

∥(h− h̄, u)∥Hs = ∞,

where Tmax is the maximum time existence of the solution. This criterion has been im-
proved in [25] to
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Theorem 2.3. ([25]) Let Tmax be the maximum time existence of the solution given by
Theorem 2.1, then

Tmax < ∞ =⇒ lim inf
t→Tmax

inf
x∈R

h(t, x) = 0 or


lim inf
t→Tmax

inf
x∈R

ux(t, x) = −∞,

and

lim sup
t→Tmax

∥hx(t, x)∥L∞ = ∞,

which is equivalent to the second criterion

Tmax < ∞ =⇒ lim sup
t→Tmax

∥ux(t, x)∥L∞ = ∞ and


lim inf
t→Tmax

inf
x∈R

h(t, x) = 0,

or

lim sup
t→Tmax

∥hx(t,x)∥L∞ = ∞.

Noting that the energy conserved in (2.4) is equivalent to the H1 norm of (h − h̄, u).
Due to the continuous embedding H1 ↪→ L∞, we can obtain a uniform (on time) estimate
of ∥(h− h̄, u)∥L∞ , and, if the initial energy is not very large compared to h̄, we can obtain
a lower bound of h. For that purpose, we present the following proposition.

Proposition 2.4. For γ > 0, h̄ > 0, let E be a positive number such that

0 < E <
√
g γ h̄2, (2.5)

Defining

hmin
def
= h̄ − (gγ)−

1
4

√
E, hmax

def
= h̄ + (gγ)−

1
4

√
E,

umax
def
= −umin

def
= 3

1
4

√
E/hmin.

Then, for any (h− h̄, u) ∈ H1 satisfying
∫

E dx ⩽ E, we have

0 < hmin ⩽ h ⩽ hmax < 2 h̄, umin ⩽ u ⩽ umax, (2.6)

Remark 2.5. Taking an initial data satisfying
∫
R

E0 dx ⩽ E, then, due to the energy
conservation (2.4) and Proposition 2.4 the depth h cannot vanish. The blow-up criteria
given in Theorem 2.3 becomes then

Tmax < ∞ =⇒ inf
[0,Tmax)×R

ux(t, x) = −∞ and lim sup
t→Tmax

∥hx(t, x)∥L∞ = ∞.

Proof of Proposition 2.4. The Young inequality 1
2
a2 + 1

2
b2 ⩾ ±ab implies that

E ⩾
∫
R

E dy ⩾
∫
R

(
1
2
g (h− h̄)2 + 1

2
γ h2x

)
dx

⩾
√
g γ

(∫ x

−∞
(h − h̄)hx dy −

∫ ∞

x

(h − h̄)hx dy

)
⩾

√
g γ |h − h̄|2,
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which implies that hmin ⩽ h ⩽ hmax. Doing the same estimates with u one obtains

E ⩾
∫
R

E dy ⩾
∫
R

(
1
2
hu2 + 1

6
h3 u2x

)
dy

⩾ 1√
3
h2min

(∫ x

−∞
uux dy −

∫ ∞

x

uux dy

)
⩾ 1√

3
h2min |u|2,

the last inequality ends the proof of umin ⩽ u ⩽ umax. □
As in [25], we can build some initial data with small initial data such that the corre-

sponding solutions blow-up in small time.

Theorem 2.6. ([25]) For any T > 0 and E satisfying (2.5), there exist

• (h0 − h̄, u0) ∈ C∞
c (R) satisfying

∫
R

E0 dx ⩽ E such that the corresponding solution
of (2.1) blows-up at finite time Tmax ⩽ T and

inf
[0,Tmax)×R

ux(t, x) = −∞, sup
[0,Tmax)×R

hx(t, x) = ∞, inf
[0,Tmax)×R

hx(t, x) > −∞.

• (h̃0 − h̄, ũ0) ∈ C∞
c (R) satisfying

∫
R

Ẽ0 dx ⩽ E such that the corresponding solution

of (2.1) blows-up at finite time T̃max ⩽ T and

inf
[0,T̃max)×R

ũx(t, x) = −∞, inf
[0,T̃max)×R

h̃x(t, x) = −∞, sup
[0,T̃max)×R

h̃x(t, x) < ∞.

3. Main results

Since smooth solutions fail to exist globally in time, even for arbitrary small-energy
initial data, we shall define weak solutions of the SGNγ system (2.1). For that purpose,
we define the domain D ⊂ H1

D
def
=

{(
h− h̄, u

)
∈ H1,

∫
R

E dx <
√
gγh̄2

}
. (3.1)

Definition 3.1. We say that (h− h̄, u) ∈ L∞(R+, H1)∩Lip(R+, L2) is a weak solution of
(2.1) if it satisfies the initial condition (2.1c) with (2.1a) in L2 and for all φ ∈ C∞

c ((0,∞)×
R) we have∫

R+×R

{{
ut + uux + 3 γ (h)−2 hx

}
Lh φ − φx {C + F (h)}

}
dx dt = 0. (3.2)

Moreover, (h(t, ·)− h̄, u(t, ·)) belongs to D for all t ⩾ 0 and (h− h̄, u) ∈ Cr(R
+, H1). More

precisely, for all t0 ⩾ 0 we have

lim
t→t0
t>t0

∥(h(t, ·) − h(t0, ·), u(t, ·) − u(t0, ·))∥H1 = 0. (3.3)

Now we can state the main result of this paper.
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Theorem 3.2. Let h̄, g, γ > 0 and (h0− h̄, u0) ∈ D, then there exist a global weak solution
(h − h̄, u) ∈ L∞([0,∞), H1(R)) ∩ C([0,∞) × R) of (2.1) in the sense of Definition 3.1.
Moreover,

• For any bounded set Ω = [t1, t2] × [a, b] ⊂ (0,∞) × R and α ∈ [0, 1) there exists
Cα,Ω > 0 such that∫

Ω

[
|ht|2+α + |hx|2+α + |ut|2+α + |ux|2+α

]
dx dt ⩽ Cα,Ω. (3.4)

• The solution dissipates the energy∫
R

E dx ⩽
∫
R

E0 dx. (3.5)

• There exists C > 0 such that the solution satisfies the Oleinik inequality

ux ±
√
3 γ h−

3
2 hx ⩽ C

(
1 + 1

t

)
, a.e. (t, x) ∈ (0,∞)×R. (3.6)

Remark 3.3. The constants Cα,Ω and C depend on h̄, γ, g and
∫
R

E0 dx but not on the
initial data.

In order to obtain global solutions of (2.1), we use a suitable approximation of the system
(2.1) that admits global smooth solutions. Using some compactness arguments and taking
the limit we recover a global weak solution of (2.1). In the next section we present the
choice of the suitable approximated system.

4. An approximated system

The blow-up of the solutions given in Theorem 2.6 is due to the Riccati-type equations.
In order to prevent the singularities from appearing, we modify slightly the Riccati-type
equations.

4.1. Riccati-type equations. Defining the Riemann invariants 1 R and S

R
def
= u + 2

√
3 γ h−

1
2 , S

def
= u − 2

√
3 γ h−

1
2 , (4.1)

λ
def
= u −

√
3 γ h−

1
2 , η

def
= u +

√
3 γ h−

1
2 . (4.2)

The system (2.1) can be rewritten as

Rt + λRx = −L−1
h ∂x {C + F (h)} , (4.3a)

St + η Sx = −L−1
h ∂x {C + F (h)} . (4.3b)

Defining

P
def
= hRx = hux −

√
3 γ h−

1
2 hx,

Q
def
= hSx = hux +

√
3 γ h−

1
2 hx,

1Those quantities are constants along the characteristics if the right-hand side of (2.1) is zero.
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we have

ux =
P + Q

2h
, hx = h

1
2
Q − P

2
√
3 γ

. (4.4)

From the definition of Lh in (1.2), we obtain that

∂x L
−1
h ∂xΨ = −3h−3Ψ + 3 ∂xL

−1
h

(
h

∫ x

−∞
h−3Ψ

)
(4.5)

for any smooth function Ψ satisfying Ψ(±∞) = 0. Then,

C + 1
3
h3 ∂xL

−1
h ∂x C = h3 ∂xL

−1
h

(
h

∫ x

−∞
h−3 C

)
. (4.6)

From (1.1c) and (2.1b) we obtain

R = −1
3
h3
[
ut + uux + 3 γh−2hx

]
x
+ C

= C + 1
3
h3 ∂xL

−1
h ∂x {C + F (h)} (4.7)

= h3 ∂x L
−1
h

(
h

∫ x

−∞
h−3 C

)
+ 1

3
h3 ∂xL

−1
h ∂x F (h). (4.8)

Let the characteristics Xx, Yx starting from x defined as the solutions of the ordinary
differential equations

d

dt
Xx(t) = η(t,Xx(t)), Xx(0) = x, (4.9)

d

dt
Yx(t) = λ(t, Yx(t)), Yx(0) = x. (4.10)

Differentiation (4.3) with respect to x, and using (4.8) we obtain the Ricatti-type equations

dλ

dt
P

def
= Pt + λPx = − 1

8h
P 2 + 1

8h
Q2 − 3h−2R, (4.11a)

dη

dt
Q

def
= Qt + η Qx = − 1

8h
Q2 + 1

8h
P 2 − 3h−2R, (4.11b)

where dλ

dt
, d

η

dt
denote the derivatives along the characteristics with the speed λ, η respectively.

We prove below that the term R is bounded. Also, we obtain a bound of the integral of
P 2 (respectively Q2) on the characteristics Xx (respectively Yx). Then, the singularities
given in Theorem 2.6 appear due to the term P 2 in (4.11a) and/or the term Q2 in (4.11b).

4.2. The choice of the approximated system. In order to obtain a system that admits
global smooth solutions, we linearise the negative quadratic terms on the right-hand side
of (4.11) on the neighbourhood of −∞. For that purpose, let ε > 0 and we define as in
[63, 64]

χε(ζ)
def
=

(
ζ +

1

ε

)2

1(−∞,− 1
ε
](ζ) =

{(
ζ + 1

ε

)2
, ζ ⩽ −1/ε,

0, ζ > −1/ε.
(4.12)
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Noting that (4.11) is like a derivative of (2.1), then, adding terms to (4.11) will involve
some primitive terms in (2.1) which are not uniquely defined and cannot vanish at ∞ and
−∞. That is why the system (2.1) will not be approximated simply by adding χε to (4.11)
as in [63, 64].

Our goal is to obtain a system on the form

ht + [hu ]x = h+,

ut + uux + 3 γh−2hx = −L−1
h ∂x {C + F (h)} + u+,

where h+, u+ are suitable terms to be chosen. As in Section 4.1, we obtain

Pt + λPx = − 1
8h
P 2 + 1

8h
χε(P ) + 1

8h
Q2 − 3h−2R + P ,

Qt + η Qx = − 1
8h
Q2 + 1

8h
χε(Q) + 1

8h
P 2 − 3h−2R + Q,

where

P
def
= h (u+)x + ux h

+ −
√
3 γ h−1/2 (h+)x + 1

2

√
3 γ h−3/2 hx h

+ − 1
8h
χε(P ),

Q
def
= h (u+)x + ux h

+ +
√

3 γ h−1/2 (h+)x − 1
2

√
3 γ h−3/2 hx h

+ − 1
8h
χε(Q).

Due to the definition (4.12), when ζ is near −∞, the term χε(ζ) − ζ2 behaves as a linear
map. This prevents singularities from appearing in finite time. From (1.6), we have

E = 1
2
hu2 + 1

2
g (h− h̄)2 + 1

12
hP 2 + 1

12
hQ2.

Then the energy equation (1.5) becomes

Et + Dx = huu+ + 1
2
u2 h+ + g

(
h − h̄

)
h+ +

(
1
6
h2 u2x + γ

2h
h2x
)
h+

+ 1
6
hP P + 1

6
hQQ + 1

48
Pχε(P ) + 1

48
Qχε(Q)

⩽ huu+ + 1
2
u2 h+ + g

(
h − h̄

)
h+ +

(
1
6
h2 u2x + γ

2h
h2x
)
h+

+ 1
6
hP P + 1

6
hQQ. (4.13)

The goal is to find h+ and u+ such that

• The right-hand side of (4.13) is a derivative of some quantity (i.e., [· · · ]x), which
will insure that

∫
R

E dx is a decreasing function of time.
• When P,Q are large, we have P = O(P ) and Q = O(Q). This insures (with
Gronwall inequality) that no singularity will appear in finite time.

We can write the right-hand side of (4.13) as T1 + T2 such that

T1 = g
(
h − h̄

)
h+ + γ hx

(
h+
)
x
+

√
3 γ

48h1/2 hx (χε(P ) − χε(Q))

= g
(
h − h̄

)
h+ +

(
h − h̄

)
x

[
γ
(
h+
)
x
+

√
3 γ

48h1/2 (χε(P ) − χε(Q))
]
.

Then, a sufficient condition to obtain T1 = [· · · ]x is

g h+ =
[
γ
(
h+
)
x
+

√
3 γ

48h1/2 (χε(P ) − χε(Q))
]
x
. (4.14)
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On another hand we have

T2 = 1
3
h3 ux

(
u+
)
x
+ 1

2
h2 u2x h

+ + 1
2
u2 h+ + huu+ − 1

48
h (χε(P ) + χε(Q))ux

=
(
1
2
uh+ + hu+

)
u +

[
1
3
h3
(
u+
)
x
+ 1

2
h2 ux h

+ − 1
48
h (χε(P ) + χε(Q))

]
ux

Then, a sufficient condition to obtain T2 = [· · · ]x is

1
2
uh+ + hu+ =

[
1
3
h3
(
u+
)
x
+ 1

2
h2 ux h

+ − 1
48
h (χε(P ) + χε(Q))

]
x
. (4.15)

In next section we prove the global existence of smooth solutions of the approximated
system, and we obtain some uniform estimates that do not depend on ε.

5. Uniform estimates

In this section, we consider γ > 0, h > 0, and h0−h̄, u0 ∈ H1 such that
∫
R

E0 dx <
√
gγh̄2.

Let also jε be a Friedrichs mollifier, we define hε0
def
= ((h0 − h̄) ∗ jε) + h̄ and uε0

def
= (u0 ∗ jε)

where (f ∗ g)(x) def
=
∫
R
f(x− x′)g(x′)dx′. Using that ∥(h0 − hε0, u0 − uε0)∥H1 → 0 as ε→ 0,

we can prove

lim
ε→0

∫
R

E ε
0 dx =

∫
R

E0 dx <
√
g γ h̄2, (5.1)

which implies that there exists ε0 > 0 such that∫
R

E ε
0 dx ⩽ E

def
= 1

2

∫
R

E0 dx + 1
2
g γ h̄2 ∀ε ⩽ ε0. (5.2)

Following the arguments of the previous section (see (4.14) and (4.15)), we consider the
system

hεt + [hε uε ]x = A ε
x , (5.3a)

uεt + uε uεx + 3 γ(hε)−2hεx = −L−1
hε ∂x {C ε + F (hε)} + Bε, (5.3b)

uε(0, ·) = uε0
def
= jε ∗ u0, hε(0, ·) = hε0

def
= jε ∗

(
h0 − h̄

)
+ h̄, (5.3c)

where

A ε def
=
(
g − γ ∂2x

)−1
{ √

3 γ

48 (hε)1/2
(χε(P

ε) − χε(Q
ε))

}
,

= G ∗
{ √

3 γ

48 (hε)1/2
(χε(P

ε) − χε(Q
ε))

}
, (5.4)

Bε def
= L−1

hε

{
−1

2
uε A ε

x + ∂x
{

1
2
(hε)2 uεx A ε

x − 1
48
hε (χε(P

ε) + χε(Q
ε))
}}

, (5.5)

with G is defined as

G
def
= 1

2 γ
exp

{
− g

γ
| · |
}
. (5.6)

Differentiation (5.3) with respect to x we obtain

dλ

dt
P ε def

= P ε
t + λεP ε

x = − 1
8hε (P

ε)2 + 1
8hεχε(P

ε) + 1
8hε (Q

ε)2 − 1
2hεA

ε
x P

ε + M ε, (5.7a)
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dη

dt
Qε def

= Qε
t + ηεQε

x = − 1
8hε (Q

ε)2 + 1
8hεχε(Q

ε) + 1
8hε (P

ε)2 − 1
2hεA

ε
xQ

ε + N ε, (5.7b)

with

M ε def
= − 3 (hε)−2Rε + V ε

1 − V ε
2 , N ε def

= − 3 (hε)−2Rε + V ε
1 + V ε

2 , (5.8)

V ε
1

def
= 1

2
hε∂xL

−1
hε

{
−uεA ε

x + hε
∫ x

−∞

[
3(hε)−1uεx A ε

x − 1
8 (hε)2

(χε(P
ε) + χε(Q

ε))
]
dy

}
, (5.9)

V ε
2

def
= g

16
(hε)−1/2G ∗

{
(hε)−1/2 (χε(P

ε) − χε(Q
ε))
}

= 3 g√
3 γ

(hε)−1/2 A ε. (5.10)

Smooth solutions of (5.3) satisfy the energy equation (see Appendix B)

E ε
t + D̃ε

x = 1
48
P εχε(P

ε) + 1
48
Qεχε(Q

ε) ⩽ 0, (5.11)

where

D̃ε def
= uεE ε +uε

(
Rε + 1

2
g (hε)2 − 1

2
g h̄2

)
+ γ hεhεxu

ε
x− 1

3
(hε)2uε V ε

1 −
√
3 γ
3

(hε)1/2 V ε
2

(
hε − h̄

)
.

The first result on this section is the global well-posedness of (5.3).

Theorem 5.1. Let h̄ > 0, (h0− h̄, u0) ∈ D and ε ∈ (0, ε0] then there exists a global smooth
solution (hε − h̄, uε) ∈ C(R+, H3(R)) ∩ C1(R+, H2(R)) of (5.3) and for all t > 0 we have∫

R

E ε dx −
∫ t

0

∫
R

1
48

(P ε χε(P
ε) + Qε χε(Q

ε)) dx dt =

∫
R

E ε
0 dx. (5.12)

Moreover, there exist A,B > 0 depending only on h̄, γ, g and E such that for any t > 0,
x2 ∈ R, and for x1 ∈ (−∞, x2) the solution of Xx1(t) = Yx2(t) (see Figure 2) we have∫ t

τ

[P ε(s,Xx1(s))]
2 ds +

∫ t

τ

[Qε(s, Yx2(s))]
2 ds ⩽ A (t − τ) + B ∀τ ∈ [0, t]. (5.13)

x

t

t

x0

s

Yx2(s)Xx1(s)

τ

x2x1

Figure 2. Characteristics.

In order to prove Theorem 5.1, we need to prove the invertibility of the operator Lh and
to obtain some estimates of its inverse.
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Lemma 5.2. Let 0 < h ∈ H1(R) + h̄ with h−1 ∈ L∞. Then the operator Lh is an

isomorphism from H2 to L2. Moreover, if ψ ∈ Clim
def
= {f ∈ C(R), f(∞), f(−∞) ∈ R},

then L−1
h ψ is well defined and there exists constants C = C

(
h̄, ∥h−1∥L∞ , ∥h∥L∞

)
> 0 such

that ∥∥L−1
h ψ

∥∥
W 1,∞ ⩽ C ∥ψ∥L∞ , (5.14)∣∣∂2x L−1

h ψ
∣∣ (x) ⩽ C (1 + |hx(x)|) ∥ψ∥L∞ ∀x ∈ R, (5.15)∥∥L−1

h ψ
∥∥
H1 ⩽ C ∥ψ∥L1 , (5.16)∥∥L−1

h ∂x ψ
∥∥
L∞ ⩽ C ∥ψ∥L1 , (5.17)∥∥∂x L−1

h ∂x ψ
∥∥
L∞ ⩽ C [∥ψ∥L1 + ∥ψ∥L∞ ] , (5.18)∥∥L−1

h ∂x ψ
∥∥
L2 ⩽ C ∥ψ∥L1 (∥hx∥L2 + 1) , (5.19)∥∥L−1

h ∂x ψ
∥∥
H1 +

∥∥L−1
h ψ

∥∥
H1 ⩽ C ∥ψ∥L2 , (5.20)∥∥L−1

h ψ
∥∥
W 1,∞ ⩽

∥∥L−1
h ψ

∥∥
H2 ⩽ C

[
1 + ∥hx∥2L2

]
∥ψ∥L2 , (5.21)∣∣∂2x L−1

h ψ
∣∣ (x) ⩽ C [(1 + ∥hx∥L2) (1 + |hx|(x)) ∥ψ∥L2 + |ψ|(x)] . (5.22)

Also, if h− h̄ ∈ H2(R) we have∥∥L−1
h ∂x φ

∥∥
H3 ⩽ C

[(
1 + ∥hx∥2L∞

)
∥φ∥H2 +

∥∥h − h̄
∥∥
H2

∥∥L−1
h ∂x φ

∥∥
W 1,∞

]
, (5.23a)∥∥L−1

h ψ
∥∥
H3 ⩽ C

[(
1 + ∥hx∥2L∞

)
∥ψ∥H2 +

∥∥h − h̄
∥∥
H2

∥∥L−1
h ψ

∥∥
W 1,∞

]
. (5.23b)

Moreover, there exists a constant C̃ = C̃(γ, g) such that∥∥∥(g − γ ∂2x
)−1

ψ
∥∥∥
H3

⩽ C̃ ∥ψ∥H1 ,
∥∥∥∂x (g − γ ∂2x

)−1
ψ
∥∥∥
H3

⩽ C̃ ∥ψ∥H2 . (5.24)

The proof of (5.14), (5.18) and (5.23) is inspired by [44].

Proof. Step 0. Let (·, ·) be the scalar product in L2. Defining the bilinear map a :
H1 ×H1 → R

a(u, v)
def
= (hu, v) + 1

3

(
h3 ux, vx

)
.

It is easy to check that a is continuous and coercive. Then, Lax–Milgram theorem insures
the existence of a continuous bijective linear operator J : H1 → H−1 satisfying

a(u, v) = ⟨J u, v⟩H−1×H1 ∀u, v ∈ H1.

If Ju ∈ L2, an integration by parts shows that (h3ux)x = hu− Ju ∈ L2 and J = Lh, this
implies that u ∈ H2 which finishes the proof that Lh is an isomorphism from H2 to L2.

Defining now C0
def
= {f ∈ C, f(±∞) = 0}, using that L2 ∩ C0 is dense in C0 one can

define L−1
h on C0. If φ is in Clim, we use the change of functions (see Lemma 4.4 in [44])

φ0(x)
def
= φ(x) − Lh

1
h̄

(
φ(−∞) + (φ(∞) − φ(−∞))

ex

1 + ex

)
∈ C0,
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the operator L−1
h can be defined as

L−1
h φ

def
= L−1

h φ0 + 1
h̄

(
φ(−∞) + (φ(∞) − φ(−∞))

ex

1 + ex

)
.

Step 1. Let

ψ = Lhu = hu − 1
3

(
h3 ux

)
x
, (5.25)

using the change of variables

z =

∫
dx

h3
, (5.26)

we obtain

ψ = hu − 1
3h3 uzz. (5.27)

The maximum principle insures that ∥u∥L∞ ⩽ C∥ψ∥L∞ which implies with (5.27) that

∥uzz∥L∞ ⩽ C∥ψ∥L∞ . (5.28)

Using Landau–Kolmogorov inequality we obtain ∥uz∥L∞ ⩽ C∥ψ∥L∞ . Using again the
change of variables (5.26) we get ∥ux∥L∞ ⩽ C∥ψ∥L∞ which completes the proof of (5.14).
The estimate (5.15) follows directly from the change of variables (5.26), (5.28) and (5.14).

Multiplying (5.25) by u and using and integration by parts one obtains

∥u∥2H1 ⩽ C ∥ψ∥L1 ∥u∥L∞ . (5.29)

The inequality (5.16) follows directly using the embedding H1 ↪→ L∞. Using (5.14) and

L−1
h ∂x ψ = −3

∫ x

−∞

(
h−3 ψ

)
+ 3L−1

h

(
h

∫ x

−∞
h−3 ψ

)
(5.30)

we obtain (5.17) and (5.18). Using the definition of Lh we obtain

L−1
h ∂x ψ = L−1

h ∂x h
3LhL

−1
h h−3 ψ

= L−1
h ∂x

[
h4L−1

h h−3 ψ − 1
3
h3 ∂x h

3 ∂x L
−1
h h−3 ψ

]
= L−1

h

[
4h3 hx L

−1
h h−3 ψ + h4 ∂x L

−1
h h−3 ψ − 1

3
∂x h

3 ∂x h
3 ∂x L

−1
h h−3 ψ

]
= L−1

h

[
4h3 hx L

−1
h h−3 ψ

]
+ h3 ∂x L

−1
h h−3 ψ. (5.31)

The inequality (5.19) follows from (5.16) and the Cauchy–Schwarz inequality.
Let Lhu = ψ + φx, then

∥u∥2H1 = (u, u) + (ux, ux)

⩽ C
[
(hu, u) + 1

3
(h3 ux, ux)

]
= C (Lhu, u) = C [(ψ, u) − (φ, ux)]

⩽ C ∥u∥H1 (∥ψ∥L2 + ∥φ∥L2) ,

which implies that

∥u∥H1 ⩽ C (∥ψ∥L2 + ∥φ∥L2) . (5.32)



16 GUELMAME

Taking ψ = 0 (respectively φ = 0) we obtain (5.20). Replacing h−3ψ by ψ in (5.31), we
multiply by h−3 and we differentiate with respect to x to obtain

∂2x L
−1
h ψ = − 3h−2 hx

[
L−1

h ∂x h
3 ψ − L−1

h

[
4h3 hx L

−1
h ψ

]]
(5.33)

+ h−3 ∂x L
−1
h ∂x h

3 ψ − h−3 ∂x L
−1
h

[
4h3 hx L

−1
h ψ

]
. (5.34)

Using (5.20) and the embedding H1 ↪→ L∞ we obtain∥∥∂2x L−1
h ψ

∥∥
L2 ⩽ C ∥hx∥L2

[∥∥L−1
h ∂x h

3 ψ
∥∥
H1 +

∥∥L−1
h

[
4h3 hxL

−1
h ψ

]∥∥
H1

]
+ C

∥∥∂x L−1
h ∂x h

3 ψ
∥∥
L2 + C

∥∥∂x L−1
h

[
4h3 hxL

−1
h ψ

]∥∥
L2

⩽ C ∥hx∥L2

[
∥ψ∥L2 + ∥hx∥L2

∥∥L−1
h ψ

∥∥
H1

]
+ C ∥ψ∥L2 + C ∥hx∥L2

∥∥L−1
h ψ

∥∥
H1

⩽ C
[
1 + ∥hx∥2L2

]
∥ψ∥L2 .

This with (5.20) imply (5.21).
Differentiating now (5.31) with respect to x, using the definition of Lh and replacing

h−3ψ by ψ we obtain

∂xL
−1
h ∂x h

3 ψ = ∂x L
−1
h

[
4h3 hx L

−1
h ψ

]
+ 3hL−1

h ψ − 3ψ.

Then (5.33) becomes

∂2x L
−1
h ψ = −3h−2 hx

[
L−1

h ∂x h
3 ψ − L−1

h

[
4h3 hxL

−1
h ψ

]]
+ 3h−2L−1

h ψ − 3h−3 ψ.

Then, using (5.20) we obtain (5.22).
Step 2. Using Lhu = ψ + φx and the Young inequality ab ⩽ 1

2α
a2 + α

2
b2 with α > 0 we

obtain

∥ux∥2H1 = (ux, ux) + (uxx, uxx)

⩽ C
[
(hux, ux) + 1

3
(h3 uxx, uxx)

]
= C

[
−(hu, uxx) − (hx u, ux) + 1

3

((
h3 ux

)
x
− (h3)xux, uxx

)]
= C

[
−(Lh u, uxx) − (hx u, ux) −

(
h2 hx ux, uxx

)]
⩽ C

[
α ∥uxx∥2L2 + 1

α
∥Lh u∥2L2 + Cα

(
1 + ∥hx∥2L∞

)
∥u∥2H1

]
.

Taking α > 0 small enough we obtain that

∥ux∥2H1 ⩽ C
[
∥Lh u∥2L2 +

(
1 + ∥hx∥2L∞

)
∥u∥2H1

]
,

then

∥ux∥H1 ⩽ C [∥Lh u∥L2 + (1 + ∥hx∥L∞) ∥u∥H1 ] .

Taking ψ = 0 (respectively φ = 0) and using (5.32), we obtain∥∥L−1
h ∂x φ

∥∥
H2 ⩽ C (1 + ∥hx∥L∞) ∥φ∥H1 ,

∥∥L−1
h ψ

∥∥
H2 ⩽ C (1 + ∥hx∥L∞) ∥ψ∥L2 . (5.35)

Let Λ be defined as Λ̂f = (1 + ξ2)
1
2 f̂ . Since Lhu = ψ + φx, we have

Lh Λ
2u = [h,Λ2]u + Λ2ψ + ∂x

{
− 1

3
[h3,Λ2]ux + Λ2φ

}
.
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Defining ũ = Λ2u, ψ̃ = [h,Λ2]u+Λ2ψ and φ̃ = −1
3
[h3,Λ2]ux+Λ2φ and using (5.32), (A.6)

we obtain

∥Λ2u∥H1 ⩽ C
[∥∥[h,Λ2]u

∥∥
L2 +

∥∥[h3,Λ2]ux
∥∥
L2 + ∥ψ∥H2 + ∥φ∥H2

]
⩽ C

[
∥hx∥L∞ ∥u∥H2 + ∥h − h̄∥H2 ∥u∥W 1,∞ + ∥ψ∥H2 + ∥φ∥H2

]
.

Taking ψ = 0 (respectively φ = 0) and using (5.32) with (5.35), we obtain (5.23).

Step 3. It remains only to prove the inequalities (5.24). Since the operator (g − γ ∂2x)
−1

is nothing but a convolution with the function G, the result follows directly using the Young
inequality. □

Lemma 5.3. Let (h − h̄, u) ∈ H1(R) such that
∫
R

E dx ⩽ E <
√
gγh̄2, then, there exists

a constant C = C(γ, h̄, E) > 0 independent on ε and h such that∥∥L−1
h ∂x C

∥∥
L∞(R)

+ ∥R∥L∞(R) ⩽ C, (5.36)∫
R

(χε(P ) + χε(Q)) dx ⩽ C, (5.37)∥∥L−1
h ∂x {h (χε(P ) + χε(Q))}

∥∥
L∞(R)

⩽ C, (5.38)∥∥(L−1
h ∂x

{
h2 ux A ε

x

}
,L−1

h {uA ε
x }
)∥∥

L∞(R)
⩽ C, (5.39)

∥A ε
x ∥L2 + ∥(A ε,A ε

x ,B
ε,V ε

1 ,V
ε
2 )∥L∞(R) ⩽ C, (5.40)

where A ε, Bε, V ε
1 and V ε

2 are defined as in (5.4), (5.5), (5.9) and (5.10) by replacing
(hε, uε) with (h, u).

Proof. From
∫
R

E dx ⩽ E we have ∥(C , P 2, Q2)∥L1 ⩽ C, then the proof of (5.36) follows
from (4.8), (5.14), (5.17) and (5.21). Since χε(λ) ⩽ λ2 we obtain (5.37). Then, (5.37) with
(5.17) imply (5.38). In remains to prove (5.40). For that purpose, we use Young inequality,
(5.4) and (5.10) to obtain

∥A ∥L∞ + ∥Ax∥L2 + ∥Ax∥L∞ + ∥V2∥L∞ ⩽ C. (5.41)

The estimates (5.14), (5.17), (5.37), (5.9), (5.41), (5.5) and the Cauchy–Schwarz inequality
imply (5.40). □

Proof of Theorem 5.1. Following [26, 27, 30, 39, 44], we can prove easily the local
existence of solutions of (5.3). Integrating the energy equation (5.11) on [0, t] × R, we
obtain (5.12).

Step 1. Defining

U ε def
= (hε − h̄, uε)⊤ A(U ε)

def
=

(
3 γ (hε)−3 0

0 hε

)
, B(U ε)

def
=

(
uε hε

3 γ (hε)−3 uε

)
,

F ε(U ε)
def
=

(
A ε

x

−L−1
hε ∂x {C ε + F (hε)} + Bε

)
,

the system (5.3) becomes

U ε
t + B(U ε)U ε

x = F ε(U ε). (5.42)
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Let (·, ·) be the scalar product in L2 and E(U ε)
def
= (Λ3 U ε, Aε Λ3 U ε). Since AεBε is a

symmetric matrix, straightforward calculations with (5.42) imply that

E(U ε)t = − 2
(
[Λ3, Bε]U ε

x, A
ε Λ3U ε

)
− 2

(
Bε Λ3U ε

x, A
ε Λ3U ε

)
+ 2

(
Λ3F ε, Aε Λ3U ε

)
+
(
Λ3U ε, Aε

t Λ
3U ε
)

= − 2
(
[Λ3, Bε]U ε

x, A
ε Λ3U ε

)
+
(
Λ3U ε, (AεBε)x Λ

3U ε
)

+ 2
(
Λ3F ε, Aε Λ3U ε

)
+
(
Λ3U ε, Aε

t Λ
3U ε
)
. (5.43)

From the definition of χε we have

|χε(ξ)| ⩽ ξ2, |χ′
ε(ξ)| ⩽ 2|ξ|, |χ′′

ε(ξ)| ⩽ 2.

Then, using the Gagliardo–Nirenberg interpolation inequality ∥fx∥2L4 ⩽ C∥f∥L∞∥fxx∥L2

with (A.5), we obtain

∥χε(P
ε)∥H2 ⩽ C

[
∥χε(P

ε)∥L2 + ∥χ′
ε(P

ε)P ε
x∥L2 + ∥χ′

ε(P
ε)P ε

xx∥L2 +
∥∥χ′′

ε(P
ε) (P ε

x)
2
∥∥
L2

]
⩽ C ∥P ε∥L∞ ∥P ε∥H2 ⩽ C ∥U ε

x∥L∞ ∥U ε∥H3 . (5.44)

The same inequality can be obtained for Qε

∥χε(Q
ε)∥H2 ⩽ C ∥U ε

x∥L∞ ∥U ε∥H3 . (5.45)

Using (5.24) and (A.5), we obtain

∥(A ε,A ε
x )∥H3 ⩽ C

[
∥P ε∥2L∞ ∥hε − h̄∥H2 + ∥(χε(P

ε), χε(Q
ε))∥H2

]
⩽ C

(
1 + ∥U ε

x∥2L∞

)
∥U ε∥H3 . (5.46)

Using (5.12), (5.17), (5.18), (5.20) and Lemma 5.3 we obtain that∥∥−L−1
hε ∂x {C ε + F (hε)} + Bε

∥∥
W 1,∞ ⩽ C

(
1 + ∥U ε

x∥2L∞

)
. (5.47)

Using now (5.23), (A.5), (A.7), (5.44), (5.45), (5.46) and (5.47) we obtain∥∥Bε − L−1
hε ∂x {C ε + F (hε)}

∥∥
H3 ⩽ P (∥U ε

x∥L∞) ∥U ε∥H3 , (5.48)

where P is a polynomial function. The last inequality with (5.46) imply that

∥F ε∥H3 ⩽ P (∥U ε
x∥L∞) ∥U ε∥H3 . (5.49)

Defining B̄
def
= B(h̄, 0), and using (A.6) one obtains∣∣([Λ3, Bε]U ε
x, A

ε Λ3U ε
) ∣∣ ⩽ C ∥Aε∥L∞∥U ε∥H3

(
∥Bε

x∥L∞∥U ε
x∥H2 + ∥Bε − B̄∥H3∥U ε

x∥L∞
)

⩽ C ∥U ε
x∥L∞ ∥U ε∥2H3 . (5.50)

Using (5.3a) and (5.40) one obtains that∣∣(Λ3U ε, (AεBε)x Λ
3U ε
)∣∣ +

∣∣(Λ3U ε, Aε
t Λ

3U ε
)∣∣ ⩽ C (∥U ε

x∥L∞ + 1) ∥U ε∥2H3 . (5.51)

Summing up (5.49), (5.50) and (5.51) we obtain

E(U ε)t ⩽ P (∥U ε
x∥L∞) ∥U ε∥H3 ⩽ P (∥U ε

x∥L∞)E(U ε),
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which implies with Gronwall inequality that

∥U ε∥H3 ⩽ C E(U ε) ⩽ C E(U ε
0 ) e

∫ t
0 P(∥Uε

x∥L∞ )ds ⩽ C ∥U ε
0∥H3 e

∫ t
0 P(∥Uε

x∥L∞ )ds. (5.52)

This implies that if T ε
max is the maximal existence time, then

T ε
max < ∞ =⇒ lim sup

t→T ε
max

∥U ε
x(t, ·)∥L∞ = ∞. (5.53)

Step 2. Defining

H ε
1

def
= 1

2

√
3 γ
(
(hε)1/2 (uε)2 + g (hε)−1/2

(
hε − h̄

)2) − uε
(
Rε + 1

2
g ((hε)2 − h̄2)

)
+ uε 1

3
(hε)2 V ε

1 +
√
3 γ
3

(hε)1/2 (h− h̄)V ε
2 ,

H ε
2

def
= 1

2

√
3 γ
(
(hε)1/2 (uε)2 + g (hε)−1/2

(
hε − h̄

)2)
+ uε

(
Rε + 1

2
g ((hε)2 − h̄2)

)
− uε 1

3
(hε)2 V ε

1 −
√
3 γ
3

(hε)1/2 (h− h̄)V ε
2 .

We note that

ηε E ε − D̃ε =
√
3 γ
6

(hε)1/2 (P ε)2 + H ε
1 , D̃ε − λε E ε =

√
3 γ
6

(hε)1/2 (Qε)2 + H ε
2 .

From Lemma 5.3 we deduce that H ε
1 and H ε

2 are bounded, then, integrating (5.11) on
the set (see Figure 2)

{(s, x), s ∈ [τ, t], Xx1(s) ⩽ x ⩽ Yx2(s)} ,
and using the divergence theorem with (5.12) one obtains (5.13) for all t ∈ [0, T ε

max).

Defining t1
def
= inf{t ⩾ 0, P ε(t, Yx2(t)) ⩾ 1} and t2 ⩽ T ε

max be the largest time such that
P ε(t, Yx2(t)) ⩾ 1 on [t1, t2]. Dividing (5.7a) by P ε and integrating on the characteristics
between t1 and t ∈ [t1, t2] we obtain with (5.13) and Lemma 5.3 that

P ε(t, Yx2(t)) ⩽ P ε(t1, Yx2(t1)) e
C(1+ t)t ∀t ∈ [t1, t2].

Using that P ε(t1, Yx2(t1)) = max {1, P ε
0 (x2)} and doing the same for Qε we obtain

P ε(t, Yx2(t)) ⩽ max {1, P ε
0 (x2)} eC(1+ t)t ∀(t, x2) ∈ [0, T ε

max)×R, (5.54)

Qε(t,Xx1(t)) ⩽ max {1, Qε
0(x1)} eC(1+ t)t ∀(t, x1) ∈ [0, T ε

max)×R. (5.55)

On another hand, we define t̃1
def
= inf{t ⩾ 0, P ε(t, Yx2(t)) ⩽ −1/ε} and t̃2 ⩽ T ε

max be the
largest time such that P ε(t, Yx2(t)) ⩽ −1/ε on [t̃1, t̃2]. Using (5.7a) and Lemma 5.3 one
obtains

dλ

dt
P ε def

= P ε
t + λε P ε

x ⩾ C
(
1
ε
+ 1

)
P ε − C ∀t ∈

[
t̃1, t̃2

]
. (5.56)

Using that P ε(t̃1, Yx2(t̃1)) = min {P ε
0 (x2),−1/ε} we obtain for all (t, x2) ∈ [0, T ε

max)×R
P ε(t, Yx2(t)) ⩾ min

{
−1/ε,min{P ε

0 (x2),−1/ε} eC(1+1/ε)t + ε
ε+1

(
1− eC(1+1/ε)t

)}
. (5.57)

Doing the same for Qε we obtain for all (t, x1) ∈ [0, T ε
max)×R

Qε(t,Xx1(t)) ⩾ min
{
−1/ε,min{Qε

0(x1),−1/ε} eC(1+1/ε)t + ε
ε+1

(
1− eC(1+1/ε)t

)}
. (5.58)

Finally, using (5.53), (5.54), (5.55), (5.57) and (5.58) we deduce that T ε
max = ∞. □
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The remaining of this section is devoted to obtain some uniform (on ε) estimates on
the solution of (5.3) given by Theorem 5.1. Those estimate are crucial to obtain the
precompactness results in next section.

Lemma 5.4. Let (h0 − h̄, u0) ∈ D and let (hε − h̄, uε) be the solution given by Theorem
5.1, then there exists a constant C = C(γ, h̄, E) > 0 independent on ε ⩽ ε0 and (h0− h̄, u0)
such that∥∥L−1

hε ∂x C ε
∥∥
L∞(R+×R)

+ ∥(Bε,V ε
1 ,V

ε
2 ,R

ε)∥L∞(R+×R) + ∥A ε∥L∞(R+,H1(R)) ⩽ C, (5.59)∫
R+

∫
R

(χε(P
ε) + χε(Q

ε)) dx dt ⩽ εC, (5.60)∫
R+

∥∥L−1
hε ∂x {hε (χε(P

ε) + χε(Q
ε))}

∥∥
L∞(R)

dt ⩽ εC, (5.61)∫
R+

∥∥(L−1
hε ∂x

{
(hε)2 uεx A ε

x

}
,L−1

hε {uε A ε
x }
)∥∥

L∞(Rε)
dt ⩽ εC (5.62)∫

R+

∥(A ε,A ε
x ,B

ε,V ε
1 ,V

ε
2 )∥L∞(R) dt ⩽ εC. (5.63)

Proof. The inequality (5.59) follows from (5.12), (5.36) and (5.40). Note that∫
R+

∫
R

(χε(P
ε) + χε(Q

ε)) dx dt ⩽ − ε

∫
{P ε⩽−1/ε}

P ε χε(P
ε) dx dt

− ε

∫
{Qε⩽−1/ε}

Qε χε(Q
ε) dx dt.

The last inequality with (5.12) imply (5.60). Finally, we use (5.60) and Lemma 5.2 as in
the proofs of (5.38), (5.39) and (5.40). We integrate on R+ with respect to t to obtain
(5.61), (5.62) and (5.63). □

Lemma 5.5. [Oleinik inequality] There exists C > 0 that depends only on γ, h̄, g and
E such that for all (t, x) ∈ (0,∞)×R and ε ⩽ ε0 we have

P ε(t, x) ⩽ C
(
1 + t−1

)
, Qε(t, x) ⩽ C

(
1 + t−1

)
. (5.64)

Proof. Let D > 0 be a constant such that 2D−1 ⩽ 16hε ⩽ D, and A,B > 0 be the
constants given in Theorem 5.1. Using Lemma 5.4, we obtain a constantM > 0 depending
only on γ, h̄ and E such that

M ⩾ sup
t,x

{
1
hε (A ε

x )
2 + M ε

}
+ DA.

Defining

F(s)
def
=

D

s
+

√
2M D, G(s)

def
= F(s) + BD. (5.65)

The goal is to prove that for all t and x we have P ε(t,Xx(t)) ⩽ G(t) and Qε(t, Yx(t)) ⩽ G(t).
Since the proof is the same, we only prove the inequality for P ε.
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Using the inequality −A ε
x P

ε ⩽ 2(A ε)2x + (P ε)2/8 and using (5.7a), we obtain

dλ

dt
P ε def

= P ε
t + λε P ε

x ⩽ − 1
16hε (P

ε)2 + 1
8hε χε(P

ε) + 1
8hε (Q

ε)2 + 1
hε (A ε

x )
2 + M ε

⩽ − 1
D
(P ε)2 + D (Qε)2 + 1

8hε χε(P
ε) + M − AD. (5.66)

Let x ∈ R be fixed, we suppose that there exist t1 > 0 such that P ε(t1, Xx(t1) = F(t1) and
P ε(t,Xx(t) ⩾ F(t) for all t ∈ [t1, t2]. Since P

ε ⩾ 0 then χε(P
ε) = 0. Integrating (5.66) on

the characteristics between t1 and t ∈ [t1, t2] we obtain

P ε(t,Xx(t) ⩽ P ε(t1, Xx(t1) −
∫ t

t1

F(s)2

D
ds + AD (t− t1) + BD + (M − AD) (t− t1)

= F(t1) +
D

t
− D

t1
− M (t− t1) − 2

√
2M D ln(t/t1) + BD

⩽ G(t). (5.67)

Since the solution (hε − h̄, uε) ∈ L∞(R+, H3), then initially we have P ε(0+, Xx(0
+) <

F(0+) = ∞. The inequality (5.67) shows that if P ε crosses F at some t1 > 0, P ε remains
always smaller than G for t ⩾ t1. This completes the proof of P ε(t,Xx(t)) ⩽ G(t) for all
t > 0. The proof for Qε can be done similarly. □

Lemma 5.6. [L2+α estimates] For any bounded set Ω = [t1, t2]× [a, b] ⊂ (0,∞)×R and
α ∈ (0, 1) there exists Cα,Ω > 0 such that for all ε ⩽ ε0 we have∫

Ω

[
|hεt |2+α + |hεx|2+α + |uεt |2+α + |uεx|2+α

]
dx dt ⩽ Cα,Ω, (5.68)∥∥∥∥L−1

hε

(
hε
∫ x

−∞
(hε)−3 C ε dy + 1

3
F (hε)x

)∥∥∥∥
L∞([t1,t2],W 2,2+α([a,b]))

⩽ Cα,Ω. (5.69)

Remark 5.7. The constant Cα,Ω depends also on h̄, γ and E but not on ε and the initial
data.

Proof. Step 1. In order to prove (5.68) we use the change of variables

τ
def
= t, z

def
= 1

2

(∫ x

−∞
−
∫ ∞

x

)(
hε(t, y) − h̄

)
dy + h̄ x,

we obtain with (5.3a) that

∂x = hε ∂z, ∂t = ∂τ + (A ε − hε uε) ∂z, ∂t + uε ∂x = ∂τ + A ε ∂z.

The map

Φ : R+ ×R→ R+ ×R, (t, x) 7→ Φ(t, x) = (τ, z)

is bijective. Then (5.7) becomes

P ε
τ +

(
A ε −

√
3 γ (hε)1/2

)
P ε
z = − 1

8hε (P
ε)2 + 1

8hε χε(P
ε) + 1

8hε (Q
ε)2

− 1
2hε A ε

x P
ε + M ε, (5.70a)
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Qε
τ +

(
A ε +

√
3 γ (hε)1/2

)
Qε

z = − 1
8hε (Q

ε)2 + 1
8hε χε(Q

ε) + 1
8hε (P

ε)2

− 1
2hε A ε

x Q
ε + N ε. (5.70b)

Without loss of generality, we suppose that α = 2k/(2k + 1) with k ∈ N. Multiplying
(5.70a) by (P ε)α, using 2

α+1
= 1 + 1−α

α+1
, (P ε)αχε(P

ε) ⩾ 0 and (5.59) one obtains

1
8hε

{
1−α
α+1

(P ε)α+1 (P ε −Qε)− (P ε)αQε (P ε −Qε)
}

⩽
(

(P ε)α+1

α+1

)
τ
+
(

A ε−
√
3 γ (hε)1/2

α+1
(P ε)α+1

)
z
+ C

(
|P ε|α+1 + (P ε)α

)
.

Doing the same with (5.7b), we obtain

1
8hε

{
1−α
α+1

(Qε)α+1 (Qε − P ε)− (Qε)α P ε (Qε − P ε)
}

⩽
(

(Qε)α+1

α+1

)
τ
+
(

A ε+
√
3 γ (hε)1/2

α+1
(Qε)α+1

)
z
+ C

(
|Qε|α+1 + (Qε)α

)
.

Adding both equations yields to

1
8hε

{
1−α
α+1

((P ε)α+1 − (Qε)α+1) (P ε −Qε) + (P ε)α(Qε)α((P ε)1−α − (Qε)1−α) (P ε −Qε)
}

⩽
(

(P ε)α+1 +(Qε)α+1

α+1

)
τ
+
(√

3 γ (hε)1/2 ((Qε)α+1−(P ε)α+1)+A ε ((Qε)α+1+(P ε)α+1)
α+1

)
z

+ C
(
|Qε|α+1 + (Qε)α + |P ε|α+1 + (P ε)α

)
. (5.71)

Let φ ∈ C∞
c ((t1/2, t2 +1)× (a− 1, b+1)) be a non negative function such that φ(t, x) = 1

on Ω. Multiplying (5.71) by φ(Φ−1(τ, z)) and using integration by parts with (5.12) we
obtain

1−α
α+1

∫
R+×R

φ (P ε −Qε)2((P ε)α + (Qε)α) dx dt

⩽
∫
R+×R

{
1−α
α+1

((P ε)α+1 − (Qε)α+1) (P ε −Qε)
}
φ(t, x) dx dt

+

∫
R+×R

{
(P ε)α(Qε)α((P ε)1−α − (Qε)1−α) (P ε −Qε)

}
φ(t, x) dx dt

=

∫
R+×R

{
1−α
α+1

((P ε)α+1 − (Qε)α+1) (P ε −Qε)
}
φ(Φ−1(τ, z))

dz dτ

h

+

∫
R+×R

{
(P ε)α(Qε)α((P ε)1−α − (Qε)1−α) (P ε −Qε)

}
φ(Φ−1(τ, z))

dz dτ

h

⩽ 8

∫
R+×R

[
C
(
|Qε|α+1 + (Qε)α + |P ε|α+1 + (P ε)α

)
φ dz −

(
(P ε)α+1 +(Qε)α+1

α+1

)
φτ

]
dz dτ

− 8

∫
R+×R

(√
3 γ (hε)1/2 ((Qε)α+1−(P ε)α+1)+A ε ((Qε)α+1+(P ε)α+1)

α+1

)
φz dz dτ

= 8

∫
R+×R

C
(
|Qε|α+1 + (Qε)α + |P ε|α+1 + (P ε)α

)
φhε dx dt
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− 8

∫
R+×R

(
(P ε)α+1 +(Qε)α+1

α+1

)
hε
(
φt + uε φx − (hε)−1 A ε φx

)
dx dt

− 8

∫
R+×R

(√
3 γ (hε)1/2 ((Qε)α+1−(P ε)α+1)+A ε ((Qε)α+1+(P ε)α+1)

α+1

)
φx dx dt

⩽ Cα,Ω.

The last inequality follows from (5.12) and from the fact that φ is compactly supported.
Then we have ∫

Ω

(P ε −Qε)2((P ε)α + (Qε)α) dx dt ⩽ Cα,Ω. (5.72)

Step 2. Multiplying (5.71) by (hε)−1/2 we obtain
1

8 (hε)3/2

{
1−α
α+1

((P ε)α+1 − (Qε)α+1) (P ε −Qε) + (P ε)α(Qε)α((P ε)1−α − (Qε)1−α) (P ε −Qε)
}

⩽
(

(P ε)α+1 +(Qε)α+1

(α+1) (hε)1/2

)
τ
+
(√

3 γ ((Qε)α+1−(P ε)α+1)
α+1

)
z
+
(

A ε ((Qε)α+1+(P ε)α+1)

(α+1) (hε)1/2

)
z

+ (hε)−1/2C
(
|Qε|α+1 + (Qε)α + |P ε|α+1 + (P ε)α

)
+ 1

2
A ε

x
(P ε)α+1 +(Qε)α+1

(α+1) (hε)3/2

− 1
8 (hε)3/2

4
α+1

{
(P ε)α+1Qε + (Qε)α+1 P ε

}
.

Using (5.59) one obtain
1

8 (hε)3/2

{
1−α
α+1

((P ε)α+1 + (Qε)α+1) (P ε +Qε) + (P ε)α(Qε)α((P ε)1−α + (Qε)1−α) (P ε +Qε)
}

⩽
(

(P ε)α+1 +(Qε)α+1

(α+1) (hε)1/2

)
τ
+
(√

3 γ ((Qε)α+1−(P ε)α+1)
α+1

)
z
+
(

A ε ((Qε)α+1+(P ε)α+1)

(α+1) (hε)1/2

)
z

C
(
|Qε|α+1 + (Qε)α + |P ε|α+1 + (P ε)α

)
.

As in the first step we obtain∫
Ω

(P ε +Qε)2((P ε)α + (Qε)α) dx dt ⩽ Cα,Ω. (5.73)

Summing up (5.72) and (5.73) one obtains∫
Ω

((P ε)α+2+(Qε)α+2) dx dt ⩽ Cα,Ω =⇒
∫
Ω

[
|uεx|2+α + |hεx|2+α

]
dx dt ⩽ Cα,Ω.

Step 3. The inequality (5.68) follows directly from (5.3) and Lemma 5.4. Finally, using
(5.14), (5.15), (5.21), (5.22) and (5.68) we obtain (5.69). □

6. Precompactness

The goal of this section is to obtain a compactness of the solution. Due to the non-
linear terms of the equations, strong precompactness is needed to pass to the limit ε→ 0.
The strong precompactness of (hε)ε and (uε)ε is easy to obtain. However, the strong
precompactness of (P ε)ε and (Qε)ε is more challenging. Several lemmas in this section are
inspired by [15, 59, 61, 62, 63, 64]. Along this section, Lemma A.2 is used many times
without mentioning it.

We start by strong precompactness of (hε)ε and (uε)ε.
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Lemma 6.1. There exist (h − h̄, u) ∈ L∞([0,∞), H1(R)) and a subsequence of (hε, uε)ε
such that we have the following convergences

(hε − h̄, uε) → (h− h̄, u) in L∞
loc([0,∞)×R),

(hε − h̄, uε) ⇀ (h− h̄, u) in H1([0, T ]×R), ∀T > 0.

Proof. From the energy equation (5.12) we have that (hε − h̄, uε) is uniformly bounded in
L∞([0,∞), H1(R)). Then, using (5.3), and (5.59) we obtain that

∥(hεt , uεt)∥L2([0,T ]×R) ⩽ CT . (6.1)

The weak convergence in H1([0, T ]×R) follows directly. Using the inequality

∥θ(t, ·) − θ(s, ·)∥2L2(R) =

∫
R

(∫ t

s

θt(τ, x) dτ

)2

dx ⩽ |t− s| ∥θt∥2L2([0,T ]×R) ,

with (6.1) we obtain that

lim
t→s

∥uε(t, ·) − uε(s, ·)∥L2(R) + lim
t→s

∥hε(t, ·) − hε(s, ·)∥L2(R) = 0

uniformly on ε. Then, using Theorem 5 in [55] we can deduce that up to a subsequence,
(hε, uε) converges uniformly to (h, u) on any compact set of [0,∞)×R when ε→ 0. □
Now, we establish the weak precompactness of (P ε)ε and (Qε)ε.

Lemma 6.2. There exist a subsequence of {P ε, Qε}ε denoted also {P ε, Qε}ε and families of
probability Young measures ν1t,x, ν

2
t,x on R and µt,x on R2, such that for all functions f, ϕ ∈

C∞
c (R), g ∈ C(R2) with g(ξ, ζ) = O(|ξ|2+ |ζ|2) at infinity, and for all φ ∈ C∞

c ((0,∞)×R)
we have

lim
ε→0

∫
R

ϕ(x) f(P ε(t, x)) dx =

∫
R

ϕ(x)

∫
R

f(ξ) dν1t,x(ξ) dx, (6.2)

lim
ε→0

∫
R

ϕ(x) f(Qε(t, x)) dx =

∫
R

ϕ(x)

∫
R

f(ζ) dν2t,x(ζ) dx, (6.3)

uniformly on any compact set [0, T ] ⊂ [0,∞), and

lim
ε→0

∫
R+×R

φ(t, x) g(P ε, Qε) dx dt =

∫
R+×R

φ(t, x)

∫
R2

g(ξ, ζ) dµt,x(ξ, ζ) dx dt. (6.4)

Moreover, the map

(t, x) 7→
∫
R

ξ2 dν1t,x(ξ) +

∫
R

ζ2 dν2t,x(ζ) (6.5)

belongs to L∞(R+, L1(R)), and

µt,x(ξ, ζ) = ν1t,x(ξ) ⊗ ν2t,x(ζ). (6.6)

We define

g(P,Q)
def
=

∫
R2

g(ξ, ζ) dµt,x(ξ, ζ) (6.7)

which is from (6.4) the weak limit of g(P ε, Qε).
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Proof. Step 1. The pointwise convergence of (6.2) is a direct corollary of Lemma A.1 with
O = R and p = 2 and the energy equation (5.12). The key point to prove the uniform
convergence is to show that the map

t ∈ [0, T ] 7→
∫
R

ϕ(x) f(P ε(t, x)) dx dt (6.8)

is equicontinuous. Multiplying (5.7a) with f ′(P ε) one obtains

f(P ε)t + [λε f(P ε)]x = 1
4hε (P

ε + 3Qε) f(P ε)

+
[
− 1

8hε (P ε)2 + 1
8hε χε(P

ε) + 1
8hε (Qε)2 − 1

2hε A ε
x P

ε + M ε
]
f ′(P ε). (6.9)

Multiplying by ϕ(x) and integrating over [t1, t2]×R we have∫
R

ϕ(x) [f(P ε(t2, x)) − f(P ε(t1, x))] dx

=

∫ t2

t1

∫
R

[
ϕ′(x)λε f(P ε) + 1

4hε ϕ(x) (P
ε + 3Qε) f(P ε)

]
dx dt

+

∫ t2

t1

∫
R

ϕ(x)
[
− 1

8hε (P ε)2 + 1
8hε χε(P

ε) + 1
8hε (Qε)2 − 1

2hε A ε
x P

ε + M ε
]
f ′(P ε) dx dt.

Using that f ∈ C∞
c , the the energy equation (5.12), Proposition 2.4, and Lemma 5.4 we find

that the map (6.8) is equicontinuous. This finishes the proof of the uniform convergence
of (6.2). The same proof can be used for (6.3). Using (A.2) we deduce that the map (6.5)
belongs to L∞(R+, L1(R)).

Step 2. Now, we suppose that g satisfies g(ξ, ζ) = O(|ξ|2 + |ζ|2) at infinity, then, using
again Lemma A.1 with O = (0,∞)×R and p = 2 we obtain (6.4). If g(ξ, ζ) = O(|ξ|2+|ζ|2),
let ψ be a smooth cut-off function with ψ(ξ) = 1 for |ξ| ⩽ 1 and ψ(ξ) = 0 for |ξ| ⩾ 2, then

lim
ε→0

∫
R+×R

φ(t, x) gk(P
ε, Qε) dx dt =

∫
R+×R

φ(t, x)

∫
R2

gκ(ξ, ζ) dµt,x(ξ, ζ) dx dt, (6.10)

where gκ(ξ, ζ)
def
= g(ξ, ζ)ψ

(
ξ
κ

)
ψ
(
ζ
κ

)
with κ > 0. Using Holder inequality, Lemma 5.6 with

Ω = supp(φ) we obtain∣∣∣∣∫
R+×R

φ(t, x) (g(P ε, Qε) − gκ(P
ε, Qε)) dx dt

∣∣∣∣
⩽
∫
supp(φ)∩{|P ε|⩾κ, or |Qε|⩾κ}

|φ(t, x)| |g(P ε, Qε)| dx dt

⩽ C

(∫
supp(φ)

|g(P ε, Qε)|p/2 dx dt

)2/p(∫
supp(φ)∩{|P ε|⩾κ, or |Qε|⩾κ}

dx dt

) p−2
p

⩽ C
[∣∣{(t, x) ∈ supp(φ), |P ε| ⩾ κ}

∣∣ +
∣∣{(t, x) ∈ supp(φ), |Qε| ⩾ κ}

∣∣] p−2
p

⩽ C κ2−p.
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where 2 < p < 3. The last inequality with (6.10) imply that we can interchange the limits
κ → ∞ and ε → 0. Using that |gκ| ⩽ |g| and the dominated convergence theorem we
obtain (6.4).

Step 3. It only remains to prove (6.6), for that purpose, let f ∈ C∞
c (R), we rewrite

(6.9) on the form

f(P ε)t + [λ f(P ε)]x = [(λ − λε) f(P ε)]x + 1
4hε (P

ε + 3Qε) f(P ε)

+
[
− 1

8hε (P ε)2 + 1
8hε χε(P

ε) + 1
8hε (Qε)2 − 1

2hε A ε
x P

ε + M ε
]
f ′(P ε). (6.11)

Lemma 6.1 implies that (λ− λε)f(P ε) → 0 in L2
loc((0,∞)×R) when ε→ 0. This implies

that [(λ− λε)f(P ε)]x is relatively compact in H−1
loc ((0,∞) × R). Since f ∈ C∞

c (R), using
(5.59) and the energy equation (5.12) we obtain that the remaining terms of the right-hand
side of (6.11) are uniformly bounded in L1

loc((0,∞) × R). Then, due to Lemma A.3 they
are relatively compact in H−1

loc ((0,∞) × R). Doing the same we can prove that for all
f, g ∈ C∞

c (R) the sequences

{[f(P ε)]t + [λ f(P ε)]x}ε , {[g(Qε)]t + [η g(Qε)]x}ε
are relatively compact in H−1

loc ((0,∞) × R). Then, using Lemma A.6 (a generalised com-
pensated compactness result) we obtain

f(P ε) g(Qε) ⇀ f(P ) g(Q) when ε→ 0, (6.12)

where
(
f(P ), g(Q)

)
is the weak limit of (f(P ε), g(Qε)) defined in (6.7). Then, for any

φ ∈ C∞
c ((0,∞)×R) , we have∫
R+×R

∫
R2

φ(t, x) f(ξ) g(ζ) dµt,x(ξ, ζ) dx dt = lim
ε→0

∫
R+×R

φ(t, x) f(P ε) g(Qε) dx dt

=

∫
R+×R

φ(t, x) f(P ) g(Q) dx dt

=

∫
R+×R

∫
R2

φ(t, x) f(ξ) g(ζ) dν1t,x(ξ) ⊗ ν2t,x(ζ) dx dt,

which implies (6.6). The proof of Lemma 6.2 is completed. □
Using (4.4), Lemma 6.2, (5.3a), (5.63) and Lemma 6.1 we can obtain the identities

ux =
P + Q

2h
, hx = h

1
2
Q − P

2
√
3 γ

(6.13)

ht + (hu)x = 0. (6.14)

Now, we present some technical lemmas that are needed to obtain the strong precompact-
ness of (P ε)ε and (Qε)ε.

Lemma 6.3. As t→ 0 we have

∥(h− h0, u− u0)∥H1(R) → 0, (6.15)∫
R

(
P 2 − P

2
)
dx +

∫
R

(
Q2 − Q

2
)
dx → 0. (6.16)
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Proof. Defining

W ε(t, x)
def
=
(√

g
2
(hε − h̄),

√
hε

2
uε, 1√

12hεP
ε, 1√

12hεQ
ε
)
, t ⩾ 0,

W (t, x)
def
=
(√

g
2
(h− h̄),

√
h
2
u, 1√

12h
P , 1√

12h
Q
)
, t > 0,

W̃ (t, x)
def
=

(√
g
2
(h− h̄),

√
h
2
u, 1√

12h

√
P 2, 1√

12h

√
Q2

)
, t > 0,

W0(x)
def
=
(√

g
2
(h0 − h̄),

√
h0

2
u0,

1√
12h0

P0,
1√
12h0

Q0

)
.

From Lemma 6.1 and Lemma 6.2 we have for all t > 0

W ε(t, ·) ⇀ W (t, ·) when ε → 0 in L2(R),(
P ε(t, ·)2, Qε(t, ·)2

)
⇀

(
P 2(t, ·), Q2(t, ·)

)
when ε → 0 in D′(R).

This, with Jensen’s inequality, (5.12) and (5.1) imply that

∥W (t)∥2L2(R) ⩽
∥∥∥W̃ (t)

∥∥∥2
L2(R)

⩽ lim inf
ε→0

∥W ε(t)∥2L2(R)

= lim inf
ε→0

∫
R

E ε(t, x) dx ⩽ lim
ε→0

∫
R

E ε
0 dx =

∫
R

E0 dx = ∥W0∥2L2 . (6.17)

The energy inequality (5.12) with (5.1) imply that (uε, P ε, Qε) is bounded in the space
L∞([0,∞), L2(R)). We multiply (5.3a) by 1, (5.3b) by (hε)1/2 and (5.7a), (5.7b) by (hε)−1/2

we obtain

hεt + [hε uε ]x = A ε
x ,[√

hεuε
]
t
+

[hε uε ]x −A ε
x

2 (hε)1/2
uε + (hε)1/2 uε uεx + 3 γ(hε)−3/2hεx = −(hε)1/2L−1

hε ∂x C ε + (hε)1/2Bε,[
P ε
√
hε

]
t
+
[
λε P ε
√
hε

]
x
= 1

8 (hε)3/2

[
(P ε)2 + χε(P

ε) + (Qε)2 + 10P εQε − 8A ε
x P

ε
]
+ M ε

√
hε ,[

Qε
√
hε

]
t
+
[
ηε Qε
√
hε

]
x
= 1

8 (hε)3/2

[
(Qε)2 + χε(Q

ε) + (P ε)2 + 10P εQε − 8A ε
x Q

ε
]
+ N ε

√
hε .

Then for all T > 0 and for all φ ∈ H1(R), the map

t 7→
∫
R

φ(x)W ε dx (6.18)

is uniformly (on t ∈ [0, T ] and ε ⩽ ε0) continuous. Then, Lemma A.5 implies that

W (t, ·) ⇀ W0 when t → 0 in L2(R), (6.19)

which implies that ∫
R

E0 dx = ∥W0∥2L2 ⩽ lim inf
t→0

∥W∥2L2 .
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On another hand, (6.17) implies

lim sup
t→0

∥W∥2L2 = lim sup
t→0

∫
R

E dx ⩽
∫
R

E0 dx = ∥W0∥2L2 ,

then

lim
t→0

∥W∥2L2 = ∥W0∥2L2 =

∫
R

E0 dx, (6.20)

which implies with (6.19) that

W (t, ·) → W0 when t → 0 in L2(R). (6.21)

The inequality (6.17) with (6.20) imply

lim
t→0

∥∥∥W̃∥∥∥2
L2

= lim
t→0

∥W∥2L2 = ∥W0∥2L2 . (6.22)

Then (6.16) follows directly from (6.22). Using (6.21) and (6.13) we obtain the strong
convergence∥∥∥(h − h0,

√
hu −

√
h0 u0, hx/h − h′0/h0,

√
hux −

√
h0 u

′
0

)∥∥∥
L2

→ 0,

as t→ 0. In order to obtain (6.15), we write

u − u0 = 1√
h

(√
hu −

√
h0 u0

)
+
√
h0 u0

(
1√
h
− 1√

h0

)
,

hx − h′0 = h
(

hx√
h
− h′

0√
h0

)
+

h′
0√
h0

(h − h0) ,

ux − u′0 = 1√
h

(√
hux −

√
h0 u

′
0

)
+
√
h0 u

′
0

(
1√
h
− 1√

h0

)
.

On the right-hand side of the previous equations, the first term converges to 0 in L2

as t → 0. Since h, 1/h ∈ L∞, u0, h
′
0, u

′
0 ∈ L2 and h ∈ C([0,∞) × R), the dominated

convergence theorem implies that the second term goes to 0 as t→ 0. This ends the proof
of (6.15). □
For any κ > 0, we define

Sκ(ξ)
def
= 1

2
ξ2 − 1

2
(ξ + κ)2 1ξ⩽−κ − 1

2
(ξ − κ)2 1ξ⩾κ =


−κ (ξ + 1

2
κ), ξ ⩽ −κ,

1
2
ξ2, |ξ| ⩽ κ,

κ (ξ − 1
2
κ), ξ ⩾ κ.

(6.23)

Tκ(ξ)
def
= S ′

κ(ξ) = ξ − (ξ + κ)1ξ⩽−κ − (ξ − κ)1ξ⩾κ =


−κ, ξ ⩽ −κ,
ξ, |ξ| ⩽ κ,

κ, ξ ⩾ κ.

(6.24)

Lemma 6.4. For any κ > 0, there exists a subsequence {M ε,N ε, P ε, Qε}ε and M̃ ∈
L∞
loc((0,∞)×R) such that, when ε→ 0 we have the limits in the sense of distributions on

(0,∞)×R

M ε ⇀ M̃ , and M ε Tκ (P
ε) ⇀ Tκ (P ) M̃ , (6.25)
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N ε ⇀ M̃ , and N ε Tκ (Q
ε) ⇀ Tκ (Q) M̃ . (6.26)

Proof. Step 1. We define

Pε def
= L−1

hε

(
hε
∫ x

−∞
(hε)−3 C ε dy + 1

3
F (hε)x

)
. (6.27)

From (5.59), we have that Pε is bounded in L∞([t1, t2],W
1,∞([a, b])) for any b > a, t2 >

t1 > 0. Thus, there exists P̃ ∈ L∞([t1, t2],W
1,∞([a, b])) such that, up to a subsequence we

have
Pε ⇀ P̃, ∂xP

ε ⇀ ∂xP̃, as ε→ 0 (6.28)

in Lp
loc((0,∞)×R) for any p <∞.

Step 2. For a fixed φ ∈ C∞
c ((0,∞)× R), the inequality (5.15), Lemma 5.4 and (5.69)

imply that (1− ∂2x) {φPε} is uniformly bounded in L2+α
loc ((0,∞) × R) for all α ∈ [0, 1).

Then, up to a subsequence we have(
1− ∂2x

)
{φPε} ⇀

(
1− ∂2x

) {
φ P̃

}
in L2+α

loc ((0,∞)×R).
Step 3. Since |Tκ(P ε)| ⩽ κ, the convergence Tκ(P

ε)⇀ Tκ(P ) is in L
p
loc((0,∞)×R) for

any p ∈ (1,∞). Then, for any ψ ∈ C∞
c ((0,∞)×R) we have up to a subsequence

lim
ε→0

∫
(0,∞)×R

ψ
(
1− ∂2x

)−1 {∂xTκ(P ε)} dx dt =

∫
(0,∞)×R

ψ
(
1− ∂2x

)−1
{
∂xTκ(P )

}
dx dt.

This limit is stronger. Indeed, replacing f in (6.9) by Tκ we obtain

[Tκ(P
ε)]t + [λε Tκ(P

ε)]x = 1
4hε (P

ε + 3Qε)Tκ(P
ε)

+
[
− 1

8hε (P ε)2 + 1
8hε χε(P

ε) + 1
8hε (Qε)2 − 1

2hε A ε
x P

ε + M ε
]
T ′
κ(P

ε).

Then, the sequences
{
(1− ∂2x)

−1 {∂xTκ(P ε)}
}

ε
is uniformly bounded inW 1,∞((0,∞)×R).

Arzela–Ascoli theorem implies that, up to a subsequence, we have the convergence(
1− ∂2x

)−1 {∂xTκ(P ε)} −→
(
1− ∂2x

)−1
{
∂xTκ(P )

}
(6.29)

is uniform on any compact set of (0,∞) × R. Doing the same proof again we obtain the
uniform convergence (

1− ∂2x
)−1 {Tκ(P ε)} −→

(
1− ∂2x

)−1
{
Tκ(P )

}
(6.30)

on any compact set of (0,∞)×R.
Step 4. Let φ ∈ C∞

c ((0,∞)×R), then∫
(0,∞)×R

Tκ(P
ε)φPε

x dx dt =

∫
(0,∞)×R

Tκ(P
ε)
(
1− ∂2x

)−1 (
1− ∂2x

)
[(φPε)x − φx Pε] dx dt

= −
∫
(0,∞)×R

(
1− ∂2x

)−1 {∂x Tκ(P ε)} ·
(
1− ∂2x

)
{φPε} dx dt
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−
∫
(0,∞)×R

(
1− ∂2x

)−1 {Tκ(P ε)} ·
(
1− ∂2x

)
{φx Pε} dx dt.

Taking the limit ε→ 0 and using Step 2, Step 3 and Lemma A.2 we obtain

lim
ε→0

∫
(0,∞)×R

Tκ(P
ε)φPε

x dx dt = −
∫
(0,∞)×R

(
1− ∂2x

)−1
{
∂x Tκ(P )

}
·
(
1− ∂2x

) {
φ P̃

}
dx dt

−
∫
(0,∞)×R

(
1− ∂2x

)−1
{
Tκ(P )

}
·
(
1− ∂2x

) {
φx P̃

}
dx dt

=

∫
(0,∞)×R

Tκ(P )φ∂x P̃ dx dt. (6.31)

Step 5. Since |Tκ (P ε) | ⩽ κ, then, from (5.63) we have V1Tκ (P
ε)⇀ 0 and V2Tκ (P

ε)⇀ 0.
Then, using (6.31) we obtain (6.25) with

M̃
def
= −3h ∂x P̃.

Following the same proof we obtain (6.26). □

Lemma 6.5. For all T > 0, we have

lim
κ→∞

∥∥∥Tκ(P ) − Tκ
(
P
)∥∥∥

L1([0,T ]×R)
= lim

κ→∞

∥∥∥Tκ(Q) − Tκ
(
Q
)∥∥∥

L1([0,T ]×R)
= 0, (6.32)

lim
κ→∞

∥∥∥Tκ(P ) − P
∥∥∥
L1([0,T ]×R)

= lim
κ→∞

∥∥∥Tκ(Q) − Q
∥∥∥
L1([0,T ]×R)

= 0. (6.33)

Moreover, for all κ > 0 we have

1
2

(
Tκ(P ) − Tκ

(
P
))2

⩽ Sκ(P ) − Sκ

(
P
)
, (6.34)

1
2

(
Tκ(Q) − Tκ

(
Q
))2

⩽ Sκ(Q) − Sκ

(
Q
)
. (6.35)

Proof. Since the proof for P and Q is the same, we only do the proof for P . From (6.24)
we have

|Tκ (ξ) − ξ| ⩽ |ξ + κ| 1ξ⩽−κ + |ξ − κ| 1ξ⩾κ ⩽ 2 |ξ| 1κ⩽|ξ| ⩽ 2
κ
ξ2.

Then, we have∣∣∣Tκ (P ) − Tκ
(
P
)∣∣∣ ⩽

∣∣∣Tκ (P ) − P
∣∣∣ +

∣∣Tκ (P) − P
∣∣ ⩽ 2

κ

(
P 2 + P

2
)
. (6.36)

Jenson’s inequality imply that P
2
⩽ P 2. Lemma 6.2 implies that P 2 ∈ L∞(R+, L1(R)).

Then (6.32) and (6.33) follow directly.

Cauchy–Schwarz inequality implies that Tκ(P )
2
⩽ Tκ(P )2, then, using the definition

(6.24) we obtain(
Tκ(P ) − Tκ

(
P
))2

⩽ Tκ(P )2 + Tκ
(
P
)2 − 2Tκ

(
P
)
Tκ(P )

= Tκ(P )2 + Tκ
(
P
)2 − 2Tκ

(
P
)
P + 2Tκ

(
P
)
(P + κ) 1P⩽−κ
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+ 2Tκ(P ) (P − κ) 1P⩾κ

= Tκ(P )2 + 2Tκ
(
P
) [

(P + κ) 1P⩽−κ −
(
P + κ

)
1P⩽−κ

]
− Tκ

(
P
)2

+ 2Tκ
(
P
) [

(P − κ) 1P⩾κ −
(
P − κ

)
1P⩾κ

]
⩽ Tκ(P )2 − 2κ

[
(P + κ) 1P⩽−κ −

(
P + κ

)
1P⩽−κ

]
− Tκ

(
P
)2

+ 2κ
[
(P − κ) 1P⩾κ −

(
P − κ

)
1P⩾κ

]
, (6.37)

where the last inequality follows from Jensen’s inequality with the concavity of ξ 7→
(ξ + κ)1ξ⩽−κ, the convexity of ξ 7→ (ξ − κ)1ξ⩾κ and −κ ⩽ Tκ(ξ) ⩽ κ. Since

Sκ(ξ) = 1
2
Tκ(ξ)

2 + κ (ξ − κ) 1ξ⩾κ − κ (ξ + κ) 1ξ⩽−κ

we have

Sκ(P ) = 1
2
Tκ(P )2 + κ (P − κ) 1P⩾κ − κ (P + κ) 1P⩽−κ,

Sκ

(
P
)

= 1
2
Tκ(P )

2 + κ
(
P − κ

)
1P⩾κ − κ

(
P + κ

)
1P⩽−κ.

The last two identities with (6.37) imply (6.34). □
Now we state the main result of this section.

Lemma 6.6. The measures ν1, ν2 given in Lemma 6.2 are Dirac measures, and

ν1t,x(ξ) = δP (t,x)(ξ), ν2t,x(ζ) = δQ(t,x)(ζ). (6.38)

Proof. Since the proof is the same, we present here only the proof of ν1t,x(ξ) = δP (t,x)(ξ).

Note that if P 2 = P
2
then

∫
R

(
P − ξ

)2
dν1t,x(ξ) = 0 which implies that supp(ν1t,x) =

{
P
}
.

Since ν1t,x is a probability measure, necessarily ν1t,x = δP . It remains then only to prove

that P 2 = P
2
. The goal is to obtain an evolutionary inequality of P 2 − P

2
, then, since it

is equal to zero initially, we prove that it remains zero for all time. The proof is given in
several steps.

Step 1. Replacing f in (6.9) by Sκ one obtains

Sκ(P
ε)t + [λε Sκ(P

ε)]x = 1
4hε (P

ε + 3Qε)Sκ(P
ε)

+
[
− 1

8hε (P ε)2 + 1
8hε χε(P

ε) + 1
8hε (Qε)2 − 1

2hε A ε
x P

ε + M ε
]
Tκ(P

ε).

Taking ε→ 0, using (5.63), Lemma 6.2 and Lemma 6.4 we obtain

Sκ(P )t +
(
λSκ(P )

)
x

=

1
8h

{
2P Sκ(P ) − P 2 Tκ(P ) + 6QSκ(P ) + Q2 Tκ(P )

}
+ Tκ(P ) M̃ . (6.39)

Step 2. Replacing f in (6.9) by the identity function and taking ε→ 0 we obtain

P t +
(
λP
)
x

= 1
8h

(
P 2 + 6P Q + Q2

)
+ M̃ . (6.40)
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Let jε be a Friedrichs mollifier, we note P
ε def
= P ∗ jε, then we have

P
ε

t +
(
λP

ε)
x

= θε +
{

1
8h

(
P 2 + 6P Q + Q2

)}
∗ jε + M̃ ∗ jε, (6.41)

where θε
def
=
(
λP

ε)
x
−
(
λP
)
x
∗ jε. Multiplying by Tκ

(
P

ε)
and using (6.13), we obtain

Sκ

(
P

ε)
t
+
(
λSκ

(
P

ε))
x

= 1
4h

(3Q + P )Sκ

(
P

ε) − 1
4h

(
3Q + P

)
P

ε
Tκ
(
P

ε)
+ Tκ

(
P

ε){ 1
8h

(
P 2 + 6P Q + Q2

)}
∗ jε + Tκ

(
P

ε) (
M̃ ∗ jε

)
+ Tκ

(
P

ε)
θε.

Taking ε→ 0 and using Lemma A.4, one obtains

Sκ

(
P
)
t
+
(
λSκ

(
P
))

x
=

1
8h

{
2P Sκ

(
P
)

+ 6QSκ

(
P
)

+ Tκ
(
P
) (
P 2 − 2P

2
+ Q2

)}
+ Tκ

(
P
)

M̃ . (6.42)

Step 3. From (6.39) and (6.42) we obtain[
Sκ(P ) − Sκ

(
P
)]

t
+
[
λ
(
Sκ(P ) − Sκ

(
P
))]

x
= M̃

(
Tκ(P ) − Tκ

(
P
))

1
8h

{
2P Sκ(P ) − P 2 Tκ(P ) + P

2
Tκ
(
P
)

− 2P Sκ

(
P
)

+ Tκ
(
P
) (
P

2 − P 2
)}

+ 1
8h

{
6Q

(
Sκ(P ) − Sκ

(
P
))

+ Q2
(
Tκ(P ) − Tκ

(
P
))}

. (6.43)

From (6.23) and (6.24) we have

ξ2 Tκ(ξ) − 2 ξ Sκ(ξ) = ξ2 Tκ(ξ) − 2 ξ Sκ(ξ) + ξ3 − ξ3

= ξ2 [Tκ(ξ) − ξ] + ξ (ξ + κ)2 1ξ⩽−κ + ξ (ξ − κ)2 1ξ⩾κ

= κ2 [Tκ(ξ) − ξ] −
(
ξ2 − κ2

)
[(ξ + κ)1ξ⩽−κ + (ξ − κ)1ξ⩾κ]

+ ξ (ξ + κ)2 1ξ⩽−κ + ξ (ξ − κ)2 1ξ⩾κ

= κ2 [Tκ(ξ) − ξ] + κ (ξ + κ)2 1ξ⩽−κ − κ (ξ − κ)2 1ξ⩾κ.

Then from (6.23) we have

2P Sκ(P ) − P 2 Tκ(P ) + P
2
Tκ
(
P
)

− 2P Sκ

(
P
)

+ Tκ
(
P
) (
P

2 − P 2
)

=
(
Tκ
(
P
)
+ κ

)
(P + κ)2 1P⩽−κ +

(
Tκ
(
P
)
− κ

)
(P − κ)2 1P⩾κ

−
(
Tκ
(
P
)
+ κ

)
(P + κ)2 1P⩽−κ −

(
Tκ
(
P
)
− κ

)
(P − κ)2 1P⩾κ

− κ2
(
Tκ(P ) − Tκ

(
P
))

− 2Tκ
(
P
) (
Sκ(P ) − Sκ

(
P
))

(6.44)

From the definition (6.24) we have(
Tκ
(
P
)
+ κ

)
(P + κ)2 1P⩽−κ =

(
Tκ
(
P
)
− κ

)
(P − κ)2 1P⩾κ = 0 (6.45)

Since Tκ
(
P
)
⩾ −κ, then

−
(
Tκ
(
P
)
+ κ

)
(P + κ)2 1P⩽−κ ⩽ 0. (6.46)
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Let t0 > 0 and κ ⩾ C(1 + t−1
0 ), then from Lemma 5.5, we have for all t ⩾ t0 that P ε ⩽ κ

and P ⩽ κ. Then, using the convexity of Tκ on (−∞, κ) and the Jensen’s inequality we
obtain

−κ2
(
Tκ(P ) − Tκ

(
P
))

⩽ 0, ∀t ⩾ t0, κ ⩾ C(1 + t−1
0 ). (6.47)

We take again t0 > 0 and κ ⩾ C(1 + t−1
0 ), then for all φ ∈ C∞

c ((t0,∞)×R) we have∫
(P − κ)2 1P⩾κ φ dx dt = lim

ε→0

∫
(P ε − κ)2 1P ε⩾κ φ dx dt = 0. (6.48)

Then, using (6.43), (6.44), (6.45), (6.46), (6.47) and (6.48) we obtain that[
Sκ(P ) − Sκ

(
P
)]

t
+
[
λ
(
Sκ(P ) − Sκ

(
P
))]

x
⩽ M̃

(
Tκ(P ) − Tκ

(
P
))

+ 1
8h

{(
6Q − 2Tκ

(
P
)) (

Sκ(P ) − Sκ

(
P
))

+ Q2
(
Tκ(P ) − Tκ

(
P
))}

, (6.49)

for any t0 > 0, κ ⩾ C(1 + t−1
0 ) and t > t0.

Step 4. Let fκ(t, x)
def
= Sκ(P )−Sκ

(
P
)
and f ε

κ
def
= fκ∗jε where jε is a Friedrichs mollifier,

then, from (6.49) and Lemma A.4 we obtain

(f ε
κ)t + (λ f ε

κ)x ⩽ 1
4h

{
3Q − Tκ

(
P
)}

f ε
κ +

(
M̃ +

Q2

8h

)(
Tκ(P ) − Tκ

(
P
))

+ θε,

where θε → 0 in L1
loc((0,∞)×R). Let β > 0, multiplying by h3/2

(
h3/2f ε

κ + β
)−1/2

/2 and
using (6.14) one obtains[√

h3/2 f ε
κ + β

]
t

+

[
λ
√
h3/2 f ε

κ + β

]
x

⩽
(
M̃ + Q2

8h

)
Tκ(P )−Tκ(P)
2
√

h3/2 fε
κ +β

h3/2 + θ̃ε

+
(P −Tκ(P))h1/2 fε

κ

8
√

h3/2 fε
κ +β

+ β λx√
h3/2 fε

κ +β
,

where θ̃ε
def
= θεh

3/2
(
h3/2f ε

κ + β
)−1/2

/2 → 0 in L1
loc((0,∞)×R). Taking ε→ 0 we obtain[√

h3/2 fκ + β
]
t
+
[
λ
√
h3/2 fκ + β

]
x

⩽
(
M̃ + Q2

8h

)
Tκ(P )−Tκ(P)
2
√

h3/2 fκ +β
h3/2

+
(P −Tκ(P))h1/2 fκ

8
√

h3/2 fκ +β
+ β λx√

h3/2 fκ +β
. (6.50)

From (6.34) we have∣∣∣∣(M̃ + Q2

8h

)
Tκ(P )−Tκ(P)
2
√

h3/2 fκ +β
h3/2

∣∣∣∣ ⩽
√
2
2

∣∣∣M̃ + Q2

8h

∣∣∣h3/4.
Using that |Tκ(ξ)| ⩽ |ξ| and Sκ(ξ) ⩽ ξ2/2 we obtain∣∣∣∣(P −Tκ(P))h1/2 fκ

8
√

h3/2 fκ +β

∣∣∣∣ ⩽
|P |√fκ

4h1/4 ⩽ 1
8h1/4

(
P

2
+ fκ

)
⩽ 1

8h1/4

(
3
2
P

2
+ 1

2
P 2
)
.



34 GUELMAME

Since the L1 convergence implies the pointwise convergence (up to a subsequence), then,
using the dominated convergence theorem with (6.32) and (6.33), we obtain

lim
κ→∞

∥∥∥∥(M̃ + Q2

8h

)
Tκ(P )−Tκ(P)
2
√

h3/2 fκ +β
h3/2

∥∥∥∥
L1(Ω)

+ lim
κ→∞

∥∥∥∥(P −Tκ(P))h1/2 fκ

8
√

h3/2 fκ +β

∥∥∥∥
L1(Ω)

= 0

for any compact set Ω ⊂ (0,∞) × R. Since |Sκ(ξ)| ⩽ ξ2/2, then |fκ| ⩽ P
2
/2 + P 2/2.

Taking κ→ ∞ in (6.50) and using the dominated convergence theorem again we obtain[√
h3/2 f + β

]
t
+
[
λ
√
h3/2 f + β

]
x

⩽ β λx√
h3/2 f +β

, f
def
= 1

2

(
P 2 − P

2
)
.

Taking now β → 0 we obtain[√
h3/2 f

]
t
+
[
λ
√
h3/2 f

]
x

⩽ 0 in (t0,∞)×R. (6.51)

Step 5. Following [64], let g
def
=
√
h3/2 f ∈ L∞((0,∞), L2(R)). Let also φ ∈ C∞

c (R)
satisfying φ(x) = 1 for |x| ⩽ 1 and φ(x) = 0 for |x| ⩾ 2. Then, for all n ⩾ 1, we
have gφ(x/n) ∈ L∞((0,∞), L1(R)). Then almost all t > 0 are Lebesgue points of t 7→∫
R
g(t, x)φ(x/n)dx, ∀n ⩾ 1. Let t̄ > 0 be a Lebesgue point of t 7→

∫
R
g(t, x)φ(x/n)dx and

δ ∈ (0, t̄/2). Let also ψ ∈ C∞
c ((0,∞)) satisfying

ψ(t) = 0 on (0, δ/2) ∪ (t̄+ δ,∞), ψ(t) = 1 on (δ, t̄− δ),

0 ⩽ ψ′(t) ⩽ C/δ, on (δ/2, δ), −ψ′(t) ⩾ C/δ, on (t̄− δ, t̄+ δ).

Multiplying (6.51) by φ(x/n)ψ(t), integrating on (0,∞)×R and using integration by parts
one obtains

C
δ

∫ t̄+δ

t̄−δ

∫
R

g(t, x)φ(x/n) dx dt ⩽ −
∫ t̄+δ

t̄−δ

∫
R

g(t, x)φ(x/n)ψ′(t) dx dt

⩽ C
δ

∫ δ

δ/2

∫
R

g(t, x)φ(x/n) dx dt + 1
n
||λ||L∞

∫ t̄+δ

δ/2

∫
R

g(t, x) |φ′(x/n)| dx dt.

From (6.16), we have

lim
t→0

∫
R

g(t, x)φ(x/n) dx = 0 =⇒ lim
δ→0

1
δ

∫ δ

δ/2

∫
R

g(t, x)φ(x/n) dx dt = 0.

Since t̄ > 0 is a Lebesgue point of t 7→
∫
R
g(t, x)φ(x/n)dx, then taking first δ → 0 and

then n→ ∞ we obtain

g(t̄, x) = 0 a.e. (t̄, x) ∈ (0,∞)×R.

Hence P 2 = P
2
almost everywhere, which implies that ν1t,x(ξ) = δP (t,x)(ξ). The proof of

ν2t,x(ζ) = δQ(t,x)(ζ) can be done similarly. □
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7. The global weak solutions

We use in this section the precompactness results given in the previous section to prove
that the limit (h, u) given in Lemma 6.1 is a weak solution of (2.1). All the limits in this
section are up to a subsequence.

Let (hε − h̄, uε) be the solution given in Theorem 5.1. Then, from Lemma 6.2, Lemma
6.6, Lemma 5.6, (4.4) and (6.13) we have that

(P ε, Qε, uεx, h
ε
x) ⇀

(
P ,Q, ux, hx

)
in Lp

loc((0,∞)×R), (7.1)∥∥(P ε)2 , (Qε)2 , (uεx)
2 , (hεx)

2
∥∥
L1(Ω)

→
∥∥∥P 2

, Q
2
, u2x, h

2
x

∥∥∥
L1(Ω)

,

for any p ∈ [2, 3) and compact set Ω ⊂ (0,∞)×R. This implies that

(P ε, Qε, uεx, h
ε
x) →

(
P ,Q, ux, hx

)
in L2

loc((0,∞)×R). (7.2)

Using Lemma 5.6 and Lemma 6.1 we obtain that for all p ∈ [2, 3), we have

(uεt , h
ε
t) ⇀ (ut, ht) in Lp

loc((0,∞)×R). (7.3)

Now, using (5.63) and taking the weak limit ε → 0 in (5.3a) we obtain (2.1a). Applying
Lhε on (5.3b) and multiplying by φ ∈ C∞

c ((0,∞)×R) we obtain∫
R+×R

{{
uεt + uε uεx + 3 γ (hε)−2 hεx

}{
hε φ − (hε)2 hεx φx − 1

3
(hε)3 φxx

}
+ 1

2
φuε A ε

x

}
dx dt

=

∫
R+×R

φx

{
C ε + F (hε) − 1

2
(hε)2 uεx A ε

x + 1
48
hε (χε(P

ε) + χε(Q
ε))
}
dx dt.

From (7.2) and Lemma 6.1 we obtain the following convergence as ε→ 0{
hε φ − (hε)2 hεx φx − 1

3
(hε)3 φxx

}
→ Lh φ in L2

loc((0,∞)×R).

Using again (7.2), Lemma 6.1 and also (7.3) obtain the convergence{
uεt + uε uεx + 3 γ (hε)−2 hεx

}
⇀

{
ut + uux + 3 γ h−2 hx

}
in L2

loc((0,∞)×R).

We suppose that supp(φ) ⊂ [t1, t2] × [a, b], then using the energy equation (5.12) and
Lemma 5.4 we obtain∣∣∣∣∫
R+×R

φx (h
ε)2 uεx A ε

x dx dt

∣∣∣∣ ⩽ C
∥∥φx (h

ε)2 uεx
∥∥
L∞([t1,t2],L2([a,b]))

∥A ε
x ∥L1([t1,t2],L∞([a,b])) ⩽ εC.

Following the same argument we obtain∣∣∣∣∫
R+×R

φuε A ε
x dx dt

∣∣∣∣ ⩽ εC.

Then, taking ε→ 0, using Lemma A.2, (5.60) and (7.2) we obtain (3.2). Doing the proof of
(6.15) for any t0, we obtain that (h− h̄, u) ∈ Cr(R

+, H1(R). Lemma 5.5 implies (3.6). The
inequality (3.4) follows from Lemma 5.6, (7.1) and (7.3). Finally, the energy inequality
(3.5) follows from (6.17).
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Appendix A. Some classical lemmas

Here, we recall simple versions of some classical lemmas that are needed in this paper.
We start this section by the following lemma on the Young measures.

Lemma A.1. ([32]) Let O be a subset of Rn with a zero-measure boundary. For any
bounded family {vε}ε ⊂ Lp(O,RN) with p > 1 there exists a subsequence denoted also {vε}ε
and a family of probability measures on RN , {µy, y ∈ O} such that for all f ∈ C0(RN) with
f(ξ) = O(|ξ|p) at infinity and for all ϕ ∈ C∞

c (O) we have

lim
ε→0

∫
O

ϕ(y) f(vε(y)) dy =

∫
O

ϕ(y)

∫
R

f(ξ) dµy(ξ) dy (A.1)

with ∫
O

∫
R

|ξ|p dµy(ξ) dy ⩽ lim inf
ε→0

∥uε∥pLp(O). (A.2)

Also, some other results on strong and weak precompactness are needed, then we recall.

Lemma A.2. ([20]) Let Ω be an open set of Rn, assuming that fn → f in Lp(Ω) with
p ∈ (1,∞), gn is bounded in Lq with q ∈ (1,∞) and gn ⇀ g in Lq(Ω), then for any
φ ∈ Lr(Ω) such that 1/p+ 1/q + 1/r = 1, we have

lim
n→∞

∫
Ω

fn gn φ dx =

∫
Ω

f g φ dx. (A.3)

Lemma A.3. ([20]) For any p > 2 we have L1
loc(R

2) ∩W−1,p
loc (R2) ⋐ H−1

loc (R
2). In other

words, for any open, bounded, smooth set U ⊂ R2, if the sequence (fn)n is bounded in
L1(U) ∩W−1,p(U), then (fn)n is relatively compact in H−1(U).

Lemma A.4. (Lemma II.1 in [18]) Let c ∈ L1
loc(R

+, H1
loc(R) and f ∈ L∞

loc(R
+, L2

loc(R)).
Let also jε be a Friedrichs mollifier, then

(c ∂xf) ∗ jε − c (∂xf ∗ jε)
ε→0−−→ 0, in L1

loc(R
+ ×R). (A.4)

Lemma A.5. (Lemma C.1 in [43]) Let (fn)n be a bounded sequence in L∞([0, T ], L2(R)).
If fn belongs to C([0, T ], H−1(R)) and for any φ ∈ H1(R), the map

t 7→
∫
R

φ(x) fn(t, x) dx

is uniformly continuous for t ∈ [0, T ] and n ⩾ 1, then (fn)n is relatively compact in the
space C([0, T ], L2

w(R)), where L
2
w is the L2 space equipped with its weak topology.

Lemma A.6. (Compensated compactness [22]) Let Ω be an open set of R2, let
a, b ∈ C(Ω,R) such that for all (x1, x2) ∈ Ω we have a(x1, x2) ̸= b(x1, x2). Let also
(fn), (gn) be bounded sequences in L2

loc(Ω,R) such that fn ⇀ f and gn ⇀ g. If the sequences

{∂x1fn + ∂x2(a fn)}n , and {∂x1gn + ∂x2(b gn)}n ,

are relatively compact in H−1
loc (Ω), then fngn ⇀ fg in the sense of distributions.
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Let Λ be defined such that Λ̂f = (1+ξ2)
1
2 f̂ and let [A,B]

def
= AB−BA be the commutator

of the operators A and B. We recall now some estimates of the Hs norm of the product,
the commutator and the composition of functions.

Lemma A.7. ([33]) If r ⩾ 0, then ∃C > 0 such that

∥f g∥Hr ⩽ C (∥f∥L∞ ∥g∥Hr + ∥f∥Hr ∥g∥L∞) , (A.5)

∥[Λr, f ] g∥L2 ⩽ C (∥fx∥L∞ ∥g∥Hr−1 + ∥f∥Hr ∥g∥L∞) . (A.6)

Lemma A.8. ([16]) Let F ∈ C∞(R) with F (0) = 0, then for any m ∈ N there exists a
continuous function F̃ , such that for all f ∈ Hm we have

∥F (f)∥Hm ⩽ F̃ (∥f∥L∞) ∥f∥Hm . (A.7)

Appendix B. The energy equation

The goal of this section is to prove that smooth solutions of (2.1) (respectively (5.3))
satisfy the energy equation (1.5) (respectively (5.11)). Taking ε = 0, we notice that (1.5)
is a particular case of (5.11). We consider ε ⩾ 0 and (hε, uε) smooth solutions of (5.3).
Then we have

1
2
g
[(
hε − h̄

)2]
t
= − g (hε − h̄) (hε uε)x + g (hε − h̄)A ε

x ,

1
2
γ
[
(hεx)

2
]
t
= − γ hεx (h

ε uε)xx + g hεx A ε −
√
3 γ

48 (hε)1/2
hεx (χε(P

ε)− χε(Q
ε)) .

Summing up we obtain

1
2
g
[(
hε − h̄

)2]
t
+ 1

2
γ
[
(hεx)

2
]
t
= g

[
(hε − h̄)A ε

]
x

− g (hε − h̄) (hε uε)x − γ hεx (h
ε uε)xx − 1

96
(Qε − P ε) (χε(P

ε)− χε(Q
ε)) . (B.1)

Defining X ε def
= C ε + F (hε), from (5.3) we have

1
6

[
(hε)3 (uεx)

2
]
t
= 1

2
(hε)2 (uεx)

2 A ε
x − 1

2
(hε)2 (uεx)

2 (hε uε)x −
1
3
(hε)3 uεx (u

ε uεx)x

− γ (hε)3 uεx
(
(hε)−2 hεx

)
x
− 1

3
uεx (h

ε)3 ∂x L
−1
hε ∂x X ε + 1

3
uεx (h

ε)3 ∂x Bε. (B.2)

Using again (5.3) and the definition of Lhε we obtain
1
2

[
hε (uε)2

]
t
= 1

2
(uε)2 A ε

x − 1
2
(uε)2 (hε uε)x − hε (uε)2 uεx − 3 γ (hε)−1 uε hεx

− hε uε L−1
hε X ε

x + hε uε Bε

= − 1
2
(uε)2 (hε uε)x − hε (uε)2 uεx − 3 γ (hε)−1 uε hεx − uε X ε

x

− 1
3
uε ∂x (h

ε)3 ∂xL
−1
hε ∂x X ε + 1

3
uε ∂x (h

ε)3 ∂x Bε + 1
2
uε
(
(hε)2 uεx A ε

x

)
x

− 1
48
uε [hε (χε(P

ε) + χε(Q
ε))]x

= − 1
2

[
(uε)3hε

]
x
− 3 γ (hε)−1 uε hεx − [uε X ε]x − 1

3

[
uε (hε)3 ∂x L

−1
hε ∂x X ε

]
x

+ 1
3

[
uε (hε)3 ∂x Bε

]
x
+ 1

2

[
uε (hε)2 uεx A ε

x

]
x
− 1

48
[uε hε (χε(P

ε) + χε(Q
ε))]x

+ uεx X ε + 1
3
uεx (h

ε)3 ∂x L
−1
hε ∂x X ε − 1

3
uεx (h

ε)3 ∂x Bε − 1
2
(hε)2 (uεx)

2 A ε
x
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+ 1
96
(P ε + Qε) (χε(P

ε) + χε(Q
ε)) . (B.3)

Summing up (B.2) and (B.3) one obtains
1
2

[
hε (uε)2

]
t
+ 1

6

[
(hε)3 (uεx)

2
]
t
= − 3 γ (hε)−1 uε hεx + uεx X ε − 1

2
(hε)2 (uεx)

2 (hε uε)x

− 1
3
(hε)3 uεx (u

ε uεx)x −
1
2

[
(uε)3hε

]
x
− [uε X ε]x − 1

3

[
uε (hε)3 ∂x L

−1
hε ∂x X ε

]
x

+ 1
3

[
uε (hε)3 ∂x Bε

]
x
+ 1

2

[
uε (hε)2 uεx A ε

x

]
x
− 1

48
[uε hε (χε(P

ε) + χε(Q
ε))]x

− γ (hε)3 uεx
(
(hε)−2 hεx

)
x
+ 1

96
(P ε + Qε) (χε(P

ε) + χε(Q
ε)) . (B.4)

Using (4.5) and (5.5) we obtain
1
3
(hε)3 ∂x Bε = 1

3
(hε)3 ∂xL

−1
hε

{
−1

2
uε A ε

x

}
− 1

2
(hε)2 uεx A ε

x + 1
48
hε (χε(P

ε) + χε(Q
ε))

+ (hε)3 ∂xL
−1
hε

{
hε
∫ x

−∞

(
1
2
(hε)−1 uεx A ε

x − 1
48 (hε)2

(χε(P
ε) + χε(Q

ε))
)
dy

}
= 1

3
(hε)2 V ε

1 − 1
2
(hε)2 uεx A ε

x + 1
48
hε (χε(P

ε) + χε(Q
ε)) .

Using now (4.7) and (B.4) we obtain
1
2

[
hε (uε)2

]
t
+ 1

6

[
(hε)3 (uεx)

2
]
t
= − 3 γ (hε)−1 uε hεx + uεx X ε − 1

2
(hε)2 (uεx)

2 (hε uε)x

− 1
3
(hε)3 uεx (u

ε uεx)x −
1
2

[
(uε)3hε

]
x
− [uε Rε]x −

[
uε
(
1
2
g
(
(hε)2 − h̄2

)
− 3 γ ln

(
hε/h̄

))]
x

+ 1
3

[
uε (hε)2 V ε

1

]
x
− γ (hε)3 uεx

(
(hε)−2 hεx

)
x
+ 1

96
(P ε + Qε) (χε(P

ε) + χε(Q
ε)) . (B.5)

Forward calculations lead to

g (hε − h̄) (hε uε)x + γ hεx (h
ε uε)xx + 3 γ (hε)−1 uε hεx − uεx X ε + 1

2
(hε)2 (uεx)

2 (hε uε)x

+ 1
3
(hε)3 uεx (u

ε uεx)x + γ (hε)3 uεx
(
(hε)−2 hεx

)
x

= 1
2
g
[
uε
(
hε − h̄

)2]
x

+ 1
6

[
(hε)3 uε (uεx)

2
]
x
+ 3 γ

[
uε ln

(
hε/h̄

)]
x
+ 1

2
γ
[
uε (hεx)

2
]
x
+ γ [hε hεx u

ε
x]x . (B.6)

Summing up (B.1), (B.5) and (B.6) we obtain[
1
2
hε (uε)2 + 1

2
g
(
hε − h̄

)2
+ 1

6
(hε)3 (uεx)

2 + 1
2
γ (hεx)

2
]
t
+[

1
2
(uε)3hε − g (hε − h̄)A ε + uε Rε + 1

2
g uε

(
(hε)2 − h̄2

)
− 1

3
uε (hε)2 V ε

1

+ 1
2
g uε

(
hε − h̄

)2
+ 1

6
(hε)3 uε (uεx)

2 + 1
2
γ uε (hεx)

2 + γ hε hεx u
ε
x

]
x

= 1
48
P εχε(P

ε) + 1
48
Qεχε(Q

ε).

This is (5.11).
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(Billel Guelmame) LJAD, Inria, CNRS, Université Côte d’Azur, France.
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